1
|
Kulkarni GC, Saha R, Peters CJ. Ion channel expression and function in glioblastoma multiforme (GBM): pathophysiological mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119982. [PMID: 40328081 DOI: 10.1016/j.bbamcr.2025.119982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/29/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
Glioblastoma Multiforme (GBM) is a highly malignant and diffusely invasive WHO Grade IV brain tumor arising from glial and neural stem cells. GBM is characterized by rapid proliferation and migration, aggressive invasion of local brain parenchyma, a hypoxic microenvironment, resistance to apoptosis and high vascular remodeling and angiogenesis. These hallmarks contribute to a near universal tumor recurrence after treatment or resection and poor patient prognosis. Ion channels, a superfamily of proteins responsible for permitting ion flux across otherwise impermeant membranes, show extensive remodeling in GBM with aberrant function mechanistically linked to manipulation of each of these hallmarks. In this review, we will discuss the known links between ion channel expression and activity and cellular processes that are enhanced or perturbed during GBM formation or progression. We will also discuss the extent to which basic or translational findings on ion channels in GBM samples or cell lines have shown preclinical promise towards the development of improved therapeutics against GBMs.
Collapse
Affiliation(s)
- Gauri C Kulkarni
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Rayna Saha
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Christian J Peters
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Ordóñez-Rubiano EG, Rincón-Arias N, Shelton WJ, Salazar AF, Sierra MA, Bertani R, Gómez-Amarillo DF, Hakim F, Baldoncini M, Payán-Gómez C, Cómbita AL, Ordonez-Rubiano SC, Parra-Medina R. Current Applications of Single-Cell RNA Sequencing in Glioblastoma: A Scoping Review. Brain Sci 2025; 15:309. [PMID: 40149830 PMCID: PMC11940614 DOI: 10.3390/brainsci15030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Background and Objective: The discovery of novel molecular biomarkers via next-generation sequencing technologies has revolutionized how glioblastomas (GBMs) are classified nowadays. This has resulted in more precise diagnostic, prognostic, and therapeutic approaches to address this malignancy. The present work examines the applications of single-cell RNA sequencing (scRNA-seq) in GBM, focusing on its potential to address tumor complexity and therapeutic resistance and improve patient outcomes. Methods: A scoping review of original studies published between 2009 and 2024 was conducted using the PUBMED and EMBASE databases. Studies in English or Spanish related to single-cell analysis and GBM were included. Key Findings: The database search yielded 453 publications. Themes related to scRNA-seq applied for the diagnosis, prognosis, treatment, and understanding of the cancer biology of GBM were used as criteria for article selection. Of the 24 studies that were included in the review, 11 focused on the tumor microenvironment and cell subpopulations in GBM samples, 5 investigated the use of sequencing to elucidate the GBM cancer biology, 3 examined disease prognosis using sequencing models, 3 applied translational research through scRNA-seq, and 2 addressed treatment-related problems in GBM elucidated by scRNA-seq. Conclusions: This scoping review explored the various clinical applications of scRNA-seq technologies in approaching GBM. The findings highlight the utility of this technology in unraveling the complex cellular and immune landscapes of GBM, paving the way for improved diagnosis and personalized treatments. This cutting-edge approach might strengthen treatment strategies against tumor progression and recurrence, setting the stage for multi-targeted interventions that could significantly improve outcomes for patients with aggressive, treatment-resistant GBMs.
Collapse
Affiliation(s)
- Edgar G. Ordóñez-Rubiano
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Department of Neurosurgery, Fundación Universitaria de Ciencias de la Salud—FUCS, Hospital de San José—Sociedad de Cirugía de Bogotá, Bogotá 110111, Colombia;
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá 111071, Colombia; (D.F.G.-A.)
| | - Nicolás Rincón-Arias
- Department of Neurosurgery, Fundación Universitaria de Ciencias de la Salud—FUCS, Hospital de San José—Sociedad de Cirugía de Bogotá, Bogotá 110111, Colombia;
| | - William J. Shelton
- School of Medicine, Universidad de los Andes, Bogotá 110111, Colombia; (W.J.S.); (A.F.S.)
| | - Andres F. Salazar
- School of Medicine, Universidad de los Andes, Bogotá 110111, Colombia; (W.J.S.); (A.F.S.)
| | | | - Raphael Bertani
- Division of Neurosurgery, University of São Paulo, São Paulo 01246-904, Brazil;
| | - Diego F. Gómez-Amarillo
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá 111071, Colombia; (D.F.G.-A.)
| | - Fernando Hakim
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá 111071, Colombia; (D.F.G.-A.)
| | - Matías Baldoncini
- Laboratory of Microsurgical Neuroanatomy, Second Chair of Gross Anatomy, School of Medicine, University of Buenos Aires, Buenos Aires B1430, Argentina;
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, Cesar 202017, Colombia
| | - Alba Lucia Cómbita
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Grupo de Investigación Traslacional en Oncología, Instituto Nacional de Cancerología, Bogotá 111321, Colombia
| | - Sandra C. Ordonez-Rubiano
- Department of Chemistry, School of Humanities and Sciences, Stanford University, Stanford, CA 94305, USA;
| | - Rafael Parra-Medina
- Department of Pathology, Instituto Nacional de Cancerología, Bogotá 111511, Colombia;
- Research Institute, Fundación Universitaria de Ciencias de la Salud—FUCS, Hospital de San José—Sociedad de Cirugía de Bogotá, Bogotá 111711, Colombia
| |
Collapse
|
3
|
Szymulewska-Konopko K, Reszeć-Giełażyn J, Małeczek M. Ferritin as an Effective Prognostic Factor and Potential Cancer Biomarker. Curr Issues Mol Biol 2025; 47:60. [PMID: 39852175 PMCID: PMC11763953 DOI: 10.3390/cimb47010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Ferritin is found in all cells of the body, serving as a reservoir of iron and protecting against damage to the molecules that make up cellular structures. It has emerged as a biomarker not only for iron-related disorders but also for inflammatory diseases and conditions in which inflammation plays a key role, including cancer, neurodegeneration, and infection. Oxidative stress, which can cause cellular damage, is induced by reactive oxygen species generated during the Fenton reaction, activating signaling pathways associated with tumor growth and proliferation. This review primarily emphasizes basic studies on the identification and function of ferritin, its essential role in iron metabolism, its involvement in inflammatory diseases, and its potential as an important prognostic factor and biomarker for cancer detection.
Collapse
Affiliation(s)
| | - Joanna Reszeć-Giełażyn
- Department of Medical Pathomorphology, Medical University of Bialystok, 15-089 Białystok, Poland; (K.S.-K.); (M.M.)
| | | |
Collapse
|
4
|
Bannykh KS, Fuentes-Fayos AC, Linesch PW, Breunig JJ, Bannykh SI. Laminin Beta 2 Is Localized at the Sites of Blood-Brain Barrier and Its Disruption Is Associated With Increased Vascular Permeability, Histochemical, and Transcriptomic Study. J Histochem Cytochem 2024; 72:641-667. [PMID: 39340425 PMCID: PMC11472343 DOI: 10.1369/00221554241281896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Heterotrimeric extracellular matrix proteins laminins are mostly deposited at basal membranes and are important in repair and neoplasia. Here, we localize laminin beta 2 (LAMB2) at the sites of blood-brain barrier (BBB). Microvasculature (MV) of normal brain is endowed with complete LAMB2 coverage. In contrast, its cognate protein laminin beta 1 (LAMB1) is absent in MV of normal brain but emerges at the sprouting tip of a growing vessels. Similarly, vascular proliferation in high-grade gliomas (HGG) is accompanied by marked overexpression of LAMB1, whereas LAMB2 shows deficient deposition. We find that many brain pathologies with presence of post-gadolinium enhancement (PGE) on magnetic resonance imaging (MRI) show disruption of LAMB2 vascular ensheathment. Inhibition of vascular endothelial growth factor signaling in HGG blocks angiogenesis, suppresses PGE in HGG, prevents expression of LAMB1, and restores LAMB2 vascular coverage. Analysis of single-cell RNA sequencing (scRNA-seq) databases shows that in quiescent brain LAMB2 is predominantly expressed by BBB-associated pericytes (PCs) and endothelial cells (ECs), whereas neither cell types produce LAMB1. In contrast, in HGG, both LAMB1 and 2 are overexpressed by endothelial precursor cells, a phenotypically unique immature group, specific to proliferating hyperplastic MV.
Collapse
Affiliation(s)
- Katherine S. Bannykh
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Antonio C. Fuentes-Fayos
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Paul W. Linesch
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Joshua J. Breunig
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Serguei I. Bannykh
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
5
|
Wagner S, Ewald C, Freitag D, Herrmann KH, Koch A, Bauer J, Vogl TJ, Kemmling A, Gufler H. Radiomics and visual analysis for predicting success of transplantation of heterotopic glioblastoma in mice with MRI. J Neurooncol 2024; 169:257-267. [PMID: 38960965 PMCID: PMC11341603 DOI: 10.1007/s11060-024-04725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/25/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Quantifying tumor growth and treatment response noninvasively poses a challenge to all experimental tumor models. The aim of our study was, to assess the value of quantitative and visual examination and radiomic feature analysis of high-resolution MR images of heterotopic glioblastoma xenografts in mice to determine tumor cell proliferation (TCP). METHODS Human glioblastoma cells were injected subcutaneously into both flanks of immunodeficient mice and followed up on a 3 T MR scanner. Volumes and signal intensities were calculated. Visual assessment of the internal tumor structure was based on a scoring system. Radiomic feature analysis was performed using MaZda software. The results were correlated with histopathology and immunochemistry. RESULTS 21 tumors in 14 animals were analyzed. The volumes of xenografts with high TCP (H-TCP) increased, whereas those with low TCP (L-TCP) or no TCP (N-TCP) continued to decrease over time (p < 0.05). A low intensity rim (rim sign) on unenhanced T1-weighted images provided the highest diagnostic accuracy at visual analysis for assessing H-TCP (p < 0.05). Applying radiomic feature analysis, wavelet transform parameters were best for distinguishing between H-TCP and L-TCP / N-TCP (p < 0.05). CONCLUSION Visual and radiomic feature analysis of the internal structure of heterotopically implanted glioblastomas provide reproducible and quantifiable results to predict the success of transplantation.
Collapse
Affiliation(s)
- Sabine Wagner
- Department of Neuroradiology, Marburg University Hospital - Philipps University, 35043, Marburg, Germany.
- Department of Neuroradiology, Institute for Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University, 07747, Jena, Germany.
| | - Christian Ewald
- Department of Neurosurgery, Brandenburg Medical School, Theodor Fontane, University Hospital Brandenburg/Havel, 14770, Brandenburg/Havel, Germany
| | - Diana Freitag
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital - Friedrich Schiller University, 07747, Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University, 07743, Jena, Germany
| | - Arend Koch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, and Berlin Institute of Health, Charité University Medicine, 10117, Berlin, Germany
| | - Johannes Bauer
- Department of Neurosurgery, Brandenburg Medical School, Theodor Fontane, University Hospital Brandenburg/Havel, 14770, Brandenburg/Havel, Germany
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, Goethe University Hospital Frankfurt, 60590, Frankfurt Am Main, Germany
| | - André Kemmling
- Department of Neuroradiology, Marburg University Hospital - Philipps University, 35043, Marburg, Germany
| | - Hubert Gufler
- Department of Diagnostic and Interventional Radiology, Goethe University Hospital Frankfurt, 60590, Frankfurt Am Main, Germany
| |
Collapse
|
6
|
Srivastava G, Mittal R, Srivastava N, Ganjewala D. Exploring the potential of two Pseudomonas species to produce vincristine from vinblastine via biotransformation. Sci Rep 2024; 14:19652. [PMID: 39179785 PMCID: PMC11344160 DOI: 10.1038/s41598-024-70571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
A biotransformation pair consisting of vinblastine: vincristine present in the Catharanthus roseus plant is of immense pharmacological significance. In this study, we successfully transformed vinblastine into vincristine outside the plant using Pseudomonas aeruginosa 8485 and Pseudomonas fluorescens 2421 and evaluated the antiangiogenic potential of thus produced vincristine through the CAM assay. The toxicity assay showed that both Pseudomonas spp. can tolerate varying concentrations (25-100 µl of 1 mg/ml) of vinblastine. The biotransformation was performed in a liquid nutrient broth medium containing vinblastine (25-100 µl), and Pseudomonas spp. inoculums (50-150 µl) by incubating at 30 °C and 37 °C, respectively for 8 days. The process was optimized for substrate and culture concentrations, pH, temperature, and rotation speed (rpm) for the highest conversion. Analysis using LC-MS/MS confirmed the presence of vincristine as a product of the vinblastine biotransformation by two Pseudomonas spp. P. fluorescens 2421 showed a faster conversion rate with 95% of vinblastine transformed within 24 h than P. aeruginosa 8485, which demonstrated a conversion rate of 92% on the 8th day. From LC-MS/MS analysis, the optimal conditions for the reaction were determined as vinblastine (25 µl), microbial inoculums (150 µl or 200 × 106 and 210 × 106 CFU/ml), pH 7.4, rotation speed of 180 rpm, and temperatures of 30 °C and 37 °C with incubation time of 8 days. The vincristine produced exhibited potent antiangiogenic activity in the CAM assay reducing the thickness and branching of blood vessels in a dose-dependent manner. The study concludes that both Pseudomonas spp. showed promise for vincristine production from vinblastine, without compromising its antiangiogenic properties.
Collapse
Affiliation(s)
- Gauri Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, UP, 201303, India
| | - Ruchika Mittal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, UP, 201303, India
| | - Nidhi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, UP, 201303, India
| | - Deepak Ganjewala
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, UP, 201303, India.
| |
Collapse
|
7
|
Schiera G, Di Liegro CM, Vento F, Di Liegro I. Role of Extracellular Vesicles in the Progression of Brain Tumors. BIOLOGY 2024; 13:586. [PMID: 39194524 DOI: 10.3390/biology13080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Brain tumors, and, in particular, glioblastoma (GBM), are among the most aggressive forms of cancer. In spite of the advancement in the available therapies, both diagnosis and treatments are still unable to ensure pathology-free survival of the GBM patients for more than 12-15 months. At the basis of the still poor ability to cope with brain tumors, we can consider: (i) intra-tumor heterogeneity; (ii) heterogeneity of the tumor properties when we compare different patients; (iii) the blood-brain barrier (BBB), which makes difficult both isolation of tumor-specific biomarkers and delivering of therapeutic drugs to the brain. Recently, it is becoming increasingly clear that cancer cells release large amounts of extracellular vesicles (EVs) that transport metabolites, proteins, different classes of RNAs, DNA, and lipids. These structures are involved in the pathological process and characterize any particular form of cancer. Moreover, EVs are able to cross the BBB in both directions. Starting from these observations, researchers are now evaluating the possibility to use EVs purified from organic fluids (first of all, blood and saliva), in order to obtain, through non-invasive methods (liquid biopsy), tumor biomarkers, and, perhaps, also for obtaining nanocarriers for the targeted delivering of drugs.
Collapse
Affiliation(s)
- Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Francesco Vento
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
8
|
Okazaki A, Yamasaki T, Kataoka E, Fujihiro M, Kurozumi K. Clinical Benefits of Arterial Spin-Labeling Magnetic Resonance Imaging for Primary Diffuse Large B-cell Lymphoma of the Central Nervous System Presenting With Lymphomatosis Cerebri: A Case Report. Cureus 2024; 16:e67577. [PMID: 39310434 PMCID: PMC11416737 DOI: 10.7759/cureus.67577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Of the primary central nervous system (CNS) lymphomas, diffuse large B-cell lymphoma of the CNS (CNS-DLBCL) is an aggressive extranodal lymphoma that originates in the CNS. Lymphomatosis cerebri (LC) is an exceptionally rare subtype, posing diagnostic challenges due to the absence of abnormal enhancement and making the identification of suitable biopsy sites difficult. Arterial spin-labeling magnetic resonance imaging (ASL-MRI) is a non-invasive MRI technique that quantifies tumor blood flow. This report presents a case of CNS-DLBCL with LC, which was evaluated and biopsied using ASL-MRI of the brain. Herein, we present a case of a 32-year-old female who presented with abnormal involuntary movements and cognitive impairments. She underwent an MRI which showed a diffuse and infiltrative lesion in the bilateral basal ganglia, showing a high signal intensity area on fluid-attenuated inversion recovery (FLAIR) images with no contrast enhancement. Computed Tomography scans and Gallium-67 scintigraphy showed no abnormal uptake throughout the whole body. Although she received corticosteroid treatments, subsequent MRI showed an enlarged lesion, and she underwent a brain biopsy. The biopsy site was determined based on high perfusion demonstrated by ASL-MRI and the histological findings positive for B-cell markers led to diagnoses of CNS-DLBCL, specifically LC. Her symptoms improved following high-dose methotrexate and whole-brain irradiation. Subsequent MRI scans showed a dramatic improvement, and the high perfusion observed in the ASL-MRI disappeared. This report has emphasized the critical role of histopathology in diagnosing CNS-DLBCL presenting with LC, a highly aggressive lymphoma requiring prompt treatment. In this case, high ASL-MRI signal intensity indicated an increased area of tumor cell density suitable for biopsy. This is the first report to establish a relationship between cell density and ASL-MRI signal intensity in LC. The challenge in locating the optimal biopsy site due to the lack of contrast enhancement and the difference in tumor cell densities within high signal intensity areas on FLAIR imaging is presented. ASL-MRI provides information on tumor blood flow (TBF), which may be associated with higher tumor cell density, making it a valuable tool for identifying suitable biopsy sites. Thus, ASL-MRI is clinically beneficial for the biopsy of LC cases that show high signal intensity on FLAIR images without contrast enhancement.
Collapse
Affiliation(s)
- Akira Okazaki
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, JPN
| | - Tomohiro Yamasaki
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, JPN
| | - Eri Kataoka
- Department of Diagnostic Pathology, Hamamatsu University School of Medicine, Hamamatsu, JPN
| | - Mayu Fujihiro
- Department of Diagnostic Pathology, Hamamatsu University School of Medicine, Hamamatsu, JPN
| | - Kazuhiko Kurozumi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, JPN
| |
Collapse
|
9
|
Soliman AM, Kodous AS, Al-Sherif DA, Ghorab MM. Quinazoline sulfonamide derivatives targeting MicroRNA-34a/MDM4/p53 apoptotic axis with radiosensitizing activity. Future Med Chem 2024; 16:929-948. [PMID: 38661115 PMCID: PMC11221547 DOI: 10.4155/fmc-2023-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
Aim: New quinazoline benzenesulfonamide hybrids 4a-n were synthesized to determine their cytotoxicity and effect on the miR-34a/MDM4/p53 apoptotic pathway. Materials & methods: Cytotoxicity against hepatic, breast, lung and colon cancer cell lines was estimated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: Compound 4d was the most potent against HepG2 and MCF-7 cancer cells, with potential apoptotic activity verified by a significant upregulation of miR-34a and p53 gene expressions. The apoptotic effect of 4d was further investigated and showed downregulation of miR-21, VEGF, STAT3 and MDM4 gene expression. Conclusion: The anticancer and apoptotic activities of 4d were enhanced post irradiation by a single dose of 8 Gy γ-radiation. Docking analysis demonstrated a valuable affinity of 4d toward VEGFR2 and MDM4 active sites.
Collapse
Affiliation(s)
- Aiten M Soliman
- Drug Radiation Research Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Ahmad S Kodous
- Radiation Biology Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Diana A Al-Sherif
- Technology of Radiology and Medical Imaging, Faculty of Applied Medical Sciences, 6th of October University, Giza 12585, Egypt
| | - Mostafa M Ghorab
- Drug Radiation Research Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| |
Collapse
|
10
|
Memari E, Khan D, Alkins R, Helfield B. Focused ultrasound-assisted delivery of immunomodulating agents in brain cancer. J Control Release 2024; 367:283-299. [PMID: 38266715 DOI: 10.1016/j.jconrel.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Focused ultrasound (FUS) combined with intravascularly circulating microbubbles can transiently increase the permeability of the blood-brain barrier (BBB) to enable targeted therapeutic delivery to the brain, the clinical testing of which is currently underway in both adult and pediatric patients. Aside from traditional cancer drugs, this technique is being extended to promote the delivery of immunomodulating therapeutics to the brain, including antibodies, immune cells, and cytokines. In this manner, FUS approaches are being explored as a tool to improve and amplify the effectiveness of immunotherapy for both primary and metastatic brain cancer, a particularly challenging solid tumor to treat. Here, we present an overview of the latest groundbreaking research in FUS-assisted delivery of immunomodulating agents to the brain in pre-clinical models of brain cancer, and place it within the context of the current immunotherapy approaches. We follow this up with a discussion on new developments and emerging strategies for this rapidly evolving approach.
Collapse
Affiliation(s)
- Elahe Memari
- Department of Physics, Concordia University, Montreal H4B 1R6, Canada
| | - Dure Khan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Ryan Alkins
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Division of Neurosurgery, Department of Surgery, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Brandon Helfield
- Department of Physics, Concordia University, Montreal H4B 1R6, Canada; Department of Biology, Concordia University, Montreal H4B 1R6, Canada.
| |
Collapse
|
11
|
Thapa K, Khan H, Kaur G, Kumar P, Singh TG. Therapeutic targeting of angiopoietins in tumor angiogenesis and cancer development. Biochem Biophys Res Commun 2023; 687:149130. [PMID: 37944468 DOI: 10.1016/j.bbrc.2023.149130] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
The formation and progression of tumors in humans are linked to the abnormal development of new blood vessels known as neo-angiogenesis. Angiogenesis is a broad word that encompasses endothelial cell migration, proliferation, tube formation, and intussusception, as well as peri-EC recruitment and extracellular matrix formation. Tumor angiogenesis is regulated by angiogenic factors, out of which some of the most potent angiogenic factors such as vascular endothelial growth factor and Angiopoietins (ANGs) in the body are produced by macrophages and other immune cells within the tumor microenvironment. ANGs have a distinct function in tumor angiogenesis and behavior. ANG1, ANG 2, ANG 3, and ANG 4 are the family members of ANG out of which ANG2 has been extensively investigated owing to its unique role in modifying angiogenesis and its tight association with tumor progression, growth, and invasion/metastasis, which makes it an excellent candidate for therapeutic intervention in human malignancies. ANG modulators have demonstrated encouraging outcomes in the treatment of tumor development, either alone or in conjunction with VEGF inhibitors. Future development of more ANG modulators targeting other ANGs is needed. The implication of ANG1, ANG3, and ANG4 as probable therapeutic targets for anti-angiogenesis treatment in tumor development should be also evaluated. The article has described the role of ANG in tumor angiogenesis as well as tumor growth and the treatment strategies modulating ANGs in tumor angiogenesis as demonstrated in clinical studies. The pharmacological modulation of ANGs and ANG-regulated pathways that are responsible for tumor angiogenesis and cancer development should be evaluated for the development of future molecular therapies.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara School of Pharmacy, Chitkara University, 174103, Himachal Pradesh, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Gagandeep Kaur
- Chitkara School of Pharmacy, Chitkara University, 174103, Himachal Pradesh, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, 151401, Bathinda, India
| | | |
Collapse
|
12
|
Senrung A, Tripathi T, Yadav J, Janjua D, Chaudhary A, Chhokar A, Aggarwal N, Joshi U, Goswami N, Bharti AC. In vivo antiangiogenic effect of nimbolide, trans-chalcone and piperine for use against glioblastoma. BMC Cancer 2023; 23:1173. [PMID: 38036978 PMCID: PMC10691152 DOI: 10.1186/s12885-023-11625-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Angiogenesis is an important hallmark of Glioblastoma (GBM) marked by elevated vascular endothelial growth factor-A (VEGF-A) and its receptor 2 (VEGFR-2). As previously reported nimbolide (NBL), trans-chalcone (TC) and piperine (PPR) possess promising antiangiogenic activity in several cancers however, their comparative efficacy and mechanism of antiangiogenic activity in GBM against VEGFR-2 has not been elucidated. METHODS 2D and 3D spheroids cultures of U87 (Uppsala 87 Malignant Glioma) were used for evaluation of non-cytotxoic dose for anti-angiogenic activity. The antiangiogenic effect was investigated by the GBM U87 cell line bearing chick CAM model. Excised U87 xenografts were histologically examined for blood vascular density by histochemistry. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to detect the presence of avian and human VEGF-A and VEGFR-2 mRNA transcripts. RESULTS Using 2D and 3D spheroid models, the non-cytotoxic dose of NBL, TC and PPR was ≤ 11 µM. We found NBL, TC and PPR inhibit U87-induced neoangiogenesis in a dose-dependent manner in the CAM stand-alone model as well as in CAM U87 xenograft model. The results also indicate that these natural compounds inhibit the expression of notable angiogenic factors, VEGF-A and VEGFR-2. A positive correlation was found between blood vascular density and VEGF-A as well as VEGFR-2 transcripts. CONCLUSION Taken together, NBL, TC and PPR can suppress U87-induced neoangiogenesis via a reduction in VEGF-A and its receptor VEGFR-2 transcript expression at noncytotoxic concentrations. These phytochemicals showed their utility as adjuvants to GBM therapy, with Piperine demonstrating superior effectiveness among them all.
Collapse
Affiliation(s)
- Anna Senrung
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
- Neuropharmacology and Drug Delivery Laboratory, Daulat Ram College, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Joni Yadav
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Divya Janjua
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Apoorva Chaudhary
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Arun Chhokar
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
- Deshbandhu College, University of Delhi, Delhi, India
| | - Nikita Aggarwal
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Udit Joshi
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Nidhi Goswami
- Neuropharmacology and Drug Delivery Laboratory, Daulat Ram College, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India.
| |
Collapse
|
13
|
Chen X, Zhao Y, Huang Y, Zhu K, Zeng F, Zhao J, Zhang H, Zhu X, Kettenmann H, Xiang X. TREM2 promotes glioma progression and angiogenesis mediated by microglia/brain macrophages. Glia 2023; 71:2679-2695. [PMID: 37641212 DOI: 10.1002/glia.24456] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Triggering receptor expressed on myeloid cell 2 (TREM2), a myeloid cell-specific signaling molecule, controls essential functions of microglia and impacts on the pathogenesis of Alzheimer's disease and other neurodegenerative disorders. TREM2 is also highly expressed in tumor-associated macrophages in different types of cancer. Here, we studied whether TREM2 influences glioma progression. We found a gender-dependent effect of glioma growth in wild-type (WT) animals injected with GL261-EGFP glioma cells. Most importantly, TREM2 promotes glioma progression in male but not female animals. The accumulation of glioma-associated microglia/macrophages (GAMs) and CD31+ blood vessel density is reduced in male TREM2-deficient mice. A transcriptomic analysis of glioma tissue revealed that TREM2 deficiency suppresses immune-related genes. In an organotypic slice model devoid of functional vascularization and immune components from periphery, the tumor size was not affected by TREM2-deficiency. In human resection samples from glioblastoma, TREM2 is upregulated in GAMs. Based on the Cancer Genome Atlas Program (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases, the TREM2 expression levels were negatively correlated with survival. Thus, the TREM2-dependent crosstalk between GAMs and the vasculature formation promotes glioma growth.
Collapse
Affiliation(s)
- Xuezhen Chen
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yue Zhao
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Kaichuan Zhu
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fan Zeng
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junyi Zhao
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xinzhou Zhu
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Helmut Kettenmann
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Xianyuan Xiang
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
14
|
Lacoin G, Zemmoura I, Gennisson JL, Kouamé D, Remenieras JP. Multi-layered adaptive neoangiogenesis Intra-Operative quantification (MANIOQ). J Cereb Blood Flow Metab 2023; 43:1557-1570. [PMID: 37070356 PMCID: PMC10414011 DOI: 10.1177/0271678x231170504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023]
Abstract
Quantification of vascularization volume can provide valuable information for diagnosis and prognosis in vascular pathologies. It can be adapted to inform the surgical management of gliomas, aggressive brain tumors characterized by exuberant sprouting of new blood vessels (neoangiogenesis). Filtered ultrafast Doppler data can provide two main parameters: vascularization index (VI) and fractional moving blood volume (FMBV) that clinically reflect tumor micro vascularization. Current protocols lack robust, automatic, and repeatable filtering methods. We present a filtrating method called Multi-layered Adaptive Neoangiogenesis Intra-Operative Quantification (MANIOQ). First, an adaptive clutter filtering is implemented, based on singular value decomposition (SVD) and hierarchical clustering. Second a method for noise equalization is applied, based on the subtraction of a weighted noise profile. Finally, an in vivo analysis of the periphery of the B-mode hyper signal area allows to measure the vascular infiltration extent of the brain tumors. Ninety ultrasound acquisitions were processed from 23 patients. Compared to reference methods in the literature, MANIOQ provides a more robust tissue filtering, and noise equalization allows for the first time to keep axial and lateral gain compensation (TGC and LGC). MANIOQ opens the way to an intra-operative clinical analysis of gliomas micro vascularization.
Collapse
Affiliation(s)
| | - Ilyess Zemmoura
- UMR 1253, iBrain and the CHRU de Tours, Neurosurgical Department, Indre et Loire, Tours, France
| | - Jean-Luc Gennisson
- BioMaps, Laboratoire d'imagerie biomédicale multimodale à Paris-Saclay, Université Paris-Saclay, CEA, CNRS, INSERM, France
| | - Denis Kouamé
- Université de Toulouse III, IRIT UMR CNRS 5505, Toulouse, France
| | | |
Collapse
|
15
|
Nafe R, Hattingen E. The Spectrum of Molecular Pathways in Gliomas-An Up-to-Date Review. Biomedicines 2023; 11:2281. [PMID: 37626776 PMCID: PMC10452344 DOI: 10.3390/biomedicines11082281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
During the last 20 years, molecular alterations have gained increasing significance in the diagnosis and biological assessment of tumors. Gliomas represent the largest group of tumors of the central nervous system, and the main aim of this review is to present the current knowledge on molecular pathways and their alterations in gliomas. A wide range of new insights has been gained, including evidence for the involvement of the WNT pathway or the hippo pathway in the pathobiology of gliomas, indicating a broad involvement of different pathways formerly not considered to play a central role in gliomas. Even new aspects of angiogenic, apoptotic, and metabolic pathways are presented, as well as the rapidly growing field of epigenetic processes, including non-coding RNAs. The two major conclusions drawn from the present review are the distinct interconnectivity of the whole spectrum of molecular pathways and the prominent role of non-coding RNAs, especially circular RNAs, in the regulation of specific targets. All these new insights are discussed, even considering the topic of the resistance to therapy of gliomas, along with aspects that are still incompletely understood, like the role of hydroxymethylation, or even ferroptosis, in the pathobiology of gliomas.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
16
|
Dreyer CA, VanderVorst K, Natwick D, Bell G, Sood P, Hernandez M, Angelastro JM, Collins SR, Carraway KL. A complex of Wnt/planar cell polarity signaling components Vangl1 and Fzd7 drives glioblastoma multiforme malignant properties. Cancer Lett 2023; 567:216280. [PMID: 37336284 PMCID: PMC10582999 DOI: 10.1016/j.canlet.2023.216280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Targeting common oncogenic drivers of glioblastoma multiforme (GBM) in patients has remained largely ineffective, raising the possibility that alternative pathways may contribute to tumor aggressiveness. Here we demonstrate that Vangl1 and Fzd7, components of the non-canonical Wnt planar cell polarity (Wnt/PCP) signaling pathway, promote GBM malignancy by driving cellular proliferation, migration, and invasiveness, and engage Rho GTPases to promote cytoskeletal rearrangements and actin dynamics in migrating GBM cells. Mechanistically, we uncover the existence of a novel Vangl1/Fzd7 complex at the leading edge of migrating GBM cells and propose that this complex is critical for the recruitment of downstream effectors to promote tumor progression. Moreover, we observe that depletion of FZD7 results in a striking suppression of tumor growth and latency and extends overall survival in an intracranial mouse xenograft model. Our observations support a novel mechanism by which Wnt/PCP components Vangl1 and Fzd7 form a complex at the leading edge of migratory GBM cells to engage downstream effectors that promote actin cytoskeletal rearrangements dynamics. Our findings suggest that interference with Wnt/PCP pathway function may offer a novel therapeutic strategy for patients diagnosed with GBM.
Collapse
Affiliation(s)
- Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Dean Natwick
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - George Bell
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Prachi Sood
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Maria Hernandez
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - James M Angelastro
- Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
17
|
Faye MD, Easaw J, De Robles P, Agnihotram R, Torres-Vasquez A, Lamonde F, Petrecca K, Owen S, Panet-Raymond V, Shenouda G, Souhami L, Azam M, Hossain B, Alkass J, Sabri S, Abdulkarim B. Phase II trial of concurrent sunitinib, temozolomide, and radiotherapy with adjuvant temozolomide for newly diagnosed MGMT unmethylated glioblastoma. Neurooncol Adv 2023; 5:vdad106. [PMID: 37771465 PMCID: PMC10530294 DOI: 10.1093/noajnl/vdad106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Background The overall prognosis of glioblastoma (GBM) remains dismal, particularly for patients with unmethylated O6-methylguanine-DNA-methyltransferase (MGMT) promoter. In this phase II trial, we tested the combination of the antiangiogenic agent sunitinib with radiotherapy and temozolomide (TMZ) for newly diagnosed unmethylated MGMT GBM patients. Methods We enrolled 37 patients with unmethylated MGMT promoter GBM, age 18-70, and KPS ≥70. Patients received 12.5 mg of daily sunitinib for 7 days, followed by concurrent chemoradiation plus 12.5 mg sunitinib, then adjuvant TMZ. The primary endpoint was progression-free survival (PFS), and secondary endpoints were overall survival (OS), safety, and neutrophil-to-lymphocyte ratio (NLR) biomarker. Results At a median follow-up time of 15.3 months (range: 3.1-71.3 months), the median PFS was 7.15 months (95% CI: 5.4-10.5) and the 6-month PFS was 54.0%. Median OS was 15.0 months (95% CI: 13.8-19.4) and 2-year OS rate was 17.1%. Patients receiving >3 cycles of adjuvant TMZ, undergoing surgery at progression, and presenting a post-concurrent NLR ≤6 experienced a significant improved OS with hazard ratios of 0.197 (P = .001), 0.46 (P = .049), and 0.38 (P = .021), respectively, on multivariable analysis. Age >65 years predicted for worse OS with hazard ratio of 3.92 (P = .037). Grade ≥3 thrombocytopenia occurred in 22.9%, grade ≥3 neutropenia in 20%, and grade ≥3 thromboembolic events in 14.3% of patients. There were no grade 5 events. Conclusion Our findings suggest a potential benefit of combining sunitinib with chemoradiation in newly diagnosed GBM patients with unmethylated MGMT status and provide a strong rationale to test this combination in future studies.
Collapse
Affiliation(s)
- Mame Daro Faye
- Division of Radiation Oncology, Mcgill University Health Centre
| | - Jacob Easaw
- Department of Oncology, Cross Cancer Institute
| | | | - Raman Agnihotram
- Department of Oncology, McGill University Health Centre Research Institute
| | | | - Frederic Lamonde
- Department of Oncology, McGill University Health Centre Research Institute
| | - Kevin Petrecca
- Division of Neurosurgery, McGill University Health Centre
| | - Scott Owen
- Department of Oncology, McGill University Health Centre Research Institute
| | | | - George Shenouda
- Division of Radiation Oncology, Mcgill University Health Centre
| | - Luis Souhami
- Division of Radiation Oncology, Mcgill University Health Centre
| | - Maryam Azam
- Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Bushra Hossain
- Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Jad Alkass
- Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Siham Sabri
- Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Bassam Abdulkarim
- Division of Radiation Oncology, Mcgill University Health Centre
- Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Blood brain barrier-on-a-chip to model neurological diseases. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Sanati M, Afshari AR, Amini J, Mollazadeh H, Jamialahmadi T, Sahebkar A. Targeting angiogenesis in gliomas: Potential role of phytochemicals. J Funct Foods 2022; 96:105192. [DOI: 10.1016/j.jff.2022.105192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
20
|
Dialogue among Lymphocytes and Microglia in Glioblastoma Microenvironment. Cancers (Basel) 2022; 14:cancers14112632. [PMID: 35681612 PMCID: PMC9179556 DOI: 10.3390/cancers14112632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In this review, we summarize in vitro and in vivo studies related to glioblastoma models and human patients to outline the symbiotic bidirectional interaction between microglia, lymphocytes, and tumor cells that develops during tumor progression. Particularly, we highlight the current experimental therapeutic approaches that aim to shape these interplays, such as adeno-associated virus (AAV) delivery and CAR-T and -NK cell infusion, and to modulate the tumor microenvironment in an anti-tumoral way, thus counteracting glioblastoma growth. Abstract Microglia and lymphocytes are fundamental constituents of the glioblastoma microenvironment. In this review, we summarize the current state-of-the-art knowledge of the microglial role played in promoting the development and aggressive hallmarks of this deadly brain tumor. Particularly, we report in vitro and in vivo studies related to glioblastoma models and human patients to outline the symbiotic bidirectional interaction between microglia, lymphocytes, and tumor cells that develops during tumor progression. Furthermore, we highlight the current experimental therapeutic approaches that aim to shape these interplays, such as adeno-associated virus (AAV) delivery and CAR-T and -NK cell infusion, and to modulate the tumor microenvironment in an anti-tumoral way, thus counteracting glioblastoma growth.
Collapse
|
21
|
Role of intra-tumoral vasculature imaging features on susceptibility weighted imaging in differentiating primary central nervous system lymphoma from glioblastoma: a multiparametric comparison with pathological validation. Neuroradiology 2022; 64:1801-1818. [DOI: 10.1007/s00234-022-02946-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|
22
|
Deshors P, Arnauduc F, Boëlle B, Cohen-Jonathan Moyal E, Courtade-Saïdi M, Evrard SM. Impact of Regorafenib on Endothelial Transdifferentiation of Glioblastoma Stem-like Cells. Cancers (Basel) 2022; 14:1551. [PMID: 35326702 PMCID: PMC8946617 DOI: 10.3390/cancers14061551] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastomas (GBM) are aggressive brain tumours with a poor prognosis despite heavy therapy that combines surgical resection and radio-chemotherapy. The presence of a subpopulation of GBM stem cells (GSC) contributes to tumour aggressiveness, resistance and recurrence. Moreover, GBM are characterised by abnormal, abundant vascularisation. Previous studies have shown that GSC are directly involved in new vessel formation via their transdifferentiation into tumour-derived endothelial cells (TDEC) and that irradiation (IR) potentiates the pro-angiogenic capacity of TDEC via the Tie2 signalling pathway. We therefore investigated the impact of regorafenib, a multikinase inhibitor with anti-angiogenic and anti-tumourigenic activity, on GSC and TDEC obtained from irradiated GSC (TDEC IR+) or non-irradiated GSC (TDEC). Regorafenib significantly decreases GSC neurosphere formation in vitro and inhibits tumour formation in the orthotopic xenograft model. Regorafenib also inhibits transdifferentiation by decreasing CD31 expression, CD31+ cell count, pseudotube formation in vitro and the formation of functional blood vessels in vivo of TDEC and TDEC IR+. All of these results confirm that regorafenib clearly impacts GSC tumour formation and transdifferentiation and may therefore be a promising therapeutic option in combination with chemo/radiotherapy for the treatment of highly aggressive brain tumours.
Collapse
Affiliation(s)
- Pauline Deshors
- Institut Claudius Regaud, IUCT Oncopole, 31059 Toulouse, France; (P.D.); (B.B.); (E.C.-J.M.)
| | - Florent Arnauduc
- Faculty of Medicine, Paul Sabatier University, Toulouse-3, 31062 Toulouse, France; (F.A.); (M.C.-S.)
- INSERM UMR 1037, Centre for Cancer Research of Toulouse, 31100 Toulouse, France
| | - Betty Boëlle
- Institut Claudius Regaud, IUCT Oncopole, 31059 Toulouse, France; (P.D.); (B.B.); (E.C.-J.M.)
| | - Elizabeth Cohen-Jonathan Moyal
- Institut Claudius Regaud, IUCT Oncopole, 31059 Toulouse, France; (P.D.); (B.B.); (E.C.-J.M.)
- Faculty of Medicine, Paul Sabatier University, Toulouse-3, 31062 Toulouse, France; (F.A.); (M.C.-S.)
- INSERM UMR 1037, Centre for Cancer Research of Toulouse, 31100 Toulouse, France
| | - Monique Courtade-Saïdi
- Faculty of Medicine, Paul Sabatier University, Toulouse-3, 31062 Toulouse, France; (F.A.); (M.C.-S.)
- INSERM UMR 1037, Centre for Cancer Research of Toulouse, 31100 Toulouse, France
- Pathology and Cytology Department, CHU Toulouse, IUCT Oncopole, 31059 Toulouse, France
| | - Solène M. Evrard
- Faculty of Medicine, Paul Sabatier University, Toulouse-3, 31062 Toulouse, France; (F.A.); (M.C.-S.)
- INSERM UMR 1037, Centre for Cancer Research of Toulouse, 31100 Toulouse, France
- Pathology and Cytology Department, CHU Toulouse, IUCT Oncopole, 31059 Toulouse, France
| |
Collapse
|
23
|
Yu N, Aboud O. Metabolomics in High Grade Gliomas. RAS ONCOLOGY & THERAPY 2022; 3:17. [PMID: 36643416 PMCID: PMC9839194 DOI: 10.51520/2766-2586-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gliomas are central nervous system (CNS) cancers that are challenging to treat due to their high proliferation and mutation rates. High grade gliomas include grade 3 and grade 4 tumors, which characteristically have a poor prognosis despite advancements in diagnostic methods and therapeutic options. Advances in metabolomics are resulting in more insight as to how cancer modifies the metabolism of the cell and surrounding tissue. Hence, this avenue of research may also emerge as a way to precisely target metabolites unique to gliomas. These biomarkers may provide opportunities for glioma diagnosis, prognosis and future therapeutic intervention. In this review, we harvest the literature that highlights notable biomolecules in high grade gliomas and promising therapeutic targets and interventions.
Collapse
Affiliation(s)
- Nina Yu
- University of California, Davis School of Medicine, Sacramento, CA, United States
| | - Orwa Aboud
- Department of Neurology and Neurological Surgery, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
24
|
Serra R, Mangraviti A, Gorelick NL, Shapira-Furman T, Alomari S, Cecia A, Darjee N, Brem H, Rottenberg Y, Domb AJ, Tyler B. Combined Intracranial Acriflavine, Temozolomide and Radiation Extends Survival in a Rat Glioma Model. Eur J Pharm Biopharm 2021; 170:179-186. [PMID: 34968646 DOI: 10.1016/j.ejpb.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/23/2021] [Indexed: 11/04/2022]
Abstract
Glioblastomas have been historically difficult to treat with poor long-term survival. With novel strategies focused on targeting hypoxia-inducible factor (HIF) regulatory pathways, recent evidence has shown that Acriflavine (ACF) can effectively target glioma invasiveness and recurrence. However, local delivery of ACF and its combinatory effects with Temozolomide (TMZ) and radiation therapy (XRT) have not yet been optimized. In this study we test a novel polymeric matrix that can gradually release ACF at the tumor bed site in combination with systemic TMZ and XRT. In vitro cytotoxicity assays of ACF in combination with TMZ and XRT were performed on rodent and human cell lines with CCK-8 and flow cytometry. In vitro drug release was measured and intracranial safety was assessed in tumor-free animals. Finally, efficacy was assessed in an intracranial gliosarcoma model and combination therapy with TMZ and XRT evaluated. Combination therapy of ACF, TMZ, and XRT was able to reduce cell viability and induce apoptosis in glioma cells. In vitro and in vivo release of ACF was measured in benchtop and animal models. Efficacy was established in an in vivo gliosarcoma model in which intracranial ACF (p<0.01) significantly improved median survival and the combination therapy of ACF, TMZ and XRT (p<0.01) significantly improved median survival and led to long-term survival (LTS). We provide evidence that ACF, combined with TMZ and XRT, led to LTS in an intracranial model of rat gliosarcoma. These findings, in combination with the use of a novel polymeric matrix that allows more gradual drug delivery, constitute a first step in the translation of this novel strategy to human use.
Collapse
Affiliation(s)
- Riccardo Serra
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, United States; Department of Neurosurgery, University of Maryland, Baltimore, MD, United States
| | - Antonella Mangraviti
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, United States; Department of Neurosurgery, School of Medicine - Catholic University of the Sacred Heart, Rome, Italy
| | - Noah L Gorelick
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Tovi Shapira-Furman
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Arba Cecia
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Namrata Darjee
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, United States; Department of Oncology, Johns Hopkins University, Baltimore, MD, United States; Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Yakir Rottenberg
- Department of Oncology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abraham J Domb
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
25
|
Cocola C, Magnaghi V, Abeni E, Pelucchi P, Martino V, Vilardo L, Piscitelli E, Consiglio A, Grillo G, Mosca E, Gualtierotti R, Mazzaccaro D, La Sala G, Di Pietro C, Palizban M, Liuni S, DePedro G, Morara S, Nano G, Kehler J, Greve B, Noghero A, Marazziti D, Bussolino F, Bellipanni G, D'Agnano I, Götte M, Zucchi I, Reinbold R. Transmembrane Protein TMEM230, a Target of Glioblastoma Therapy. Front Cell Neurosci 2021; 15:703431. [PMID: 34867197 PMCID: PMC8636015 DOI: 10.3389/fncel.2021.703431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Glioblastomas (GBM) are the most aggressive tumors originating in the brain. Histopathologic features include circuitous, disorganized, and highly permeable blood vessels with intermittent blood flow. These features contribute to the inability to direct therapeutic agents to tumor cells. Known targets for anti-angiogenic therapies provide minimal or no effect in overall survival of 12–15 months following diagnosis. Identification of novel targets therefore remains an important goal for effective treatment of highly vascularized tumors such as GBM. We previously demonstrated in zebrafish that a balanced level of expression of the transmembrane protein TMEM230/C20ORF30 was required to maintain normal blood vessel structural integrity and promote proper vessel network formation. To investigate whether TMEM230 has a role in the pathogenesis of GBM, we analyzed its prognostic value in patient tumor gene expression datasets and performed cell functional analysis. TMEM230 was found necessary for growth of U87-MG cells, a model of human GBM. Downregulation of TMEM230 resulted in loss of U87 migration, substratum adhesion, and re-passaging capacity. Conditioned media from U87 expressing endogenous TMEM230 induced sprouting and tubule-like structure formation of HUVECs. Moreover, TMEM230 promoted vascular mimicry-like behavior of U87 cells. Gene expression analysis of 702 patients identified that TMEM230 expression levels distinguished high from low grade gliomas. Transcriptomic analysis of patients with gliomas revealed molecular pathways consistent with properties observed in U87 cell assays. Within low grade gliomas, elevated TMEM230 expression levels correlated with reduced overall survival independent from tumor subtype. Highest level of TMEM230 correlated with glioblastoma and ATP-dependent microtubule kinesin motor activity, providing a direction for future therapeutic intervention. Our studies support that TMEM230 has both glial tumor and endothelial cell intracellular and extracellular functions. Elevated levels of TMEM230 promote glial tumor cell migration, extracellular scaffold remodeling, and hypervascularization and abnormal formation of blood vessels. Downregulation of TMEM230 expression may inhibit both low grade glioma and glioblastoma tumor progression and promote normalization of abnormally formed blood vessels. TMEM230 therefore is both a promising anticancer and antiangiogenic therapeutic target for inhibiting GBM tumor cells and tumor-driven angiogenesis.
Collapse
Affiliation(s)
- Cinzia Cocola
- Institute for Biomedical Technologies, National Research Council, Milan, Italy.,Consorzio Italbiotec, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Edoardo Abeni
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Paride Pelucchi
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Valentina Martino
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Laura Vilardo
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Eleonora Piscitelli
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Arianna Consiglio
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Giorgio Grillo
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Ettore Mosca
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Roberta Gualtierotti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Mazzaccaro
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Gina La Sala
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Mira Palizban
- Department of Gynecology and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Sabino Liuni
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Giuseppina DePedro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Giovanni Nano
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - James Kehler
- National Institutes of Health, NIDDK, Laboratory of Cell and Molecular Biology, Bethesda, MD, United States
| | - Burkhard Greve
- Department of Radiation Therapy and Radiation Oncology, University Hospital of Münster, Münster, Germany
| | - Alessio Noghero
- Lovelace Biomedical Research Institute, Albuquerque, NM, United States.,Department of Oncology, University of Turin, Orbassano, Italy
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Federico Bussolino
- Department of Oncology, University of Turin, Orbassano, Italy.,Laboratory of Vascular Oncology Candiolo Cancer Institute - IRCCS, Candiolo, Italy
| | - Gianfranco Bellipanni
- Department of Biology, Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States
| | - Igea D'Agnano
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Ileana Zucchi
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Rolland Reinbold
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| |
Collapse
|
26
|
Aimaitijiang A, Tabu K, Wang W, Nobuhisa I, Taga T. Glioma cells remotely promote erythropoiesis as a self-expanding strategy of cancer stem cells. Genes Cells 2021; 27:25-42. [PMID: 34837452 DOI: 10.1111/gtc.12908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022]
Abstract
Cancer stem cells are a promising target for cancer eradication due to their responsibility for therapy-resistance and cancer recurrence. Previously, we have demonstrated that glioma stem cells (GSCs) recruit and induce the differentiation of bone marrow (BM) monocytes into tumor-infiltrating macrophages, which phagocytose hemorrhaged erythrocytes and store GSC-beneficial iron in mouse xenografts, suggesting a self-expanding strategy of GSCs that exploits host hematopoiesis of myeloid cells. However, it remains unclear whether a self-advantageous effect of GSCs also occurs on erythroid cells during glioma development. Here, we found that, in the primary cultures of mouse fetal liver proerythroblasts (proEs), conditioned media prepared from glioma cells including patient-derived glioblastoma (GBM) cells significantly facilitated the differentiation of proEs into erythroblasts. Importantly, in-vivo erythroid analysis in intracranially GSC-transplanted mice showed an enhanced erythropoiesis in the BM. In addition, the sphere forming ability of patient-derived GBM cells was significantly suppressed by hypoxia treatment and iron chelation, suggesting higher demands of GSCs for oxygen and iron, which may be supplied by GSCs- and their progeny-induced erythrocyte production. Our findings provide a new insight into survival and expanding strategies of GSCs that systemically exploit host erythropoiesis.
Collapse
Affiliation(s)
- Alapati Aimaitijiang
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kouichi Tabu
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Wenqian Wang
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ikuo Nobuhisa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
27
|
Cho SM, Kim Y, Jung Y, Ko M, Marko-Varga G, Kwon HJ. Development of Novel VEGFR2 Inhibitors Originating from Natural Product Analogues with Antiangiogenic Impact. J Med Chem 2021; 64:15858-15867. [PMID: 34730352 DOI: 10.1021/acs.jmedchem.1c01168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel natural small molecule, voacangine (Voa), has been discovered as a potent antiangiogenic compound. Notably, Voa directly binds the kinase domain of the vascular endothelial growth factor receptor 2 (VEGFR2) and thereby inhibits downstream signaling. Herein, we developed synthetic small molecules based on the unique chemical structure of Voa that directly and specifically target and modulate the kinase activity of VEGFR2. Among these Voa structure analogues, Voa analogue 19 (V19) exhibited increased antiangiogenic potency against VEGF-induced VEGFR2 phosphorylation without cytotoxic effects. Moreover, treatment with V19 resulted in significant tumor cell death in a mouse xenograft model. In conclusion, this new VEGFR2 modulator, inspired from the rigid scaffold of a natural compound, Voa, is presented as a potent candidate in the development of new antiangiogenic agents.
Collapse
Affiliation(s)
- Sung Min Cho
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yonghyo Kim
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden
| | - Yooju Jung
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Minjeong Ko
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Gyorgy Marko-Varga
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.,Department of Internal Medicine, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
28
|
Urbantat RM, Jelgersma C, Brandenburg S, Nieminen-Kelhä M, Kremenetskaia I, Zollfrank J, Mueller S, Rubarth K, Koch A, Vajkoczy P, Acker G. Tumor-Associated Microglia/Macrophages as a Predictor for Survival in Glioblastoma and Temozolomide-Induced Changes in CXCR2 Signaling with New Resistance Overcoming Strategy by Combination Therapy. Int J Mol Sci 2021; 22:ijms222011180. [PMID: 34681839 PMCID: PMC8538679 DOI: 10.3390/ijms222011180] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor recurrence is the main challenge in glioblastoma (GBM) treatment. Gold standard therapy temozolomide (TMZ) is known to induce upregulation of IL8/CXCL2/CXCR2 signaling that promotes tumor progression and angiogenesis. Our aim was to verify the alterations on this signaling pathway in human GBM recurrence and to investigate the impact of TMZ in particular. Furthermore, a combi-therapy of TMZ and CXCR2 antagonization was established to assess the efficacy and tolerability. First, we analyzed 76 matched primary and recurrent GBM samples with regard to various histological aspects with a focus on the role of TMZ treatment and the assessment of predictors of overall survival (OS). Second, the combi-therapy with TMZ and CXCR2-antagonization was evaluated in a syngeneic mouse tumor model with in-depth immunohistological investigations and subsequent gene expression analyses. We observed a significantly decreased infiltration of tumor-associated microglia/macrophages (TAM) in recurrent tumors, while a high TAM infiltration in primary tumors was associated with a reduced OS. Additionally, more patients expressed IL8 in recurrent tumors and TMZ therapy maintained CXCL2 expression. In mice, enhanced anti-tumoral effects were observed after combi-therapy. In conclusion, high TAM infiltration predicts a survival disadvantage, supporting findings of the tumor-promoting phenotype of TAMs. Furthermore, the combination therapy seemed to be promising to overcome CXCR2-mediated resistance.
Collapse
Affiliation(s)
- Ruth M. Urbantat
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
| | - Claudius Jelgersma
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
| | - Susan Brandenburg
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
| | - Irina Kremenetskaia
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
| | - Julia Zollfrank
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
| | - Susanne Mueller
- Department of Neurology and Experimental Neurology, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany;
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Kerstin Rubarth
- Experimental and Clinical Research Center, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany;
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Arend Koch
- Department of Neuropathology, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
| | - Gueliz Acker
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
- Clinician Scientist Program, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-660357
| |
Collapse
|
29
|
Radiomics and radiogenomics in gliomas: a contemporary update. Br J Cancer 2021; 125:641-657. [PMID: 33958734 PMCID: PMC8405677 DOI: 10.1038/s41416-021-01387-w] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/10/2021] [Accepted: 03/31/2021] [Indexed: 02/03/2023] Open
Abstract
The natural history and treatment landscape of primary brain tumours are complicated by the varied tumour behaviour of primary or secondary gliomas (high-grade transformation of low-grade lesions), as well as the dilemmas with identification of radiation necrosis, tumour progression, and pseudoprogression on MRI. Radiomics and radiogenomics promise to offer precise diagnosis, predict prognosis, and assess tumour response to modern chemotherapy/immunotherapy and radiation therapy. This is achieved by a triumvirate of morphological, textural, and functional signatures, derived from a high-throughput extraction of quantitative voxel-level MR image metrics. However, the lack of standardisation of acquisition parameters and inconsistent methodology between working groups have made validations unreliable, hence multi-centre studies involving heterogenous study populations are warranted. We elucidate novel radiomic and radiogenomic workflow concepts and state-of-the-art descriptors in sub-visual MR image processing, with relevant literature on applications of such machine learning techniques in glioma management.
Collapse
|
30
|
Liesche-Starnecker F, Prokop G, Yakushev I, Preibisch C, Delbridge C, Meyer HS, Aftahy K, Barz M, Meyer B, Zimmer C, Schlegel J, Wiestler B, Gempt J. Visualizing cellularity and angiogenesis in newly-diagnosed glioblastoma with diffusion and perfusion MRI and FET-PET imaging. EJNMMI Res 2021; 11:72. [PMID: 34398358 PMCID: PMC8368421 DOI: 10.1186/s13550-021-00817-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/28/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose Combining imaging modalities has become an essential tool for assessment of tumor biology in glioblastoma (GBM) patients. Aim of this study is to understand how tumor cellularity and neovascularization are reflected in O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography ([18F] FET PET) and magnetic resonance imaging (MRI) parameters, including cerebral blood volume (CBV), fractional anisotropy (FA) and mean diffusivity (MD). Methods In this prospective cohort, 162 targeted biopsies of 43 patients with therapy-naïve, isocitrate dehydrogenase (IDH) wildtype GBM were obtained after defining areas of interest based on imaging parameters [18F] FET PET, CBV, FA and MD. Histopathological analysis of cellularity and neovascularization was conducted and results correlated to imaging data. Results ANOVA analysis showed a significant increase of CBV in areas with high neovascularization. For diffusion metrics, and in particular FA, a trend for inverse association with neovascularization was found. [18F] FET PET showed a significant positive correlation to cellularity, while CBV also showed a trend towards correlation with cellularity, not reaching significant levels. In contrast, MD and FA were negatively associated with cellularity. Conclusion Our study confirms that amino acid PET and MR imaging parameters are indicative of histological tumor properties in glioblastoma and highlights the ability of multimodal imaging to assess tumor biology non-invasively.
Collapse
Affiliation(s)
- Friederike Liesche-Starnecker
- Department of Neuropathology, Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Georg Prokop
- Department of Neuropathology, Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, Klinikum rechts der isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Christine Preibisch
- Department of Neuroradiology, Klinikum rechts der isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Claire Delbridge
- Department of Neuropathology, Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Hanno S Meyer
- Department of Neurosurgery, Klinikum rechts der isar, School of Medicine, Technical University Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Kaywan Aftahy
- Department of Neurosurgery, Klinikum rechts der isar, School of Medicine, Technical University Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Melanie Barz
- Department of Neurosurgery, Klinikum rechts der isar, School of Medicine, Technical University Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der isar, School of Medicine, Technical University Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Jürgen Schlegel
- Department of Neuropathology, Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der isar, School of Medicine, Technical University Munich, Munich, Germany.,TranslaTUM (Zentralinstitut für translationale Krebsforschung der Technischen Universität München), Einsteinstraße 25, Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der isar, School of Medicine, Technical University Munich, Ismaningerstr. 22, 81675, Munich, Germany.
| |
Collapse
|
31
|
Establishment and Validation of CyberKnife Irradiation in a Syngeneic Glioblastoma Mouse Model. Cancers (Basel) 2021; 13:cancers13143416. [PMID: 34298631 PMCID: PMC8303959 DOI: 10.3390/cancers13143416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Stereotactic radiosurgery (SRS) provides precise high-dose irradiation of intracranial tumors. However, its radiobiological mechanisms are not fully understood. This study aims to establish CyberKnife SRS on an intracranial glioblastoma tumor mouse model and assesses the early radiobiological effects of radiosurgery. Following exposure to a single dose of 20 Gy, the tumor volume was evaluated using MRI scans, whereas cellular proliferation and apoptosis, tumor vasculature, and immune response were evaluated using immunofluorescence staining. The mean tumor volume was significantly reduced by approximately 75% after SRS. The precision of irradiation was verified by the detection of DNA damage consistent with the planned dose distribution. Our study provides a suitable mouse model for reproducible and effective irradiation and further investigation of radiobiological effects and combination therapies of intracranial tumors using CyberKnife. Abstract CyberKnife stereotactic radiosurgery (CK-SRS) precisely delivers radiation to intracranial tumors. However, the underlying radiobiological mechanisms at high single doses are not yet fully understood. Here, we established and evaluated the early radiobiological effects of CK-SRS treatment at a single dose of 20 Gy after 15 days of tumor growth in a syngeneic glioblastoma-mouse model. Exact positioning was ensured using a custom-made, non-invasive, and trackable frame. One superimposed target volume for the CK-SRS planning was created from the fused tumor volumes obtained from MRIs prior to irradiation. Dose calculation and delivery were planned using a single-reference CT scan. Six days after irradiation, tumor volumes were measured using MRI scans, and radiobiological effects were assessed using immunofluorescence staining. We found that CK-SRS treatment reduced tumor volume by approximately 75%, impaired cell proliferation, diminished tumor vasculature, and increased immune response. The accuracy of the delivered dose was demonstrated by staining of DNA double-strand breaks in accordance with the planned dose distribution. Overall, we confirmed that our proposed setup enables the precise irradiation of intracranial tumors in mice using only one reference CT and superimposed MRI volumes. Thus, our proposed mouse model for reproducible CK-SRS can be used to investigate radiobiological effects and develop novel therapeutic approaches.
Collapse
|
32
|
Curry RN, Glasgow SM. The Role of Neurodevelopmental Pathways in Brain Tumors. Front Cell Dev Biol 2021; 9:659055. [PMID: 34012965 PMCID: PMC8127784 DOI: 10.3389/fcell.2021.659055] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Disruptions to developmental cell signaling pathways and transcriptional cascades have been implicated in tumor initiation, maintenance and progression. Resurgence of aberrant neurodevelopmental programs in the context of brain tumors highlights the numerous parallels that exist between developmental and oncologic mechanisms. A deeper understanding of how dysregulated developmental factors contribute to brain tumor oncogenesis and disease progression will help to identify potential therapeutic targets for these malignancies. In this review, we summarize the current literature concerning developmental signaling cascades and neurodevelopmentally-regulated transcriptional programs. We also examine their respective contributions towards tumor initiation, maintenance, and progression in both pediatric and adult brain tumors and highlight relevant differentiation therapies and putative candidates for prospective treatments.
Collapse
Affiliation(s)
- Rachel N. Curry
- Department of Neuroscience, Baylor College of Medicine, Center for Cell and Gene Therapy, Houston, TX, United States
- Integrative Molecular and Biomedical Sciences, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Stacey M. Glasgow
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
- Neurosciences Graduate Program, University of California, San Diego, San Diego, CA, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
33
|
Chinigò G, Castel H, Chever O, Gkika D. TRP Channels in Brain Tumors. Front Cell Dev Biol 2021; 9:617801. [PMID: 33928077 PMCID: PMC8076903 DOI: 10.3389/fcell.2021.617801] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/17/2021] [Indexed: 12/21/2022] Open
Abstract
Malignant glioma including glioblastoma (GBM) is the most common group of primary brain tumors. Despite standard optimized treatment consisting of extensive resection followed by radiotherapy/concomitant and adjuvant therapy, GBM remains one of the most aggressive human cancers. GBM is a typical example of intra-heterogeneity modeled by different micro-environmental situations, one of the main causes of resistance to conventional treatments. The resistance to treatment is associated with angiogenesis, hypoxic and necrotic tumor areas while heterogeneity would accumulate during glioma cell invasion, supporting recurrence. These complex mechanisms require a focus on potential new molecular actors to consider new treatment options for gliomas. Among emerging and underexplored targets, transient receptor potential (TRP) channels belonging to a superfamily of non-selective cation channels which play critical roles in the responses to a number of external stimuli from the external environment were found to be related to cancer development, including glioma. Here, we discuss the potential as biological markers of diagnosis and prognosis of TRPC6, TRPM8, TRPV4, or TRPV1/V2 being associated with glioma patient overall survival. TRPs-inducing common or distinct mechanisms associated with their Ca2+-channel permeability and/or kinase function were detailed as involving miRNA or secondary effector signaling cascades in turn controlling proliferation, cell cycle, apoptotic pathways, DNA repair, resistance to treatment as well as migration/invasion. These recent observations of the key role played by TRPs such as TRPC6 in GBM growth and invasiveness, TRPV2 in proliferation and glioma-stem cell differentiation and TRPM2 as channel carriers of cytotoxic chemotherapy within glioma cells, should offer new directions for innovation in treatment strategies of high-grade glioma as GBM to overcome high resistance and recurrence.
Collapse
Affiliation(s)
- Giorgia Chinigò
- Laboratory of Cell Physiology, Department of Life Sciences, Univ. Lille, Inserm, U1003 - PHYCEL, University of Lille, Lille, France.,Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Hélène Castel
- UNIROUEN, Inserm U1239, DC2N, Normandie Université, Rouen, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Oana Chever
- UNIROUEN, Inserm U1239, DC2N, Normandie Université, Rouen, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Dimitra Gkika
- CNRS, Inserm, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
34
|
Kumar P, Li J, Surulescu C. Multiscale modeling of glioma pseudopalisades: contributions from the tumor microenvironment. J Math Biol 2021; 82:49. [PMID: 33846838 PMCID: PMC8041715 DOI: 10.1007/s00285-021-01599-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/20/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
Gliomas are primary brain tumors with a high invasive potential and infiltrative spread. Among them, glioblastoma multiforme (GBM) exhibits microvascular hyperplasia and pronounced necrosis triggered by hypoxia. Histological samples showing garland-like hypercellular structures (so-called pseudopalisades) centered around the occlusion site of a capillary are typical for GBM and hint on poor prognosis of patient survival. We propose a multiscale modeling approach in the kinetic theory of active particles framework and deduce by an upscaling process a reaction-diffusion model with repellent pH-taxis. We prove existence of a unique global bounded classical solution for a version of the obtained macroscopic system and investigate the asymptotic behavior of the solution. Moreover, we study two different types of scaling and compare the behavior of the obtained macroscopic PDEs by way of simulations. These show that patterns (not necessarily of Turing type), including pseudopalisades, can be formed for some parameter ranges, in accordance with the tumor grade. This is true when the PDEs are obtained via parabolic scaling (undirected tissue), while no such patterns are observed for the PDEs arising by a hyperbolic limit (directed tissue). This suggests that brain tissue might be undirected - at least as far as glioma migration is concerned. We also investigate two different ways of including cell level descriptions of response to hypoxia and the way they are related .
Collapse
Affiliation(s)
- Pawan Kumar
- TU Kaiserslautern, Felix-Klein-Zentrum für Mathematik, Paul-Ehrlich-Street 31, 67663, Kaiserslautern, Germany
| | - Jing Li
- College of Science, Minzu University of China, Beijing, 100081, People's Republic of China
| | - Christina Surulescu
- TU Kaiserslautern, Felix-Klein-Zentrum für Mathematik, Paul-Ehrlich-Street 31, 67663, Kaiserslautern, Germany.
| |
Collapse
|
35
|
Arpa D, Parisi E, Ghigi G, Cortesi A, Longobardi P, Cenni P, Pieri M, Tontini L, Neri E, Micheletti S, Ghetti F, Monti M, Foca F, Tesei A, Arienti C, Sarnelli A, Martinelli G, Romeo A. Role of Hyperbaric Oxygenation Plus Hypofractionated Stereotactic Radiotherapy in Recurrent High-Grade Glioma. Front Oncol 2021; 11:643469. [PMID: 33859944 PMCID: PMC8042328 DOI: 10.3389/fonc.2021.643469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/09/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The presence of hypoxic cells in high-grade glioma (HGG) is one of major reasons for failure of local tumour control with radiotherapy (RT). The use of hyperbaric oxygen therapy (HBO) could help to overcome the problem of oxygen deficiency in poorly oxygenated regions of the tumour. We propose an innovative approach to improve the efficacy of hypofractionated stereotactic radiotherapy (HSRT) after HBO (HBO-RT) for the treatment of recurrent HGG (rHGG) and herein report the results of an ad interim analysis. METHODS We enrolled a preliminary cohort of 9 adult patients (aged >18 years) with a diagnosis of rHGG. HSRT was administered in daily 5-Gy fractions for 3-5 consecutive days a week. Each fraction was delivered up to maximum of 60 minutes after HBO. RESULTS Median follow-up from re-irradiation was 11.6 months (range: 3.2-11.6 months). The disease control rate (DCR) 3 months after HBO-RT was 55.5% (5 patients). Median progression-free survival (mPFS) for all patients was 5.2 months (95%CI: 1.34-NE), while 3-month and 6-month PFS was 55.5% (95%CI: 20.4-80.4) and 27.7% (95%CI: 4.4-59.1), respectively. Median overall survival (mOS) of HBO-RT was 10.7 months (95% CI: 7.7-NE). No acute or late neurologic toxicity >grade (G)2 was observed in 88.88% of patients. One patient developed G3 radionecrosis. CONCLUSIONS HSRT delivered after HBO appears to be effective for the treatment of rHGG, it could represent an alternative, with low toxicity, to systemic therapies for patients who cannot or refuse to undergo such treatments. CLINICAL TRIAL REGISTRATION www.ClinicalTrials.gov, identifier NCT03411408.
Collapse
Affiliation(s)
- Donatella Arpa
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Elisabetta Parisi
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giulia Ghigi
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Annalisa Cortesi
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | | | - Patrizia Cenni
- Neuroradiology Unit, “Santa Maria delle Croci” Hospital, Ravenna, Italy
| | - Martina Pieri
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Luca Tontini
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Elisa Neri
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Simona Micheletti
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Francesca Ghetti
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Manuela Monti
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Flavia Foca
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Anna Tesei
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Arienti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Anna Sarnelli
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Antonio Romeo
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
36
|
Peng C, Chen H, Li Y, Yang H, Qin P, Ma B, Duan Q, Wang B, Mao F, Guo D. LRIG3 Suppresses Angiogenesis by Regulating the PI3K/AKT/VEGFA Signaling Pathway in Glioma. Front Oncol 2021; 11:621154. [PMID: 33718179 PMCID: PMC7946980 DOI: 10.3389/fonc.2021.621154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
High levels of microvessel density (MVD) indicate poor prognosis in patients with malignant glioma. Leucine-rich repeats and immunoglobulin-like domains (LRIG) 3, a potential tumor suppressor, plays an important role in tumor progression and may serve as a biomarker in many human cancers. However, its role and underlying mechanism of action in glioma angiogenesis remain unclear. In the present study, we used loss- and gain-of-function assays to show that LRIG3 significantly suppressed glioma-induced angiogenesis, both in vitro and in vivo. Mechanistically, LRIG3 inhibited activation of the PI3K/AKT signaling pathway, downregulating vascular endothelial growth factor A (VEGFA) in glioma cells, thereby inhibiting angiogenesis. Notably, LRIG3 had a significant negative correlation with VEGFA expression in glioma tissues. Taken together, our results suggest that LRIG3 is a novel regulator of glioma angiogenesis and may be a promising option for developing anti-angiogenic therapy.
Collapse
Affiliation(s)
- Chenghao Peng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Hanmin Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youwei Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peizhong Qin
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baojun Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Mao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Designing peptide nanoparticles for efficient brain delivery. Adv Drug Deliv Rev 2020; 160:52-77. [PMID: 33031897 DOI: 10.1016/j.addr.2020.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
The targeted delivery of therapeutic compounds to the brain is arguably the most significant open problem in drug delivery today. Nanoparticles (NPs) based on peptides and designed using the emerging principles of molecular engineering show enormous promise in overcoming many of the barriers to brain delivery faced by NPs made of more traditional materials. However, shortcomings in our understanding of peptide self-assembly and blood-brain barrier (BBB) transport mechanisms pose significant obstacles to progress in this area. In this review, we discuss recent work in engineering peptide nanocarriers for the delivery of therapeutic compounds to the brain: from synthesis, to self-assembly, to in vivo studies, as well as discussing in detail the biological hurdles that a nanoparticle must overcome to reach the brain.
Collapse
|
38
|
Pagliaro L, Sorrentino C, Roti G. Targeting Notch Trafficking and Processing in Cancers. Cells 2020; 9:E2212. [PMID: 33003595 PMCID: PMC7600097 DOI: 10.3390/cells9102212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
The Notch family comprises a group of four ligand-dependent receptors that control evolutionarily conserved developmental and homeostatic processes and transmit signals to the microenvironment. NOTCH undergoes remodeling, maturation, and trafficking in a series of post-translational events, including glycosylation, ubiquitination, and endocytosis. The regulatory modifications occurring in the endoplasmic reticulum/Golgi precede the intramembrane γ-secretase proteolysis and the transfer of active NOTCH to the nucleus. Hence, NOTCH proteins coexist in different subcellular compartments and undergo continuous relocation. Various factors, including ion concentration, enzymatic activity, and co-regulatory elements control Notch trafficking. Interfering with these regulatory mechanisms represents an innovative therapeutic way to bar oncogenic Notch signaling. In this review, we briefly summarize the role of Notch signaling in cancer and describe the protein modifications required for NOTCH to relocate across different subcellular compartments. We focus on the functional relationship between these modifications and the corresponding therapeutic options, and our findings could support the development of trafficking modulators as a potential alternative to the well-known γ-secretase inhibitors.
Collapse
Affiliation(s)
| | | | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (C.S.)
| |
Collapse
|
39
|
Kraboth Z, Galik B, Tompa M, Kajtar B, Urban P, Gyenesei A, Miseta A, Kalman B. DNA CpG methylation in sequential glioblastoma specimens. J Cancer Res Clin Oncol 2020; 146:2885-2896. [PMID: 32779022 PMCID: PMC7519911 DOI: 10.1007/s00432-020-03349-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/04/2020] [Indexed: 01/21/2023]
Abstract
PURPOSE Glioblastoma is the most aggressive form of brain tumors. A better understanding of the molecular mechanisms leading to its evolution is essential for the development of treatments more effective than the available modalities. Here, we aim to identify molecular drivers of glioblastoma development and recurrence by analyzing DNA CpG methylation patterns in sequential samples. METHODS DNA was isolated from 22 pairs of primary and recurrent formalin-fixed, paraffin-embedded glioblastoma specimens, and subjected to reduced representation bisulfite sequencing. Bioinformatic analyses were conducted to identify differentially methylated sites and pathways, and biostatistics was used to test correlations among clinical and pathological parameters. RESULTS Differentially methylated pathways likely involved in primary tumor development included those of neuronal differentiation, myelination, metabolic processes, synapse organization and endothelial cell proliferation, while pathways differentially active during glioblastoma recurrence involved those associated with cell processes and differentiation, immune response, Wnt regulation and catecholamine secretion and transport. CONCLUSION DNA CpG methylation analyses in sequential clinical specimens revealed hypomethylation in certain pathways such as neuronal tissue development and angiogenesis likely involved in early tumor development and growth, while suggested altered regulation in catecholamine secretion and transport, Wnt expression and immune response contributing to glioblastoma recurrence. These pathways merit further investigations and may represent novel therapeutic targets.
Collapse
Affiliation(s)
- Zoltan Kraboth
- Institute of Laboratory Medicine, School of Medicine, University of Pecs, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, 20. Ifjusag street, Pecs, 7624, Hungary
| | - Bence Galik
- Szentagothai Research Center, University of Pecs, 20. Ifjusag street, Pecs, 7624, Hungary
- Department of Clinical Molecular Biology, Medical University of Bialystok, Białystok, Poland
| | - Marton Tompa
- Institute of Laboratory Medicine, School of Medicine, University of Pecs, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, 20. Ifjusag street, Pecs, 7624, Hungary
| | - Bela Kajtar
- Institute of Pathology, School of Medicine, University of Pecs, Pecs, Hungary
| | - Peter Urban
- Szentagothai Research Center, University of Pecs, 20. Ifjusag street, Pecs, 7624, Hungary
| | - Attila Gyenesei
- Szentagothai Research Center, University of Pecs, 20. Ifjusag street, Pecs, 7624, Hungary
- Department of Clinical Molecular Biology, Medical University of Bialystok, Białystok, Poland
| | - Attila Miseta
- Institute of Laboratory Medicine, School of Medicine, University of Pecs, Pecs, Hungary
| | - Bernadette Kalman
- Institute of Laboratory Medicine, School of Medicine, University of Pecs, Pecs, Hungary.
- Szentagothai Research Center, University of Pecs, 20. Ifjusag street, Pecs, 7624, Hungary.
| |
Collapse
|
40
|
ISL2 modulates angiogenesis through transcriptional regulation of ANGPT2 to promote cell proliferation and malignant transformation in oligodendroglioma. Oncogene 2020; 39:5964-5978. [PMID: 32753650 DOI: 10.1038/s41388-020-01411-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/07/2020] [Accepted: 07/23/2020] [Indexed: 01/22/2023]
Abstract
Oligodendroglioma is an important type of lower-grade glioma (LGG), which is a slowly progressing brain tumor. Many LGGs eventually transform into a more aggressive or malignant type. Enhanced angiogenesis is a characteristic of malignantly transformed oligodendroglioma (m-oligodendroglioma). However, the pathogenesis and signaling pathways associated with angiogenesis and proliferation in m-oligodendroglioma are not well understood. In this study, we identified that Insulin Gene Enhancer Protein (ISL2) and its angiogenic capacity were inversely related to survival according to LGG patient data from an online database, and this was further confirmed with pathological LGG patient samples, including malignantly transformed samples, by detecting the expression of ISL2, the angiogenic markers vascular endothelial growth factor (VEGFA) and CD31 and the proliferation marker Ki-67. We then established novel oligodendroglioma patient tumor-derived orthotopic xenograft mouse models and cell lines to verify the role of ISL2 in regulating angiogenesis to promote oligodendroglioma growth and malignant transformation. Furthermore, ISL2 regulated ANGPT2 transcription by binding to the ANGPT2 promoter. Then, ANGPT2, a downstream gene, activated angiogenesis through VEGFA to promote oligodendroglioma malignant transformation. Finally, combining AAV-ISL2-shRNA with temozolomide suppressed oligodendroglioma progression more effectively than either monotherapy in vivo and in vitro. Thus, hypoxia-induced ISL2 regulated ANGPT2, which subsequently induced angiogenesis to promote oligodendroglioma growth and malignant transformation. Malignancy was accompanied by worsened hypoxia inside the tumor mass, creating a positive feedback loop. In conclusion, this study suggests that ISL2 is a biomarker for oligodendroglioma progression and that anti-ISL2 therapy may offer a potential clinical strategy for treating m-oligodendroglioma.
Collapse
|
41
|
Tatekawa H, Hagiwara A, Yao J, Oughourlian TC, Ueda I, Uetani H, Raymond C, Lai A, Cloughesy TF, Nghiemphu PL, Liau LM, Pope WB, Salamon N, Ellingson BM. Voxelwise and Patientwise Correlation of 18F-FDOPA PET, Relative Cerebral Blood Volume, and Apparent Diffusion Coefficient in Treatment-Naïve Diffuse Gliomas with Different Molecular Subtypes. J Nucl Med 2020; 62:319-325. [PMID: 32646876 DOI: 10.2967/jnumed.120.247411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022] Open
Abstract
Our purpose was to identify correlations between 18F-fluorodihydroxyphenylalanine (18F-FDOPA) uptake and physiologic MRI, including relative cerebral blood volume (rCBV) and apparent diffusion coefficient (ADC), in gliomas with different molecular subtypes and to evaluate their prognostic values. Methods: Sixty-eight treatment-naïve glioma patients who underwent 18F-FDOPA PET and physiologic MRI were retrospectively selected (36 with isocitrate dehydrogenase wild-type [IDHwt], 16 with mutant 1p/19q noncodeleted [IDHm-noncodel], and 16 with mutant codeleted [IDHm-codel]). Fluid-attenuated inversion recovery hyperintense areas were segmented and used as regions of interest. For voxelwise and patientwise analyses, Pearson correlation coefficients (r voxelwise and r patientwise) between the normalized SUV (nSUV), rCBV, and ADC were evaluated. Cox regression analysis was performed to investigate the associations between overall survival and r voxelwise, maximum or median nSUV, median rCBV, or median ADC. Results: For IDHwt and IDHm-noncodel gliomas, nSUV demonstrated significant positive correlations with rCBV (r voxelwise = 0.25 and 0.31, respectively; r patientwise = 0.50 and 0.70, respectively) and negative correlations with ADC (r voxelwise = -0.19 and -0.19, respectively; r patientwise = -0.58 and -0.61, respectively) in both voxelwise and patientwise analyses. IDHm-codel gliomas demonstrated a significant positive correlation between nSUV and ADC only in voxelwise analysis (r voxelwise = 0.18). In Cox regression analysis, r voxelwise between nSUV and rCBV (hazard ratio, 28.82) or ADC (hazard ratio, 0.085) had significant associations with overall survival for only IDHwt gliomas. Conclusion: IDHm-codel gliomas showed distinctive patterns of correlations between amino acid PET and physiologic MRI. Stronger correlations between nSUV and rCBV or ADC may result in a worse prognosis for IDHwt gliomas.
Collapse
Affiliation(s)
- Hiroyuki Tatekawa
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Radiological Science, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Akifumi Hagiwara
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Radiological Science, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Radiological Science, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Bioengineering, Henry Samueli School of Engineering, UCLA, Los Angeles, California
| | - Talia C Oughourlian
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Radiological Science, David Geffen School of Medicine, UCLA, Los Angeles, California.,Neuroscience Interdepartmental Program, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Issei Ueda
- Department of Radiological Science, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Hiroyuki Uetani
- Department of Radiological Science, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Radiological Science, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Albert Lai
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California; and
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California; and
| | - Phioanh L Nghiemphu
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California; and
| | - Linda M Liau
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Whitney B Pope
- Department of Radiological Science, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Noriko Salamon
- Department of Radiological Science, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, UCLA, Los Angeles, California .,Department of Radiological Science, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Bioengineering, Henry Samueli School of Engineering, UCLA, Los Angeles, California.,Neuroscience Interdepartmental Program, David Geffen School of Medicine, UCLA, Los Angeles, California.,UCLA Neuro-Oncology Program, David Geffen School of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
42
|
Amaral RF, Geraldo LHM, Einicker-Lamas M, E Spohr TCLDS, Mendes F, Lima FRS. Microglial lysophosphatidic acid promotes glioblastoma proliferation and migration via LPA 1 receptor. J Neurochem 2020; 156:499-512. [PMID: 32438456 DOI: 10.1111/jnc.15097] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022]
Abstract
Glioblastomas (GBMs) are highly aggressive primary brain tumors characterized by cellular heterogeneity, insensitivity to chemotherapy and poor patient survival. Lysophosphatidic acid (LPA) is a lysophospholipid that acts as a bioactive signaling molecule and plays important roles in diverse biological events during development and disease, including several cancer types. Microglial cells, the resident macrophages of the central nervous system, express high levels of Autotaxin (ATX,Enpp2), an enzyme that synthetizes LPA. Our study aimed to investigate the role of LPA on tumor growth and invasion in the context of microglia-GBM interaction. First, through bioinformatics studies, patient data analysis demonstrated that more aggressive GBM expressed higher levels of ENPP2, which was also associated with worse patient prognosis with proneural GBM. Using GBM-microglia co-culture system we then demonstrated that GBM secreted factors were able to increase LPA1 and ATX in microglia, which could be further enhanced by hypoxia. On the other hand, interaction with microglial cells also increased ATX expression in GBM. Furthermore, microglial-induced GBM proliferation and migration could be inhibited by pharmacological inhibition of LPA1 , suggesting that microglial-derived LPA could support tumor growth and invasion. Finally, increased LPA1 expression was observed in GBM comparing with other gliomas and could be also associated with worse patient survival. These results show for the first time a microglia-GBM interaction through the LPA pathway with relevant implications for tumor progression. A better understanding of this interaction can lead to the development of new therapeutic strategies setting LPA as a potential target for GBM treatment.
Collapse
Affiliation(s)
- Rackele F Amaral
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz H M Geraldo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tania C L de S E Spohr
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Fabio Mendes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia R S Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
43
|
Avadiappan S, Payabvash S, Morrison MA, Jakary A, Hess CP, Lupo JM. A Fully Automated Method for Segmenting Arteries and Quantifying Vessel Radii on Magnetic Resonance Angiography Images of Varying Projection Thickness. Front Neurosci 2020; 14:537. [PMID: 32612496 PMCID: PMC7308498 DOI: 10.3389/fnins.2020.00537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/01/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Precise quantification of cerebral arteries can help with differentiation and prognostication of cerebrovascular disease. Existing image processing and segmentation algorithms for magnetic resonance angiography (MRA) are limited to the analysis of either 2D maximum intensity projection images or the entire 3D volume. The goal of this study was to develop a fully automated, hybrid 2D-3D method for robust segmentation of arteries and accurate quantification of vessel radii using MRA at varying projection thicknesses. METHODS A novel algorithm that employs an adaptive Frangi filter for segmentation of vessels followed by estimation of vessel radii is presented. The method was evaluated on MRA datasets and corresponding manual segmentations from three healthy subjects for various projection thicknesses. In addition, the vessel metrics were computed in four additional subjects. Three synthetically generated angiographic datasets resembling brain vasculature were also evaluated under different noise levels. Dice similarity coefficient, Jaccard Index, F-score, and concordance correlation coefficient were used to measure the segmentation accuracy of manual versus automatic segmentation. RESULTS Our new adaptive filter rendered accurate representations of vessels, maintained accurate vessel radii, and corresponded better to manual segmentation at different projection thicknesses than prior methods. Validation with synthetic datasets under low contrast and noisy conditions revealed accurate quantification of vessels without distortions. CONCLUSION We have demonstrated a method for automatic segmentation of vascular trees and the subsequent generation of a vessel radii map. This novel technique can be applied to analyze arterial structures in healthy and diseased populations and improve the characterization of vascular integrity.
Collapse
Affiliation(s)
- Sivakami Avadiappan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Seyedmehdi Payabvash
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Melanie A. Morrison
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Angela Jakary
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher P. Hess
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Janine M. Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
44
|
Identification and Validation of VEGFR2 Kinase as a Target of Voacangine by a Systematic Combination of DARTS and MSI. Biomolecules 2020; 10:biom10040508. [PMID: 32230857 PMCID: PMC7226133 DOI: 10.3390/biom10040508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
Although natural products are an important source of drugs and drug leads, identification and validation of their target proteins have proven difficult. Here, we report the development of a systematic strategy for target identification and validation employing drug affinity responsive target stability (DARTS) and mass spectrometry imaging (MSI) without modifying or labeling natural compounds. Through a validation step using curcumin, which targets aminopeptidase N (APN), we successfully standardized the systematic strategy. Using label-free voacangine, an antiangiogenic alkaloid molecule as the model natural compound, DARTS analysis revealed vascular endothelial growth factor receptor 2 (VEGFR2) as a target protein. Voacangine inhibits VEGFR2 kinase activity and its downstream signaling by binding to the kinase domain of VEGFR2, as was revealed by docking simulation. Through cell culture assays, voacangine was found to inhibit the growth of glioblastoma cells expressing high levels of VEGFR2. Specific localization of voacangine to tumor compartments in a glioblastoma xenograft mouse was revealed by MSI analysis. The overlap of histological images with the MSI signals for voacangine was intense in the tumor regions and showed colocalization of voacangine and VEGFR2 in the tumor tissues by immunofluorescence analysis of VEGFR2. The strategy employing DARTS and MSI to identify and validate the targets of a natural compound as demonstrated for voacangine in this study is expected to streamline the general approach of drug discovery and validation using other biomolecules including natural products.
Collapse
|
45
|
Foray C, Barca C, Backhaus P, Schelhaas S, Winkeler A, Viel T, Schäfers M, Grauer O, Jacobs AH, Zinnhardt B. Multimodal Molecular Imaging of the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1225:71-87. [PMID: 32030648 DOI: 10.1007/978-3-030-35727-6_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The tumour microenvironment (TME) surrounding tumour cells is a highly dynamic and heterogeneous composition of immune cells, fibroblasts, precursor cells, endothelial cells, signalling molecules and extracellular matrix (ECM) components. Due to the heterogeneity and the constant crosstalk between the TME and the tumour cells, the components of the TME are important prognostic parameters in cancer and determine the response to novel immunotherapies. To improve the characterization of the TME, novel non-invasive imaging paradigms targeting the complexity of the TME are urgently needed.The characterization of the TME by molecular imaging will (1) support early diagnosis and disease follow-up, (2) guide (stereotactic) biopsy sampling, (3) highlight the dynamic changes during disease pathogenesis in a non-invasive manner, (4) help monitor existing therapies, (5) support the development of novel TME-targeting therapies and (6) aid stratification of patients, according to the cellular composition of their tumours in correlation to their therapy response.This chapter will summarize the most recent developments and applications of molecular imaging paradigms beyond FDG for the characterization of the dynamic molecular and cellular changes in the TME.
Collapse
Affiliation(s)
- Claudia Foray
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,PET Imaging in Drug Design and Development (PET3D), Münster, Germany
| | - Cristina Barca
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,PET Imaging in Drug Design and Development (PET3D), Münster, Germany
| | - Philipp Backhaus
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,Department of Nuclear Medicine, University Hospital Münster, Westfälische Wilhelms University Münster, Münster, Germany
| | - Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Alexandra Winkeler
- UMR 1023, IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Thomas Viel
- Paris Centre de Recherche Cardiovasculaire, INSERM-U970, Université Paris Descartes, Paris, France
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,Department of Nuclear Medicine, University Hospital Münster, Westfälische Wilhelms University Münster, Münster, Germany
| | - Oliver Grauer
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,PET Imaging in Drug Design and Development (PET3D), Münster, Germany.,Department of Geriatrics, Johanniter Hospital, Evangelische Kliniken, Bonn, Germany
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany. .,PET Imaging in Drug Design and Development (PET3D), Münster, Germany. .,Department of Nuclear Medicine, University Hospital Münster, Westfälische Wilhelms University Münster, Münster, Germany.
| |
Collapse
|
46
|
on the behalf of Young AIMN Working Group, Riccardo L, Natale Q, Pierpaolo A, Domenico A, Maria G, Rexhep D, Francesco B, Sergio B. 18F-FMISO PET imaging: insights over MRI in patients with glioma. Clin Transl Imaging 2020; 8:3-10. [DOI: 10.1007/s40336-019-00353-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
|
47
|
Torregrossa F, Aguennouz M, La Torre D, Sfacteria A, Grasso G. Role of Erythropoietin in Cerebral Glioma: An Innovative Target in Neuro-Oncology. World Neurosurg 2020; 131:346-355. [PMID: 31658577 DOI: 10.1016/j.wneu.2019.06.221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 02/09/2023]
Abstract
BACKGROUND Erythropoietin (EPO) is a cytokine primarily involved in the regulation of erythropoiesis. In response to hypoxia-ischemia, hypoxia-inducible factor 1 induces EPO production, which, in turn, inhibits apoptosis of erythroid progenitor cells. By the same mechanism and acting through other signaling pathways, EPO exerts neuroprotective effects. Increased resistance to hypoxia and decreased apoptosis are thought to be important mechanisms for tumor progression, including malignant glioma. Because recent studies have demonstrated that EPO and its receptor (EPOR) are expressed in several tumors and can promote tumor growth, in the present study, we investigated EPO and EPOR expression in human glioma and the effect of EPO administration in a rat model of glioma implantation. METHODS Using Western blotting and immunohistochemical analysis, we examined the expression of EPO, EPOR, platelet endothelial cell adhesion molecule, and Ki-67 in human glioma specimens and experimentally induced glioma in rats. In the experimental setting, a daily dose of recombinant human EPO (rHuEPO) or saline solution were administered for 21 days in Fischer rats subjected to 9L cell line implantation. RESULTS In both human and animal specimens, we found an increase in EPOR expression as long as the lesion presented with an increasing malignant pattern. A significant direct correlation was found between the expression of EPOR and Ki-67 and EPOR and platelet endothelial cell adhesion molecule in low- and high-grade gliomas. The rats treated with rHuEPO presented with significantly larger tumor spread compared with the saline-treated rats. CONCLUSIONS The results of our study have shown that the EPO/EPOR complex might play a significant role in the aggressive behavior of high-grade gliomas. The larger tumor spread in rHuEPO-treated rats suggests a feasible role for EPO in the aggressiveness and progression of malignant glioma.
Collapse
Affiliation(s)
- Fabio Torregrossa
- Neurosurgical Unit, Department of Biomedicine, Neurosciences, and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| | - M'hammed Aguennouz
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Domenico La Torre
- Neurosurgical Unit, Department of Medical and Surgical Science, Magna Graecia University, Catanzaro, Italy
| | | | - Giovanni Grasso
- Neurosurgical Unit, Department of Biomedicine, Neurosciences, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
48
|
Wang WL, Aru N, Liu Z, Shen X, Ding YM, Wu SJ, Qin HH, Jin WY. Prognosis of patients with newly diagnosed glioblastoma treated with molecularly targeted drugs combined with radiotherapy vs temozolomide monotherapy: A meta-analysis. Medicine (Baltimore) 2019; 98:e17759. [PMID: 31702627 PMCID: PMC6855632 DOI: 10.1097/md.0000000000017759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Glioblastoma (GB) is one of the most common malignancies with limited standard therapies such as surgery, radiotherapy (RT) plus temozolomide (TMZ). Molecularly targeted drugs have been investigated among various clinical trials and are expected to develop in the field of tumor therapy, while the efficacy remains uncertain due to limited previous results. Thus, we focus on the evaluation of molecularly targeted drugs to clarify its overall effectiveness in terms of treating newly diagnosed GB. METHODS Electronic databases were searched for eligible literatures updated to April 2018. Randomized-controlled trials were included to assess the efficacy and safety of molecularly targeted drugs in patients with newly diagnosed GB. The main outcomes were further calculated including the following parameters: PFS (progression-free survival), OS (overall survival) as well as AEs (adverse events). All data were pooled along with their 95% confidence interval using RevMan software. Sensitivity analyses and heterogeneity were evaluated quantitatively. RESULTS The combination of molecularly targeted drugs with TMZ + RT had no significant effects on OS (OR = 0.96, 95%CI = 0.89-1.04, P = .36). Meanwhile, the combination regimen significantly improved the PFS of patients with newly diagnosed GB (OR = 0.86 ,95% CI 0.75-0.98, P = .02). The rate of AEs (OR = 1.68,95%CI = 1.44-1.97, P < .00001) was higher in patients receiving molecularly targeted drugs, which was comparable to the contemporary group. CONCLUSION Longer PFS and a higher rate of AEs were observed with the addition of molecularly targeted drugs to standard chemoradiation in patients harboring newly diagnosed GB. Nevertheless, compared with the control arm, the regimen did not significantly prolong OS.
Collapse
Affiliation(s)
- Wen-Lei Wang
- Department of Neurosurgery, Emergency General Hospital, Beijing
| | - Na Aru
- Department of Hematology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Zhi Liu
- Department of Neurosurgery, Emergency General Hospital, Beijing
| | - Xun Shen
- Department of Neurosurgery, Emergency General Hospital, Beijing
| | - Yi-Ming Ding
- Department of Neurosurgery, Emergency General Hospital, Beijing
| | - Shi-Ju Wu
- Department of Neurosurgery, Emergency General Hospital, Beijing
| | - Huai-Hai Qin
- Department of Neurosurgery, Emergency General Hospital, Beijing
| | - Wen-Yi Jin
- Department of Neurosurgery, Emergency General Hospital, Beijing
| |
Collapse
|
49
|
Vasconcelos VCA, Lourenço GJ, Brito ABC, Vasconcelos VL, Maldaun MVC, Tedeschi H, Marie SKN, Shinjo SMO, Lima CSP. Associations ofVEGFAandKDRsingle-nucleotide polymorphisms and increased risk and aggressiveness of high-grade gliomas. Tumour Biol 2019; 41:1010428319872092. [DOI: 10.1177/1010428319872092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis, induced by the vascular endothelial growth factor A through its ligation to the vascular endothelial growth receptor 2, has been described as a crucial point in high-grade glioma development. The aim of this study was to evaluate the influence of VEGFA–2578C/A, −2489C/T, −1154G/A, −634G/C, and −460C/T, and KDR–604T/C, −271G/A, +1192G/A, and +1719A/T single-nucleotide polymorphisms on risk and clinicopathological aspects of high-grade glioma. This case–control study enrolled 205 high-grade glioma patients and 205 controls. Individuals with VEGFA–2578 CC or CA, VEGFA–1154 GG, VEGFA–634 GC or CC, and VEGFA–460 CT or TT genotypes were under 2.56, 1.53, 1.54, and 1.84 increased risks of high-grade glioma, compared to others, respectively. And 1.61, 2.66, 2.52, 2.53, and 2.02 increased risks of high-grade glioma were seen in individuals with VEGFA–2578 CC plus VEGFA–1154 GG, VEGFA–2578 CC or CA plus VEGFA–634 GC or CC, VEGFA–2578 CC or CA plus VEGFA–460 CT or TT, VEGFA–1154 GG or GA plus VEGFA–634 GC or CC, and VEGFA 634 GC or CC plus VEGFA–460 CT or TT combined genotypes, respectively, when compared to others. The “CAGT” haplotype of KDR single-nucleotide polymorphisms was more common in patients with grade IV than in those with grade III tumors, and individuals carrying this haplotype were at 1.76 increased risk of developing grade IV tumors than others. We present, for the first time, preliminary evidence that VEGFA–2578C/A and VEGFA–1154G/A single-nucleotide polymorphisms increases high-grade glioma risk, and “CAGT” haplotype of the KDR gene alters high-grade glioma aggressiveness and risk of grade IV tumors in Brazil.
Collapse
Affiliation(s)
| | - Gustavo Jacob Lourenço
- Clinical Oncology Service, Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Angelo Borsarelli Carvalho Brito
- Clinical Oncology Service, Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Victor Leal Vasconcelos
- Department of Neurosurgery, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | - Helder Tedeschi
- Department of Neurosurgery, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | | | - Carmen Silvia Passos Lima
- Clinical Oncology Service, Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
50
|
Liang W, Guo B, Ye J, Liu H, Deng W, Lin C, Zhong X, Wang L. Vasorin stimulates malignant progression and angiogenesis in glioma. Cancer Sci 2019; 110:2558-2572. [PMID: 31215106 PMCID: PMC6676100 DOI: 10.1111/cas.14103] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/16/2019] [Accepted: 06/15/2019] [Indexed: 12/12/2022] Open
Abstract
Glioma, the most common human primary brain tumor, is characterized by invasive capabilities and angiogenesis. Vasorin (VASN), a transmembrane protein, is reported to be associated with vascular injury repair and is overexpressed in some human tumors. However, its role in tumor progression and angiogenesis in glioma is unknown. In this study, VASN was shown to be overexpressed in high‐grade gliomas, and the expression level correlated with tumor grade and microvessel density in glioma specimens. Glioma patients with high VASN expression had a shorter overall survival time. Knockdown of VASN in glioma cells by shRNA significantly inhibited the malignancy of glioma, including cell proliferation, colony formation, invasion, and sphere formation. Ectopic expression of VASN increased glioma progression in vitro. The expression of VASN correlated with the mesenchymal type of glioblastoma multiforme (GBM) subtyped by gene set enrichment analysis (GSEA). Our results showed that the concentration of VASN was increased in the conditioned medium (CM) from glioma cells with VASN overexpression, and the CM from glioma cells with knockdown or overexpressed VASN inhibited or promoted HUVEC migration and tubulogenesis in vitro, respectively. Glioma growth and angiogenesis were stimulated upon ectopic expression of VASN in vivo. The STAT3 and NOTCH pathways were found to be activated and inhibited by VASN overexpression. Our findings suggest that VASN stimulates tumor progression and angiogenesis in glioma, and, as such, represents a novel therapeutic target for glioma.
Collapse
Affiliation(s)
- Weiye Liang
- Department of Pathology, Medical College, Jinan University, Guangzhou, China
| | - Baoyin Guo
- Department of Pathology, Medical College, Jinan University, Guangzhou, China
| | - Jiecheng Ye
- Department of Pathology, Medical College, Jinan University, Guangzhou, China
| | - Hui Liu
- Department of Pathology, Medical College, Jinan University, Guangzhou, China
| | - Wanying Deng
- Department of Pathology, Medical College, Jinan University, Guangzhou, China
| | - Chenli Lin
- Department of Pathology, Medical College, Jinan University, Guangzhou, China
| | - Xueyun Zhong
- Department of Pathology, Medical College, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| | - Lihui Wang
- Department of Pathology, Medical College, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| |
Collapse
|