1
|
Bigey F, Menatong Tene X, Wessner M, Devillers H, Pradal M, Cruaud C, Aury JM, Neuvéglise C. Insights into the genomic and phenotypic diversity of Monosporozyma unispora strains isolated from anthropic environments. FEMS Yeast Res 2025; 25:foaf016. [PMID: 40121180 PMCID: PMC11974382 DOI: 10.1093/femsyr/foaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025] Open
Abstract
Food microorganisms have been employed for centuries for the processing of fermented foods, leading to adapted populations with phenotypic traits of interest. The yeast Monosporozyma unispora (formerly Kazachstania unispora) has been identified in a wide range of fermented foods and beverages. Here, we studied the genetic and phenotypic diversity of a collection of 53 strains primarily derived from cheese, kefir, and sourdough. The 12.7-Mb genome of the type strain CLIB 234T was sequenced and assembled into near-complete chromosomes and annotated at the structural and functional levels, with 5639 coding sequences predicted. Comparison of the pangenome and core genome revealed minimal differences. From the complete yeast collection, we gathered genetic data (diversity, phylogeny, and population structure) and phenotypic data (growth capacity on solid media). Population genomic analyses revealed a low level of nucleotide diversity and strong population structure, with the presence of two major clades corresponding to ecological origins (cheese and kefir vs. plant derivatives). A high prevalence of extensive loss of heterozygosity and a slow linkage disequilibrium decay suggested a predominantly clonal mode of reproduction. Phenotypic analyses revealed growth variation under stress conditions, including high salinity and low pH, but no definitive link between phenotypic traits and environmental adaptation was established.
Collapse
Affiliation(s)
- Frédéric Bigey
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | | | - Marc Wessner
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Hugo Devillers
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | - Martine Pradal
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Cécile Neuvéglise
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| |
Collapse
|
2
|
Sun Y, Zhao H, Chang M, Yue T, Yuan Y, Shi Y. Prophylactic effects of Tibetan goat kefir on depression-like behaviors in chronic unpredictable stress model through the gut-brain axis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:266-275. [PMID: 39177281 DOI: 10.1002/jsfa.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Depression is a common psychological disorder, and traditional therapeutic drugs often result in side effects such as emesis, dry mouth, headache, dysentery and constipation. Probiotics and goat milk have garnered widespread attention for their ability to modulate immune function and regulate the endocrine system, and for their anti-inflammatory effects. In this work, the effects of Tibetan goat kefir on the behavior, immune status, neuroendocrine response and gut microbiological composition of chronic unpredictable mild stress (CUMS) mouse models were evaluated. RESULTS The results indicated that Tibetan kefir goat milk significantly alleviated behavioral despair in mice. Furthermore, the results demonstrated that Tibetan kefir goat milk mitigated the inflammatory response in the mice and moderated the hyperactivity of the hypothalamic-pituitary-adrenal axis and the expression of brain-derived neurotrophic factor. Meanwhile, chronic stress-induced gut microbial abnormalities were restored. In addition, the correlation between gut microbiota and nervous system was evaluated. CONCLUSION These results explained the potential mechanism of Tibetan kefir in the antidepressant effect on the CUMS model and enriched diets for depressed patients. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuhan Sun
- College of Food Science and Technology, Northwest University, Xi'an, China
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Hongfan Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengjia Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Yiheng Shi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
3
|
Limbad M, Gutierrez Maddox N, Hamid N, Kantono K, Higgins C. Identification of the Microbiota in Coconut Water, Kefir, Coconut Water Kefir and Coconut Water Kefir-Fermented Sourdough Using Culture-Dependent Techniques and Illumina-MiSeq Sequencing. Microorganisms 2024; 12:919. [PMID: 38792748 PMCID: PMC11124093 DOI: 10.3390/microorganisms12050919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
The principal objective of this study was to isolate and identify the microorganisms present in commercial kefir grains, a novel kefir-fermented coconut water (CWK) and a novel coconut water kefir-fermented sourdough using phenotypic identification and Sanger sequencing and examine the microbial diversity of CWK and CWK-fermented sourdough throughout the fermentation process using the MiSeq Illumina sequencing method. The phenotypic characterisation based on morphology identified ten isolates of LAB, five AAB and seven yeasts from kefir (K), CWK and CWK-fermented sourdough (CWKS). The results confirm the presence of the LAB species Limosilactobacillus fermentum, Lactobacillus. plantarum, L. fusant, L. reuteri and L. kunkeei; the AAB species Acetobacter aceti, A. lovaniensis and A. pasteurianus; and the yeast species Candida kefyr, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, C. guilliermondii and C. colliculosa. To the best of our knowledge, the identification of Rhodotorula from kefir is being reported for the first time. This study provides important insights into the relative abundances of the microorganisms in CWKS. A decrease in pH and an increase in the titratable acidity for CWK- and CWK-fermented sourdough corresponded to the increase in D- and L-lactic acid production after 96 h of fermentation. Significant reductions in the pHs of CWK and CWKS were observed between 48 and 96 h of fermentation, indicating that the kefir microorganisms were able to sustain highly acidic environments. There was also increased production of L-lactic acid with fermentation, which was almost twice that of D-lactic acid in CWK.
Collapse
Affiliation(s)
- Mansi Limbad
- Department of Food Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (N.G.M.); (N.H.); (K.K.); (C.H.)
| | | | | | | | | |
Collapse
|
4
|
Alraddadi FA, Ross T, Powell SM. Evaluation of the microbial communities in kefir grains and kefir over time. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2022.105490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Characterization of kefir yeasts with antifungal capacity against Aspergillus species. Int Microbiol 2022; 26:361-370. [PMID: 36370206 DOI: 10.1007/s10123-022-00296-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/11/2022] [Accepted: 10/30/2022] [Indexed: 11/15/2022]
Abstract
Kefir is a fermented probiotic drink obtained by placing kefir granules in a suitable substrate. The kefir granules are a consortium of bacteria and yeasts embedded in a exopolysaccharide matrix. The aim of this research was the isolation and identification of yeasts from kefir of different origin, the evaluation of their antifungal capacity against Aspergillus spp., and the characterization of virulence related traits. Using RFLP of ITS1/ITS4 region, D1/D2 region sequencing, and RAPD techniques, 20 kefir isolates were identified as Geotrichum candidum, Pichia kudriavzevii, Pichia membranifaciens, Saccharomyces cerevisiae, and Candida ethanolica. Their antifungal capacity was evaluated by their conidia germination reduction, which allowed the selection of eight isolates with high to moderate conidia germination reduction against Aspergillus flavus and Aspergillus parasiticus. Furthermore, these selected isolates showed growth inhibition on contact in the dual culture assay for both Aspergillus species and 3 of them-belonging to S. cerevisiae and P. kudriavzevii species-generated volatile organic compounds which significantly affected the growth of both fungi. For the evaluation of virulence-related traits, growth at high temperatures, enzymatic activities, and the adhesion to Caco-2 cells were analyzed. The isolates did not present more than one positive virulence-related trait simultaneously. In particular, it is important to highlight that the adhesion capacity to the model of intestinal barrier was extremely low for all of them. According to the results obtained, further studies would be of interest for the possible use of these promising yeasts as biocontrol agents against fungi in food.
Collapse
|
6
|
Du G, Chang S, Guo Q, Yan X, Chen H, Yuan Y, Yue T. Adsorption removal of ochratoxin A from milk by Tibetan kefir grains and its mechanism. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Liu J, Huang TY, Liu G, Ye Y, Soteyome T, Seneviratne G, Xiao G, Xu Z, Kjellerup BV. Microbial Interaction between Lactiplantibacillus plantarum and Saccharomyces cerevisiae: Transcriptome Level Mechanism of Cell-Cell Antagonism. Microbiol Spectr 2022; 10:e0143322. [PMID: 35980205 PMCID: PMC9604076 DOI: 10.1128/spectrum.01433-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
Lactiplantibacillus plantarum and Saccharomyces cerevisiae are frequently co-isolated in food, although playing different roles. This study aimed at investigating the microbial interaction between L. plantarum and S. cerevisiae, especially cell-cell direct interaction and their mechanism. Cell-cell and supernatant-cell coculture models were set up, with CFU counting, OD600 measurement, optical and atomic force microscopy performed to examine the growth and morphology of L. plantarum and S. cerevisiae cells. In cell-cell coculture model, L. plantarum cells inhibited S. cerevisiae growth (inhibition rate ~80%) with its own growth pattern unaffected. Cell-cell aggregation happened during coculture with surface roughness changed and partial S. cerevisiae cell lysis. Mature (24 h) L. plantarum cell-free culture supernatant showed inhibition (35%-75%) on S. cerevisiae growth independent of pH level, while supernatant from L. plantarum-S. cerevisiae coculture showed relatively stronger inhibition. Upon transcriptomics analysis, hypothesis on the mechanism of microbial interaction between L. plantarum and S. cerevisiae was demonstrated. When L. plantarum cell density reached threshold at 24 h, all genes in lamBDCA quorum sensing (QS) system was upregulated to potentially increase adhesion capability, leading to the aggregation to S. cerevisiae cell. The downregulation of whole basic physiological activity from DNA to RNA to protein, cell cycle, meiosis, and mitogen-activated protein kinase (MAPK) signaling pathways, as well as growth maintenance essential genes ari1, skg6, and kex2/gas1 might induce the decreased growth and proliferation rate and partial death of S. cerevisiae cells in coculture. IMPORTANCE L. plantarum and S. cerevisiae are frequently co-isolated in food, although playing different roles. The co-existence of L. plantarum and S. cerevisiae could result in variable effects, raising economic benefits and safety concerns in food industry. Previous research has reported the microbial interaction between L. plantarum and S. cerevisiae mainly rely on the signaling through extracellular metabolites. However, cell-cell aggregation has been observed with mechanism remain unknown. In the current study, the microbial interaction between L. plantarum and S. cerevisiae was investigated with emphasis on cell-cell direct interaction and further in-depth transcriptome level study showed the key role of lamBDCA quorum sensing system in L. plantarum. The results yield from this study demonstrated the antagonistic effect between L. plantarum and S. cerevisiae.
Collapse
Affiliation(s)
- Junyan Liu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, China
| | - Teng-Yi Huang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Gongliang Liu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, China
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | | | - Gengsheng Xiao
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, China
| | - Zhenbo Xu
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
- National Institute of Fundamental Studies, Kandy, Sri Lanka
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
- Department of Civil and Environmental Engineering, University of Maryland, College Park, Maryland, USA
| | - Birthe V. Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
8
|
Stoyanova LG, Netrusov AI. Microbiome and Metabiotic Properties of Kefir Grains and Kefirs Based on Them. Microbiology (Reading) 2022; 91:339-355. [PMID: 35967129 PMCID: PMC9358099 DOI: 10.1134/s0026261722100885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
The analysis of the literature on the microbiome composition and metabolic properties of kefir available at the RSCI and Web of Science was carried out. Kefir has been used by humans for centuries. It is a useful product of mixed lactic and alcoholic fermentation, produced using evolutionally established associative cultures, collected in an aggregated state termed kefir grains. General characterization of kefir grains from the territorial zones of different continents (Russia, Europe, Asia, and America) is provided. The methods for differentiation and identification of individual species are described, as well as their interactions within the community. The diversity of microbial composition of kefir grains depending on local cultivation conditions and storage processes is shown. The microorganisms present in kefir have a number of properties that determine their metabolism, interaction in the community, beneficial effects on human health and immune system, which is important for the prevention and control of bacterial and viral infections, especially during the COVID-19 pandemic.
Collapse
Affiliation(s)
- L. G. Stoyanova
- Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - A. I. Netrusov
- Biological Faculty, Moscow State University, 119234 Moscow, Russia
- Faculty of Biology and Biotechnology, High School of Economics, 101000 Moscow, Russia
| |
Collapse
|
9
|
Rahmani B, Alimadadi N, Attaran B, Nasr S. Yeasts from Iranian traditional milk kefir samples: isolation, molecular identification and their potential probiotic properties. Lett Appl Microbiol 2022; 75:1264-1274. [PMID: 35879830 DOI: 10.1111/lam.13794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
Milk kefir is a fermented dairy product with numerous attributed health benefits due to the presence of a complex eukaryotic and prokaryotic microbiota. In this study, a total number of 26 yeast isolates were obtained from eight kefir samples from three different cities of Iran. The isolates belonged to Kluyveromyces marxianus, Saccharomyces cerevisiae, Pichia fermentans and P. kudriavzevii. The potential probiotic characteristics of the isolates were evaluated based on their ability to tolerate the stimulated condition of the gastrointestinal tract. In addition, hemolytic activity, adherence to different solvents, auto-aggregation, adhesion to the epithelial intestine-derived cells and antimicrobial activity of the selected isolates were evaluated. Overall, four yeast strains (three strains of S. cerevisiae and one strain of P. fermentans) showed resistance and survival ability against the gastrointestinal physiological conditions including acidic pH, presence of bile salt and digestive enzymes. They were able to grow at 37 °C and had the capacity to adhere to epithelial intestine-derived cells. These results suggest that the selected strains can be proper candidates as probiotic yeast strains for the development of novel functional foods.
Collapse
Affiliation(s)
- B Rahmani
- Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - N Alimadadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - B Attaran
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - S Nasr
- Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.,Microorganisms Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| |
Collapse
|
10
|
Lima Parente Fernandes M, Cristina de Souza A, Sérgio Pedroso Costa Júnior P, Ayra Alcântara Veríssimo L, Satler Pylro V, Ribeiro Dias D, Freitas Schwan R. Sugary kefir grains as the inoculum for developing a low sodium isotonic beverage. Food Res Int 2022; 157:111257. [DOI: 10.1016/j.foodres.2022.111257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022]
|
11
|
Yilmaz B, Sharma H, Melekoglu E, Ozogul F. Recent developments in dairy kefir-derived lactic acid bacteria and their health benefits. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Tan LL, Tan CH, Ng NKJ, Tan YH, Conway PL, Loo SCJ. Potential Probiotic Strains From Milk and Water Kefir Grains in Singapore-Use for Defense Against Enteric Bacterial Pathogens. Front Microbiol 2022; 13:857720. [PMID: 35432232 PMCID: PMC9011154 DOI: 10.3389/fmicb.2022.857720] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Kefir grains consist of complex symbiotic mixtures of bacteria and yeasts, and are reported to impart numerous health-boosting properties to milk and water kefir beverages. The objective of this work was to investigate the microbial communities in kefir grains, and explore the possibility of deriving useful probiotic strains from them. A total of 158 microbial strains, representing six fungal and 17 bacterial species, were isolated from milk and water kefir grains collected from a Singapore-based homebrewer. Based on 16S rRNA sequencing, isolated genera included Lactobacillus, Liquorilactobacillus, Lacticaseibacillus, Lentilactobacillus, Leuconostoc, Lactococcus, Acetobacter, Gluconobacter, Oenococcus, Clostridium, Zymomonas, Saccharomyces, Kluyveromyces, Pichia, Lachancea, Candida, and Brettanomyces. To characterize these isolates, a funnel approach, involving numerous phenotypic and genomic screening assays, was applied to identify kefir-derived microbial strains with the highest probiotic potential. Particular focus was placed on examining the pathogen inhibitory properties of kefir isolates toward enteric pathogens which pose a considerable global health burden. Enteric pathogens tested include species of Bacillus, Salmonella, Vibrio, Clostridium, Klebsiella, Escherichia, and Staphylococcus. Well diffusion assays were conducted to determine the propensity of kefir isolates to inhibit growth of enteric pathogens, and a competitive adhesion/exclusion assay was used to determine the ability of kefir isolates to out-compete or exclude attachment of enteric pathogens to Caco-2 cells. Seven bacterial strains of Lentilactobacillus hilgardii, Lacticaseibacillus paracasei, Liquorilactobacillus satsumensis, Lactobacillus helveticus, and Lentilactobacillus kefiri, were ultimately identified as potential probiotics, and combined to form a "kefir probiotics blend." Desirable probiotic characteristics, including good survival in acid and bile environments, bile salt hydrolase activity, antioxidant activity, non-cytotoxicity and high adhesion to Caco-2 cells, and a lack of virulence or antimicrobial resistance genes. In addition, vitamin and γ-aminobutyric acid (GABA) synthesis genes, were identified in these kefir isolates. Overall, probiotic candidates derived in this study are well-characterized strains with a good safety profile which can serve as novel agents to combat enteric diseases. These kefir-derived probiotics also add diversity to the existing repertoire of probiotic strains, and may provide consumers with alternative product formats to attain the health benefits of kefir.
Collapse
Affiliation(s)
- Li Ling Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chuan Hao Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Noele Kai Jing Ng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yoke Hun Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Patricia Lynne Conway
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
13
|
Chen MY, Wu HT, Chen FF, Wang YT, Chou DL, Wang GH, Chen YP. Characterization of Tibetan kefir grain-fermented milk whey and its suppression of melanin synthesis. J Biosci Bioeng 2022; 133:547-554. [DOI: 10.1016/j.jbiosc.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 12/19/2022]
|
14
|
Determination of bacterial community structure of Turkish kefir beverages via metagenomic approach. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Ding F, Krasilnikova AA, Leontieva MR, Stoyanova LG, Netrusov AI. Analysis of Kefir Grains from Different Regions of the Planet Using High-Throughput Sequencing. MOSCOW UNIVERSITY BIOLOGICAL SCIENCES BULLETIN 2022; 77:286-291. [PMID: 36843649 PMCID: PMC9940072 DOI: 10.3103/s0096392522040010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/23/2022] [Accepted: 11/10/2022] [Indexed: 02/22/2023]
Abstract
The taxonomic composition and spatial localization of yeast and bacteria in kefir grains (KG) obtained for study from different regions of the planet were investigated. The diversity of their microbiome has been demonstrated by high-throughput sequencing of bacterial 16S rRNA genes and the ITS1 region of the 18S-ITS1-5.8S-ITS2-28S complex of yeast rRNA. It has been established that the main representatives of the complex community of KG from different regions are lactic acid bacteria (LAB; lactobacilli, lactococci, and Leuconostoc spp. in different ratios) and different types of yeast of the genus Kazachstania (family Saccharomycetaceae). Acetic acid bacteria and a small percentage of yeast Kluyveromyces marxianus were detected in the KG from Tibet, and yeast Pichia kluyveri was detected in the KG from Ossetia.
Collapse
Affiliation(s)
- F. Ding
- grid.14476.300000 0001 2342 9668Microbiology Department, Biological Faculty, Moscow State University, 119234 Moscow, Russia ,Shenzhen MSU-BIT University, 518172 Shenzhen, China
| | - A. A. Krasilnikova
- grid.14476.300000 0001 2342 9668Microbiology Department, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - M. R. Leontieva
- grid.14476.300000 0001 2342 9668Microbiology Department, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - L. G. Stoyanova
- grid.14476.300000 0001 2342 9668Microbiology Department, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - A. I. Netrusov
- grid.14476.300000 0001 2342 9668Microbiology Department, Biological Faculty, Moscow State University, 119234 Moscow, Russia ,Faculty of Biology and Biotechnology, High School of Economics, 101000 Moscow, Russia
| |
Collapse
|
16
|
Zeng X, Jia H, Zhang X, Wang X, Wang Z, Gao Z, Yuan Y, Yue T. Supplementation of kefir ameliorates azoxymethane/dextran sulfate sodium induced colorectal cancer by modulating the gut microbiota. Food Funct 2021; 12:11641-11655. [PMID: 34724014 DOI: 10.1039/d1fo01729b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim of this study was to investigate the efficacy of kefir on colorectal cancer (CRC) via regulating the microbiota structure in the colon using the azoxymethane/dextran sulfate sodium (AOM/DSS) induced CRC mouse model. Mice in the treatment group were orally administered with milk or kefir. The gut microbiota composition was assessed by internally transcribed spacer 2 (ITS2) and 16S rRNA high-throughput sequencing. Furthermore, the biomarkers associated with the gut barrier, inflammation, and cell proliferation regulators were evaluated. The results indicated that the size and the amount of tumor were decreased and the immunity regulators (TNF-α, IL-6, and IL-17a) and oncocyte proliferation indicator (Ki67, NF-κB, and β-catenin) were all decreased. Increased short chain fatty acids (SCFAs) lowered the pH in the colon and helped enhance the intestinal barrier. The Firmicutes/Bacteroidetes ratio and Ascomycota/Basidiomycota ratio were decreased at the phylum level; the relative abundance of probiotics was increased and the pathogenic bacterium (Clostridium sensu stricto, Aspergillus and Talaromyces) were decreased after supplementation of kefir. Consequently, kefir could regulate the gut microbiota composition and ameliorate AOM/DSS induced colorectal cancer.
Collapse
Affiliation(s)
- Xuejun Zeng
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Xiao Zhang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.,College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| |
Collapse
|
17
|
Gao J, Li X, Zhang G, Sadiq FA, Simal-Gandara J, Xiao J, Sang Y. Probiotics in the dairy industry-Advances and opportunities. Compr Rev Food Sci Food Saf 2021; 20:3937-3982. [PMID: 33938124 DOI: 10.1111/1541-4337.12755] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
The past two decades have witnessed a global surge in the application of probiotics as functional ingredients in food, animal feed, and pharmaceutical products. Among food industries, the dairy industry is the largest sector where probiotics are employed in a number of dairy products including sour/fermented milk, yogurt, cheese, butter/cream, ice cream, and infant formula. These probiotics are either used as starter culture alone or in combination with traditional starters, or incorporated into dairy products following fermentation, where their presence imparts many functional characteristics to the product (for instance, improved aroma, taste, and textural characteristics), in addition to conferring many health-promoting properties. However, there are still many challenges related to the stability and functionality of probiotics in dairy products. This review highlights the advances, opportunities, and challenges of application of probiotics in dairy industries. Benefits imparted by probiotics to dairy products including their role in physicochemical characteristics and nutritional properties (clinical and functional perspective) are also discussed. We transcend the traditional concept of the application of probiotics in dairy products and discuss paraprobiotics and postbiotics as a newly emerged concept in the field of probiotics in a particular relation to the dairy industry. Some potential applications of paraprobiotics and postbiotics in dairy products as functional ingredients for the development of functional dairy products with health-promoting properties are briefly elucidated.
Collapse
Affiliation(s)
- Jie Gao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiyu Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guohua Zhang
- School of Life Science, Shanxi University, Taiyuan, China
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
18
|
Gao J, Mao K, Wang X, Mi S, Fu M, Li X, Xiao J, Simal-Gandara J, Sang Y. Tibet Kefir Milk Regulated Metabolic Changes Induced by High-Fat Diet via Amino Acids, Bile Acids, and Equol Metabolism in Human-Microbiota-Associated Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6720-6732. [PMID: 34081859 DOI: 10.1021/acs.jafc.1c02430] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study aimed to confirm the effects of Tibet kefir milk (TKM) on gut microbiota and metabolism. An obesity model was established by feeding a high-fat diet (HFD) to human-microbiota-associated rats. Next-generation sequencing and ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry were applied for gut microbiota and untargeted metabolomics, respectively. After 8 weeks of feeding, the enterotype in the HFD group was switched from ET1 (Prevotella/Akkermansia-dominant) to ET2 (Bacteroides/Akkermansia-dominant). Branched-chain amino-acids- and aromatic amino-acids-metabolism increased, and taurine-conjugated bile acids decreased in the HFD group. Compared with the HFD group, taurocholic acid increased in the TKM1 group, while l-threonine decreased, and equol, taurochenodeoxycholate, and taurodeoxycholic acid increased in the TKM2 group. The metabolite alteration suggested restorative bile acid metabolism, modified metabolic pattern of amino acids, and elevation of anti-obesity factors in the TKM-intervened animals. It can be deduced that changes by TKM intervention in the host gut metabolites are the major contributors to reducing fat deposition.
Collapse
Affiliation(s)
- Jie Gao
- Department of Food Science and Technology, Hebei Agricultural University, No. 2596, Lekai South Street, Baoding, Hebei CN 071000, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing CN 100048, China
| | - Kemin Mao
- Department of Food Science and Technology, Hebei Agricultural University, No. 2596, Lekai South Street, Baoding, Hebei CN 071000, China
| | - Xianghong Wang
- Department of Food Science and Technology, Hebei Agricultural University, No. 2596, Lekai South Street, Baoding, Hebei CN 071000, China
| | - Si Mi
- Department of Food Science and Technology, Hebei Agricultural University, No. 2596, Lekai South Street, Baoding, Hebei CN 071000, China
| | - Mengqi Fu
- Department of Food Science and Technology, Hebei Agricultural University, No. 2596, Lekai South Street, Baoding, Hebei CN 071000, China
| | - Xiyu Li
- Department of Food Science and Technology, Hebei Agricultural University, No. 2596, Lekai South Street, Baoding, Hebei CN 071000, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, E-32004, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, ES 36310, Spain
| | - Yaxin Sang
- Department of Food Science and Technology, Hebei Agricultural University, No. 2596, Lekai South Street, Baoding, Hebei CN 071000, China
| |
Collapse
|
19
|
Guangsen T, Xiang L, Jiahu G. Microbial diversity and volatile metabolites of kefir prepared by different milk types. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1912190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Tong Guangsen
- Culinary Institute, Sichuan Tourism University, Chengdu, China
| | - Li Xiang
- Culinary Institute, Sichuan Tourism University, Chengdu, China
| | - Guo Jiahu
- Academy of ESH, Sichuan Staff University of Science and Technology, Chengdu, China
| |
Collapse
|
20
|
Chemical Constitution and Antimicrobial Activity of Kefir Fermented Beverage. Molecules 2021; 26:molecules26092635. [PMID: 33946451 PMCID: PMC8125171 DOI: 10.3390/molecules26092635] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
Kefir beverage (KB) is a fermented milk initiated by kefir grains rich with starter probiotics. The KB produced in this study seemed to contain many chemical compounds elucidated by gas chromatography-mass spectrometry (GC-MS) and IR spectra. These compounds could be classified into different chemical groups such as alcohols, phenols, esters, fatty esters, unsaturated fatty esters, steroids, polyalkenes, heterocyclic compounds and aromatic aldehydes. Both KB and neutralized kefir beverage (NKB) inhibited some pathogenic bacteria including Escherichia coli ATCC11229 (E. coli), Listeria monocytogenes ATCC 4957 (L. monocytogenes), Bacillus cereus ATCC 14579 (B. cereus), Salmonella typhimurium ATCC 14028 (Sal. typhimurium) as well as some tested fungal strains such as Aspergillus flavus ATCC 16872 (A. flavus) and Aspergillus niger ATCC 20611 (A. niger), but the inhibitory activity of KB was more powerful than that obtained by NKB. It also appeared to contain four lactic acid bacteria species, one acetic acid bacterium and two yeast species. Finally, the KB inhibited distinctively both S. aureus and Sal. typhimurium bacteria in a brain heart infusion broth and in some Egyptian fruit juices, including those made with apples, guava, strawberries and tomatoes.
Collapse
|
21
|
Du G, Liu L, Guo Q, Cui Y, Chen H, Yuan Y, Wang Z, Gao Z, Sheng Q, Yue T. Microbial community diversity associated with Tibetan kefir grains and its detoxification of Ochratoxin A during fermentation. Food Microbiol 2021; 99:103803. [PMID: 34119096 DOI: 10.1016/j.fm.2021.103803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
Tibetan kefir grains (TKG) are multi-functional starter cultures used in foods and have been applied in various fermentation systems. This study aimed to investigate the microbial community composition of TKG, the detoxification abilities of TKG and their isolates towards common mycotoxins, and the potential for applying TKG and their associated microbial populations to avoid mycotoxin contamination in dairy products. Cultivation-independent high-throughput sequencing of bacterial and fungal rDNA genes indicated that Lactobacillus kefiranofaciens and Kazachstania turicensis were the most abundant bacterial and fungal taxa, respectively. In addition, 27 total isolates were obtained using cultivation methods. TKG removed more than 90% of the Ochratoxin A (OTA) after 24 h, while the isolate Kazachstania unisporus AC-2 exhibited the highest removal capacity (~46.1%). Further, the isolate exhibited good resistance to acid and bile salts environment. Analysis of the OTA detoxification mechanism revealed that both adsorption and degradation activities were exhibited by TKG, with adsorption playing a major detoxification role. Furthermore, the addition of OTA did not affect the microbial community structure of TKG. These results indicate that TKG-fermented products can naturally remove mycotoxin contamination of milk and could potentially be practically applied as probiotics in fermentation products.
Collapse
Affiliation(s)
- Gengan Du
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Lin Liu
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Qi Guo
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yuanyuan Cui
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Hong Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Qinlin Sheng
- College of Food Science and Engineering, Northwest University, Xi'an, 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; College of Food Science and Engineering, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
22
|
Salari A, Hashemi M, Afshari A. Functional Properties of Kefiran in Medical field and food industry. Curr Pharm Biotechnol 2021; 23:388-395. [PMID: 33749555 DOI: 10.2174/1389201022666210322121420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/27/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022]
Abstract
Kefir is produced through the fermentation of milk using kefir grain as a starter culture. Kefir grains include heterogeneous microorganisms embedded in a polysaccharide matrix called kefiran which is considered a biofilm, it also has many uses due to its therapeutic values. Kefiran is a microbial exopolysaccharide (EPS) obtained from the flora (acid- lactic bacteria and yeasts) of kefir grains and glucose units, in almost the same proportion. Kefiran has prebiotic nature agitating the growth of probiotics in the gastrointestinal tract of the human entity. It extends certain therapeutic benefits through balancing the microbiota in the intestine. This review presents the most recent advances regarding kefir and kefiran, their cultural condition, biological activities, and potential applications in the health and food industries.
Collapse
Affiliation(s)
- Afsaneh Salari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Mohammad Hashemi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Asma Afshari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| |
Collapse
|
23
|
Chen Z, Liu T, Ye T, Yang X, Xue Y, Shen Y, Zhang Q, Zheng X. Effect of lactic acid bacteria and yeasts on the structure and fermentation properties of Tibetan kefir grains. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Blasche S, Kim Y, Mars RAT, Machado D, Maansson M, Kafkia E, Milanese A, Zeller G, Teusink B, Nielsen J, Benes V, Neves R, Sauer U, Patil KR. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nat Microbiol 2021; 6:196-208. [PMID: 33398099 PMCID: PMC7610452 DOI: 10.1038/s41564-020-00816-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/19/2020] [Indexed: 01/28/2023]
Abstract
Microbial communities often undergo intricate compositional changes yet also maintain stable coexistence of diverse species. The mechanisms underlying long-term coexistence remain unclear as system-wide studies have been largely limited to engineered communities, ex situ adapted cultures or synthetic assemblies. Here, we show how kefir, a natural milk-fermenting community of prokaryotes (predominantly lactic and acetic acid bacteria) and yeasts (family Saccharomycetaceae), realizes stable coexistence through spatiotemporal orchestration of species and metabolite dynamics. During milk fermentation, kefir grains (a polysaccharide matrix synthesized by kefir microorganisms) grow in mass but remain unchanged in composition. In contrast, the milk is colonized in a sequential manner in which early members open the niche for the followers by making available metabolites such as amino acids and lactate. Through metabolomics, transcriptomics and large-scale mapping of inter-species interactions, we show how microorganisms poorly suited for milk survive in-and even dominate-the community, through metabolic cooperation and uneven partitioning between grain and milk. Overall, our findings reveal how inter-species interactions partitioned in space and time lead to stable coexistence.
Collapse
Affiliation(s)
- Sonja Blasche
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yongkyu Kim
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ruben A T Mars
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Daniel Machado
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Eleni Kafkia
- European Molecular Biology Laboratory, Heidelberg, Germany
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Georg Zeller
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bas Teusink
- Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jens Nielsen
- Chalmers University of Technology, Gothenburg, Sweden
| | - Vladimir Benes
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Kiran Raosaheb Patil
- European Molecular Biology Laboratory, Heidelberg, Germany.
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
25
|
Yang M, Yang X, Chen X, Wang J, Liao Z, Wang L, Zhong Q, Fang X. Effect of Kefir on Soybean Isoflavone Aglycone Content in Soymilk Kefir. Front Nutr 2021; 7:587665. [PMID: 33392237 PMCID: PMC7772187 DOI: 10.3389/fnut.2020.587665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/27/2020] [Indexed: 01/20/2023] Open
Abstract
Kefir is a traditional fermented milk originating in the Caucasus area and parts of Eastern Europe. In this study, the kefir culture, which is modified upon the addition of lactic acid bacteria (LAB) cells, specifically for soymilk kefir fermentation with the highest capacity of isoflavone biotransformation, was successfully produced, and the metagenomics composition of soymilk or milk fermented using these kefir cultures was investigated. The metagenome analysis showed that the microbiota of kefir in M-K (milk inoculated with kefir), SM-K (equal volumes of soymilk and milk inoculated with kefir), and S-K (pure milk inoculated with kefir) were related to the addition of soymilk or not. Furthermore, the HPLC chromatogram revealed that Guixia 2 (Guangzhou, China) may be a good source of soymilk kefir fermentation due to its high isoflavone aglycone content (90.23 ± 1.26 μg/g in daidzein, 68.20 ± 0.74 μg/g in genistein). Importantly, the starter culture created by adding 1.5 g probiotics (Biostime®, Guangzhou, China) to Chinese kefir showed a significant increase in the levels of isoflavone aglycones (72.07 ± 0.53 μg/g in isoflavone aglycones). These results provided insight into understanding the suitable soybean cultivar and starter cultures, which exhibit promising results of isoflavone biotransformation and flavor promotion during soymilk kefir fermentation.
Collapse
Affiliation(s)
- Minke Yang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaojuan Yang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaoqu Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jie Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhenlin Liao
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Zhong
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
26
|
SETYAWARDANI T, SUMARMONO J, ARIEF II, RAHARDJO AHD, WIDAYAKA K, SANTOSA SS. Improving composition and microbiological characteristics of milk kefir using colostrum. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.31719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Barengolts E, Salim M, Akbar A, Salim F. <p>Probiotics for Prosperity: Is There a Role for Probiotics in the Fight Against Obesity? Review of Meta-Analyses of Randomized Controlled Trials</p>. NUTRITION AND DIETARY SUPPLEMENTS 2020. [DOI: 10.2147/nds.s243097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Prospects of Artificial Kefir Grains Prepared by Cheese and Encapsulated Vectors to Mimic Natural Kefir Grains. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8839135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Kefir is a natural fermented dairy beverage obtained by fermenting milk with kefir starter grains. However, up to now, there is still no efficient approach to producing stable kefir grains by using the pure or cultural mixture of strains isolated from the original kefir grains. Therefore, new techniques need to be taken to promote the kefir grain production. To this purpose, an encapsulated vector produced by entrapment of the dominant strains isolated from kefir grain and the cheese vector which was produced by a traditional manufacturing method was used to mimic kefir grain forming, respectively. Then, the composition, microstructure, and microflora of the two vectors were investigated and were compared with the natural kefir grains. Results indicated that the protein and polysaccharide content of cheese vector were much higher than encapsulated vector; the distribution of microorganisms inside the cheese vector was more similar to that inside the natural kefirs. It indicated that the cheese vector would be more suitable to mimic kefir grain production. Results of the present investigations reveal the potential of the cheese vector for kefir grains production at the industrial level.
Collapse
|
29
|
Ajam F, Koohsari H. Effect of some fermentation conditions on antibacterial activity of fermented milk by kefir grains. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fahime Ajam
- Department of Food Science and Technology Islamic Azad University Azadshahr Iran
| | - Hadi Koohsari
- Department of Microbiology, Azadshahr Branch Islamic Azad University Azadshahr Iran
| |
Collapse
|
30
|
Microbiological characterization of Gioddu, an Italian fermented milk. Int J Food Microbiol 2020; 323:108610. [PMID: 32240882 DOI: 10.1016/j.ijfoodmicro.2020.108610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/21/2020] [Accepted: 03/19/2020] [Indexed: 12/24/2022]
Abstract
Gioddu, also known as "Miciuratu", "Mezzoraddu" or "Latte ischidu" (literally meaning acidulous milk), is the sole variety of traditional Italian fermented milk. The aim of the present study was to elucidate the microbiota and the mycobiota occurring in artisan Gioddu sampled from three Sardinian producers by combining the results of viable counting on selective culture media and high-throughput sequencing. Physico-chemical parameters were also measured. The overall low pH values (3.80-4.22) recorded in the analyzed Gioddu samples attested the strong acidifying activity carried out by lactic acid bacteria during fermentation. Viable counts revealed the presence of presumptive lactococci, presumptive lactobacilli and non-Saccharomyces yeasts. A complex (kefir-like) microbiota of bacteria and yeasts was unveiled through sequencing. In more detail, Lactobacillus delbrueckii was found to dominate in Gioddu together with Streptococcus thermophilus, thus suggesting the establishment of a yogurt-like protocooperation. Unexpectedly, in all the three analyzed batches from two out of the three producers Lactobacillus kefiri was also detected, thus representing an absolute novelty, which suggests the presence of bioactive compounds (e.g. exopolysaccharides) similar to those characterizing milk kefir beverage. Mycobiota population, studied for the very first time in Gioddu, revealed a more complex composition, with Kluyveromyces marxianus, Galactomyces candidum and Geotrichum galactomyces constituting the core species. Further research is needed to disclose the eventual occurence in Gioddu of probiotic cultures and bioactive compounds (e.g. exopolysaccharides, angiotensin-converting enzyme inhibitory peptides and antimicrobial compounds) with potential health-benefits for the consumers.
Collapse
|
31
|
Study of kefir drinks produced by backslopping method using kefir grains from Bosnia and Herzegovina: Microbial dynamics and volatilome profile. Food Res Int 2020; 137:109369. [PMID: 33233071 DOI: 10.1016/j.foodres.2020.109369] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/06/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Kefir is a well-known health-promoting beverage that can be produced by using kefir grains (traditional method) or by using natural starter cultures from kefir (backslopping method). The aim of this study was to elucidate the microbial dynamics and volatilome profile occurring during kefir production through traditional and backslopping methods by using five kefir grains that were collected in Bosnia and Herzegovina. The results from conventional pour plating techniques and amplicon-based sequencing were combined. The kefir drinks have also been characterized in terms of their physico-chemical and colorimetric parameters. A bacterial shift from Lactobacillus kefiranofaciens to Acetobacter syzygii, Lactococcus lactis and Leuconostoc pseudomesenteroides from kefir grains in traditional kefir to backslopped kefir was generally observed. Despite some differences within samples, the dominant mycobiota of backslopped kefir samples remained quite similar to that of the kefir grain samples. However, unlike the lactic acid and acetic acid bacteria, the yeast counts decreased progressively from the grains to the backslopped kefir. The backslopped kefir samples showed higher protein, lactose and ash content and lower ethanol content compared to traditional kefir samples, coupled with optimal pH values that contribute to a pleasant sensory profile. Concerning the volatilome, backslopped kefir samples were correlated with cheesy, buttery, floral and fermented odors, whereas the traditional kefir samples were correlated with alcoholic, fruity, fatty and acid odors. Overall, the data obtained in the present study provided evidence that different kefir production methods (traditional vs backslopping) affect the quality characteristics of the final product. Hence, the functional traits of backslopped kefir should be further investigated in order to verify the suitability of a potential scale-up methodology for backslopping.
Collapse
|
32
|
Tan KX, Chamundeswari VN, Loo SCJ. Prospects of kefiran as a food-derived biopolymer for agri-food and biomedical applications. RSC Adv 2020; 10:25339-25351. [PMID: 35517442 PMCID: PMC9055270 DOI: 10.1039/d0ra02810j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
There is a huge demand for food-derived polysaccharides in the field of materials research due to the increasing concerns posed by synthetic biopolymers.
Collapse
Affiliation(s)
- Kei-Xian Tan
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
| | | | - Say Chye Joachim Loo
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Singapore Centre for Environmental Life Sciences Engineering
- Nanyang Technological University
| |
Collapse
|
33
|
Kim D, Kim H, Seo K. Microbial composition of Korean kefir and antimicrobial activity of
Acetobacter fabarum
DH1801. J Food Saf 2019. [DOI: 10.1111/jfs.12728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dong‐Hyeon Kim
- Center for One HealthCollege of Veterinary Medicine, Konkuk University Seoul South Korea
| | - Hyunsook Kim
- Department of Food & NutritionCollege of Human Ecology, Hanyang University Seoul South Korea
| | - Kun‐Ho Seo
- Center for One HealthCollege of Veterinary Medicine, Konkuk University Seoul South Korea
| |
Collapse
|
34
|
Abstract
Background: The aim of the present study was to assess the microecosystem composition of three different fruit kefir grains used for the fermentation of apple juice (NAJ), cherry juice (SCN), and a solution of sugary water, enriched with plums (BSS). Methods: Yeast and bacterial populations were enumerated using classical microbiological techniques, clustered by RAPD-PCR genotyping, and identified by sequencing of the D1/D2 region of 26S-rRNA gene and the V1-V3 region of 16S-rRNA gene, respectively. The caseinolytic/lipolytic activities and the production of antimicrobial compounds were assessed by well diffusion assays. The proteolytic and lipolytic capacity were further assessed by SDS-PAGE and titrimetric assay, respectively. Results: Yeast and bacterial populations were enumerated at 6.28, 6.58, and 6.41 log CFU/g and at 4.32, 4.85, and 4.34 log CFU/g, regarding BSS, NAJ, and SCN, respectively. Saccharomyces cerevisiae dominated all three sugary kefir grains; Kluyveromyces marxianus formed a secondary microbiota in BSS and NAJ. Bacillus amyloliquefaciens dominated NAJ and SCN; Lactobacillus rhamnosus dominated BSS. Four bacteria and nine yeast isolates exhibited proteolytic activity. Forty bacteria and 45 yeast isolates possessed lipolytic activity. No antibacterial activity was detected. Conclusions: Prevalence of yeast over bacterial populations was evident in all samples assessed. Several bacterial and yeast strains exhibited proteolytic and lipolytic activities, making them suitable candidates for inclusion in starter cultures for milk and sugary kefir fermentation.
Collapse
|
35
|
Purutoğlu K, İspirli H, Yüzer MO, Serencam H, Dertli E. Diversity and functional characteristics of lactic acid bacteria from traditional kefir grains. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12633] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kübra Purutoğlu
- Department of Food Engineering, Faculty of Engineering Bayburt University Bayburt 69000 Turkey
| | - Hümeyra İspirli
- Department of Food Engineering, Faculty of Engineering Bayburt University Bayburt 69000 Turkey
| | - Mustafa Onur Yüzer
- Department of Food Engineering, Faculty of Engineering Bayburt University Bayburt 69000 Turkey
| | - Hüseyin Serencam
- Department of Food Engineering, Faculty of Engineering Bayburt University Bayburt 69000 Turkey
| | - Enes Dertli
- Department of Food Engineering, Faculty of Engineering Bayburt University Bayburt 69000 Turkey
| |
Collapse
|
36
|
Kukhtyn M, Vichko O, Kravets O, Karpyk H, Shved O, Novikov V. Biochemical and microbiological changes during fermentation and storage of a fermented milk product prepared with Tibetan Kefir Starter. ARCHIVOS LATINOAMERICANOS DE NUTRICIÓN 2019. [DOI: 10.37527/2018.68.4.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The aim of this study was to determine the optimal temperature ranges of milk fermentation by the microbial association Tibetan Kefir Grains and to set changes during the storage of the fermented milk product. The optimum technological parameters of milk fermentation by Tibetan Kefir Grains compliance are set. Compliance of these parameters ensures the desired metabolic processes and obtaining a dairy product with good organoleptic properties: fermentation temperature is 28±1 °С for 24 hours, acidity of the product is from 80 to 120 % lactic acid, the amount of lactic acid bacteria – (2.9±0.22) × 108 CFU/cm3, fungi – (3.7±0.27) × 104 CFU/cm3. It was found that during the storage of the fermented milk drink produced on the leaven Tibetan Kefir Grains at the temperature of 4 ± 1 °С for 10 days titratable acidity of the product increased by 1.2 times to 108.4 ± 8.3 °Т, the population of lactic acid bacteria (Lactobacillus fermentum and some other) and yeast (Saccharomyces spp and some other) remained at the initial level. This indicates that the finished fermented milk product can be stored without losing functional probiotic properties for at least 10 days and meets the requirements of the standard (ISO 4471). At the same time, at a temperature of +8 ± 1°С the expiration date of the fermented milk drink is decreases to 7 days.
Collapse
|
37
|
Gao J, Ding G, Li Q, Gong L, Huang J, Sang Y. Tibet kefir milk decreases fat deposition by regulating the gut microbiota and gene expression of Lpl and Angptl4 in high fat diet-fed rats. Food Res Int 2019; 121:278-287. [PMID: 31108749 DOI: 10.1016/j.foodres.2019.03.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
The role of Tibet kefir milk (TKM) feeding on fat deposition was investigated in high-fat diet (HFD)-fed human flora-associated (HFA) rats. TKM feeding reduced abdominal fat mass from 33.9 g to 24.0 g and serum triglyceride (TG) from 0.75 mmol/L to 0.47 mmol/L, and caused lipoprotein lipase (LPL) to decrease from 395.8 ± 36.0 ng/L to 362.3 ± 64.4 ng/L in fat and increase from 287.3 ± 40.8 ng/L to 329.8 ± 48.5 ng/L and 312.5 ± 22.0 to 375.1 ± 30.8 ng/L in liver and serum, respectively. Likewise, TMK feeding down-regulated Lpl gene expression in fat and Angptl4 (angiopoietin-like protein-4, also known as fasting-induced adipose factor) gene expression in liver, and up-regulated Angptl4 gene expression in fat. Sequence analysis showed that the Firmicutes/Bacteroidetes proportion and Verrucomicrobia at the phylum level, Akkermansia, Escherichia and Oscillospira at the genus level, as well as Escherichia coli at the species level were positively regulated by TKM. The results indicated that TKM decreased abdominal fat deposition and serum TG by regulating Lpl and Angptl4 at the transcriptional level. The microbiota groups mentioned above were regulated by TKM at the same time and may be the potential intervention targets to reduce fat deposition.
Collapse
Affiliation(s)
- Jie Gao
- Hebei Agriculture University, No.2596, Lekai South Street, Baoding, Hebei 86-071000, China
| | - Gangqiang Ding
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 27, Nanwei Road, Beijing 86-100050, China
| | - Qi Li
- Hebei Agriculture University, No.2596, Lekai South Street, Baoding, Hebei 86-071000, China
| | - Lingxiao Gong
- Beijing Technology and Business University, No. 11, Fucheng Road, Beijing 86-100048, China
| | - Jian Huang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 27, Nanwei Road, Beijing 86-100050, China
| | - Yaxin Sang
- Hebei Agriculture University, No.2596, Lekai South Street, Baoding, Hebei 86-071000, China.
| |
Collapse
|
38
|
Gao W, Zhang L. Comparative analysis of the microbial community composition between Tibetan kefir grains and milks. Food Res Int 2019; 116:137-144. [DOI: 10.1016/j.foodres.2018.11.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
|
39
|
El Golli-Bennour E, Timoumi R, Koroit M, Bacha H, Abid-Essefi S. Protective effects of kefir against zearalenone toxicity mediated by oxidative stress in cultured HCT-116 cells. Toxicon 2018; 157:25-34. [PMID: 30448289 DOI: 10.1016/j.toxicon.2018.11.296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 01/19/2023]
Abstract
Kefir is a fermented milk with numerous health favors counting restorative properties of bacterial flora, reduction of the symptoms of lactose intolerance, immune system stimulation, cholesterol reduction, as well as anti-mutagenic and anti-tumor properties. Zearalenone (ZEN) is a mycotoxin produced by some Fusarium species. ZEN often occurs as a contaminant in cereal grains and animal feeds. Human exposure occurs by ingestion of mycotoxin-contaminated products and can cause serious health problems. This study aimed to assess the preventive effect of kefir against ZEN toxicity in cultured HCT-116 colorectal carcinoma cells; by the evaluation of cell viability, oxidative stress status and the initiation of apoptotic cell death pathway. Our results demonstrated that ZEN inhibits cell proliferation which was accompanied by an increase in the generation of free radicals as measured by fluorescent 2,7-dichlorofluorescein (DCF) and Malondialdehyde (MDA). As an adaptive response to this redox status, we showed an induction of heat shock protein expression (Hsp 70) and an activation of antioxidant enzymes; catalase and Superoxide Dismutase (SOD). Moreover, a loss of mitochondrial membrane potential (Δѱm) was observed. The co-treatment as well as the pre-treatment by kefir showed a reduction of ZEN induced damages for all tested markers. However, the pre-treatment seems to be the most efficient, it prevented almost all ZEN hazards. Consequently, oxidative damage appears to be a key determinant of ZEN induced toxicity in cultured HCT-116 cells. In conclusion, we showed that kefir may better exert its virtue on preventive mode rather than on curative one. By this way, kefir as a beverage with highly antioxidant properties could be relevant particularly with the emergent demand for natural products which may counteract the detrimental effects of oxidative stress and therefore prevent multiple human diseases.
Collapse
Affiliation(s)
- Emna El Golli-Bennour
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia.
| | - Rim Timoumi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| | - Meriam Koroit
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| | - Hassen Bacha
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| |
Collapse
|
40
|
Wang X, Xiao J, Jia Y, Pan Y, Wang Y. Lactobacillus kefiranofaciens, the sole dominant and stable bacterial species, exhibits distinct morphotypes upon colonization in Tibetan kefir grains. Heliyon 2018; 4:e00649. [PMID: 30009271 PMCID: PMC6042379 DOI: 10.1016/j.heliyon.2018.e00649] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/25/2018] [Accepted: 06/01/2018] [Indexed: 01/07/2023] Open
Abstract
Tibetan kefir grains (TKGs), natural starters for milk fermentation, are believed to comprise diverse microflora of lactic acid and acetic acid bacteria. In order to better understand the bacterial community in TKGs, TKGs that had been cultured continuously either naturally or aseptically for 10 months were subject to analysis using both culture-dependent and various culture-independent methods. Results of DGGE, metagenomics, FISH, qPCR and isolation all demonstrated that Lactobacillus kefiranofaciens is the only dominant and stable bacterial species in TKGs regardless of culture conditions and time. FISH and SEM showed that L. kefiranofaciens exhibited two distinct morphotypes of short rod (3.0 μm in length) and long rod (10.0 μm in length) upon colonization of either the outer surface or inner component of TKGs, providing evidence for its trophic adaptation to the hollow globular grain structure of TKGs. These findings pave ways for further study of the specific symbiotic interaction between L. kefiranofaciens and the dominant Saccharomyces cerevisiae yeast in TKGs in vivo.
Collapse
Affiliation(s)
- Xingxing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jinzhou Xiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yusheng Jia
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage & Preservation (Shanghai), Ministry of Agriculture, China
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage & Preservation (Shanghai), Ministry of Agriculture, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
41
|
Kukhtyn M, Vichko O, Horyuk Y, Shved O, Novikov V. Some probiotic characteristics of a fermented milk product based on microbiota of "Tibetan kefir grains" cultivated in Ukrainian household. Journal of Food Science and Technology 2017; 55:252-257. [PMID: 29358817 DOI: 10.1007/s13197-017-2931-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/27/2017] [Accepted: 10/15/2017] [Indexed: 01/06/2023]
Abstract
The article describes some probiotic properties of fermented product made of natural association of Tibetan kefir grains cultivated in Ukrainian household (UTKG); also, the effect of UTKG microbiota on the growth of pathogenic microbiota and sensitivity to antibiotics was studied. It was found that the test-cultures of oppurtunistic pathogens (Staphylococcus aureus, Bacillus mesentericus, and Mycobacterium luteum) were sensitive; bacteriostatic zone of the test-culture ranged from 21 to 25 mm, and highly sensitive (Proteus vulgaris and Aspergillus niger) bacteriostatic zone exceeded 25 mm to probiotic bacteria of fermented product. UTKG microbiota is also moderately sensitive to multiple antibiotics that allows defining the obtained fermented milk product as functional with therapeutic properties. During the study of the influence of different NaCl and bile concentrations on acid-activity of UTKG it was found that active acid formation occurred at the concentrations up to 4% NaCl in cultivation medium (boiled milk) and at 20% bile and 0.45% phenol. It proves microbial association to be capable of withstanding adverse gastrointestinal conditions and continue developing.
Collapse
Affiliation(s)
- Mykola Kukhtyn
- 1Ternopil Ivan Puluj National Technical University, Ruska 56, Ternopil, 46001 Ukraine
| | - Olena Vichko
- 1Ternopil Ivan Puluj National Technical University, Ruska 56, Ternopil, 46001 Ukraine
| | - Yulia Horyuk
- Institute of Veterinary Medicine of the National Academy of Agrarian Sciences of Ukraine, Donetsk 30, Kiev, 03151 Ukraine
| | - Olga Shved
- 3Lviv Polytechnic National University, S. Bandery 12, Lviv, 79013 Ukraine
| | - Volodymyr Novikov
- 3Lviv Polytechnic National University, S. Bandery 12, Lviv, 79013 Ukraine
| |
Collapse
|
42
|
Rychlik T, Szwengiel A, Bednarek M, Arcuri E, Montet D, Mayo B, Nowak J, Czarnecki Z. Application of the PCR-DGGE technique to the fungal community of traditional Wielkopolska fried ripened curd cheese to determine its PGI authenticity. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
|
44
|
Zabadaj M, Chreptowicz K, Mierzejewska J, Ciosek P. Two-dimensional fluorescence as soft sensor in the monitoring of biotransformation performed by yeast. Biotechnol Prog 2016; 33:299-307. [PMID: 27696796 DOI: 10.1002/btpr.2381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/27/2016] [Indexed: 11/06/2022]
Abstract
Soft sensors are powerful tools for bioprocess monitoring due to their ability to perform online, noninvasive measurement, and possibility of detection of multiple components in cultivation media, which in turn can provide tools for the quantification of more than one metabolite/substrate/product in real time. In this work, soft sensor based on excitation-emission fluorescence is for the first time applied for the monitoring of biotransformation production of 2-phenylethanol (2-PE) by yeast strains. Main process parameters-such as optical density, glucose, and 2-PE concentrations-were determined with high accuracy and precision by fluorescence fingerprinting coupled with partial least squares regression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:299-307, 2017.
Collapse
Affiliation(s)
- Marcin Zabadaj
- Institute of Biotechnology, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Karolina Chreptowicz
- Institute of Biotechnology, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Jolanta Mierzejewska
- Institute of Biotechnology, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Patrycja Ciosek
- Institute of Biotechnology, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| |
Collapse
|
45
|
Kalamaki MS, Angelidis AS. Isolation and molecular identification of yeasts in Greek kefir. INT J DAIRY TECHNOL 2016. [DOI: 10.1111/1471-0307.12329] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mary S Kalamaki
- Laboratory of Milk Hygiene and Technology; Department of Food Hygiene and Technology; Faculty of Veterinary Medicine; School of Health Sciences; Aristotle University of Thessaloniki; 54124 Thessaloniki Greece
| | - Apostolos S Angelidis
- Laboratory of Milk Hygiene and Technology; Department of Food Hygiene and Technology; Faculty of Veterinary Medicine; School of Health Sciences; Aristotle University of Thessaloniki; 54124 Thessaloniki Greece
| |
Collapse
|
46
|
Prado MR, Blandón LM, Vandenberghe LPS, Rodrigues C, Castro GR, Thomaz-Soccol V, Soccol CR. Milk kefir: composition, microbial cultures, biological activities, and related products. Front Microbiol 2015; 6:1177. [PMID: 26579086 PMCID: PMC4626640 DOI: 10.3389/fmicb.2015.01177] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/12/2015] [Indexed: 11/13/2022] Open
Abstract
In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir's exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir's microflora and the importance of kefiran as a beneficial health substance.
Collapse
Affiliation(s)
- Maria R. Prado
- Department of Bioprocess Engineering and Biotechnology, Federal University of ParanáCuritiba, Brazil
| | - Lina Marcela Blandón
- Department of Bioprocess Engineering and Biotechnology, Federal University of ParanáCuritiba, Brazil
| | | | - Cristine Rodrigues
- Department of Bioprocess Engineering and Biotechnology, Federal University of ParanáCuritiba, Brazil
| | - Guillermo R. Castro
- Nanobiomaterials Laboratory, Institute of Applied Biotechnology – School of Sciences, Universidad Nacional de la PlataLa Plata, Argentina
| | - Vanete Thomaz-Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of ParanáCuritiba, Brazil
| | - Carlos R. Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of ParanáCuritiba, Brazil
| |
Collapse
|
47
|
Garofalo C, Osimani A, Milanović V, Aquilanti L, De Filippis F, Stellato G, Di Mauro S, Turchetti B, Buzzini P, Ercolini D, Clementi F. Bacteria and yeast microbiota in milk kefir grains from different Italian regions. Food Microbiol 2015; 49:123-33. [DOI: 10.1016/j.fm.2015.01.017] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/07/2015] [Accepted: 01/31/2015] [Indexed: 01/23/2023]
|
48
|
Chemical and physical characteristics and antioxidant activities of the exopolysaccharide produced by Tibetan kefir grains during milk fermentation. Int Dairy J 2015. [DOI: 10.1016/j.idairyj.2014.10.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Zanirati DF, Abatemarco M, Sandes SHDC, Nicoli JR, Nunes ÁC, Neumann E. Selection of lactic acid bacteria from Brazilian kefir grains for potential use as starter or probiotic cultures. Anaerobe 2014; 32:70-76. [PMID: 25542841 DOI: 10.1016/j.anaerobe.2014.12.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/04/2014] [Accepted: 12/22/2014] [Indexed: 11/24/2022]
Abstract
Brazilian kefir is a homemade fermented beverage that is obtained by incubating milk or a brown sugar solution with kefir grains that contribute their different microbiological compositions. It is highly important to isolate and characterize microorganisms from Brazilian kefir grains to obtain starter cultures for the industrial production of a standardized commercial kefir. Thus, the present study aimed to isolate lactic acid bacteria from eight kefir grains that were propagated in milk or sugar solutions from five different locations in Brazil and to select Lactobacillus isolates based on desirable in vitro probiotic properties. One hundred eight isolates from both substrates were identified by amplified ribosomal DNA restriction analysis and/or 16S rRNA gene sequencing and were determined to belong to the following 11 species from the genera: Lactococcus, Leuconostoc, Lactobacillus (L.), and Oenococcus. Leuconostoc mesenteroides, Lactobacillus kefiri, and Lactobacillus kefiranofaciens were isolated only from milk grains, whereas Lactobacillus perolens, Lactobacillus parafarraginis, Lactobacillus diolivorans, and Oenococcus oeni were isolated exclusively from sugar water grains. When the microbial compositions of four kefir grains were evaluated with culture-independent analyses, L. kefiranofaciens was observed to predominant in milk grains, whereas Lactobacillus hilgardii was most abundant in sugar water kefir. Unfortunately, L. hilgardii was not isolated from any grain, although this bacteria was detected with a culture-independent methodology. Fifty-two isolated Lactobacilli were tested for gastric juice and bile salt tolerance, antagonism against pathogens, antimicrobial resistance, and surface hydrophobicity. Three Lactobacillus strains (L. kefiranofaciens 8U, L. diolivorans 1Z, and Lactobacillus casei 17U) could be classified as potential probiotics. In conclusion, several lactic acid bacteria that could be used in combination with yeasts as starter cultures for both milk kefir and sugar water kefir were characterized, and the functional properties of several of the lactobacilli isolated from the kefir grains were suggestive of their possible use as probiotics in both kefir and other dairy products.
Collapse
Affiliation(s)
- Débora Ferreira Zanirati
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mário Abatemarco
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sávio Henrique de Cicco Sandes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jacques Robert Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Álvaro Cantini Nunes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elisabeth Neumann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
50
|
Morrissey JP, Etschmann MMW, Schrader J, de Billerbeck GM. Cell factory applications of the yeast Kluyveromyces marxianus for the biotechnological production of natural flavour and fragrance molecules. Yeast 2014; 32:3-16. [PMID: 25393382 DOI: 10.1002/yea.3054] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 01/18/2023] Open
Abstract
Kluyveromyces marxianus is emerging as a new platform organism for the production of flavour and fragrance (F&F) compounds. This food-grade yeast has advantageous traits, such as thermotolerance and rapid growth, that make it attractive for cell factory applications. The major impediment to its development has been limited fundamental knowledge of its genetics and physiology, but this is rapidly changing. K. marxianus produces a wide array of volatile molecules and contributes to the flavour of a range of different fermented beverages. Advantage is now being taken of this to develop strains for the production of metabolites such as 2-phenylethanol and ethyl acetate. Strains that were selected from initial screens were used to optimize processes for production of these F&F molecules. Most developments have focused on optimizing growth conditions and the fermentation process, including product removal, with future advancement likely to involve development of new strains through the application of evolutionary or rational engineering strategies. This is being facilitated by new genomic and molecular tools. Furthermore, synthetic biology offers a route to introduce new biosynthetic pathways into this yeast for F&F production. Consumer demand for biologically-synthesized molecules for use in foods and other products creates an opportunity to exploit the unique potential of K. marxianus for this cell factory application.
Collapse
|