1
|
Earley D, Guillou A, Klingler S, Fay R, Gut M, d’Orchymont F, Behmaneshfar S, Reichert L, Holland JP. Charting the Chemical and Mechanistic Scope of Light-Triggered Protein Ligation. JACS AU 2022; 2:646-664. [PMID: 35373206 PMCID: PMC8970001 DOI: 10.1021/jacsau.1c00530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 05/04/2023]
Abstract
The creation of discrete, covalent bonds between a protein and a functional molecule like a drug, fluorophore, or radiolabeled complex is essential for making state-of-the-art tools that find applications in basic science and clinical medicine. Photochemistry offers a unique set of reactive groups that hold potential for the synthesis of protein conjugates. Previous studies have demonstrated that photoactivatable desferrioxamine B (DFO) derivatives featuring a para-substituted aryl azide (ArN3) can be used to produce viable zirconium-89-radiolabeled monoclonal antibodies (89Zr-mAbs) for applications in noninvasive diagnostic positron emission tomography (PET) imaging of cancers. Here, we report on the synthesis, 89Zr-radiochemistry, and light-triggered photoradiosynthesis of 89Zr-labeled human serum albumin (HSA) using a series of 14 different photoactivatable DFO derivatives. The photoactive groups explore a range of substituted, and isomeric ArN3 reagents, as well as derivatives of benzophenone, a para-substituted trifluoromethyl phenyl diazirine, and a tetrazole species. For the compounds studied, efficient photochemical activation occurs inside the UVA-to-visible region of the electromagnetic spectrum (∼365-450 nm) and the photochemical reactions with HSA in water were complete within 15 min under ambient conditions. Under standardized experimental conditions, photoradiosynthesis with compounds 1-14 produced the corresponding 89ZrDFO-PEG3-HSA conjugates with decay-corrected isolated radiochemical yields between 18.1 ± 1.8% and 62.3 ± 3.6%. Extensive density functional theory (DFT) calculations were used to explore the reaction mechanisms and chemoselectivity of the light-induced bimolecular conjugation of compounds 1-14 to protein. The photoactivatable DFO-derivatives operate by at least five distinct mechanisms, each producing a different type of bioconjugate bond. Overall, the experimental and computational work presented here confirms that photochemistry is a viable option for making diverse, functionalized protein conjugates.
Collapse
|
2
|
Guillou A, Earley DF, Klingler S, Nisli E, Nüesch LJ, Fay R, Holland JP. The Influence of a Polyethylene Glycol Linker on the Metabolism and Pharmacokinetics of a 89Zr-Radiolabeled Antibody. Bioconjug Chem 2021; 32:1263-1275. [PMID: 34056896 DOI: 10.1021/acs.bioconjchem.1c00172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Most experimental work in the space of bioconjugation chemistry focuses on using new methods to construct covalent bonds between a cargo molecule and a protein of interest such as a monoclonal antibody (mAb). Bond formation is important for generating new diagnostic tools, yet when these compounds advance to preclinical in vitro and in vivo studies, and later for translation to the clinic, understanding the fate of potential metabolites that arise from chemical or enzymatic degradation of the construct is important to obtain a full picture of the pharmacokinetic performance of a new compound. In the context of designing new bioconjugate methods for labeling antibodies with the positron-emitting radionuclide 89Zr, we previously developed a photochemical process for making 89Zr-mAbs. Experimental studies on [89Zr]ZrDFO-PEG3-azepin-mAb constructs revealed that incorporation of the tris-polyethylene glycol (PEG3) linker improved the aqueous phase solubility and radiochemical conversion. However, the use of a PEG3 linker also has an impact on the whole-body residence time of the construct, leading to a more rapid excretion of the 89Zr activity when compared with radiotracers that lack the PEG3 chain. In this work, we investigated the metabolic fate of eight possible metabolites that arise from the logical disconnection of [89Zr]ZrDFO-PEG3-azepin-mAb at bonds which are susceptible to chemical or enzymatic cleavage. Synthesis combined with 89Zr-radiolabeling, small-animal positron emission tomography imaging at multiple time points from 0 to 20 h, and measurements of the effective half-life for whole-body excretion are reported. The conclusions are that the use of a PEG3 linker is non-innocent in terms of its impact on enhancing the metabolism of [89Zr]ZrDFO-PEG3-azepin-mAbs. In most cases, degradation can produce metabolites that are rapidly eliminated from the body, thereby enhancing image contrast by reducing nonspecific accumulation and retention of 89Zr in background organs such as the liver, spleen, kidney, and bone.
Collapse
Affiliation(s)
- Amaury Guillou
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057, Zurich, Switzerland
| | - Daniel F Earley
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057, Zurich, Switzerland
| | - Simon Klingler
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057, Zurich, Switzerland
| | - Eda Nisli
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057, Zurich, Switzerland
| | - Laura J Nüesch
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057, Zurich, Switzerland
| | - Rachael Fay
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057, Zurich, Switzerland
| | - Jason P Holland
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057, Zurich, Switzerland
| |
Collapse
|
3
|
Leyva E, Platz MS, Loredo-Carrillo SE, Aguilar J. Fluoro Aryl Azides: Synthesis, Reactions and Applications. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200608132505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The complex photochemistry of aryl azides has fascinated scientists
for several decades. Spectroscopists have investigated the intermediates formed by
different analytical techniques. Theoretical chemists have explained the intrinsic interplay of
intermediates under different experimental conditions.
Objective & Method:
A complete understanding of the photochemistry of a given fluoro
aryl azide is a basic requisite for its use in chemistry. In this review, we will discuss the
synthesis of several fluoro substituted aryl azides and the reactions and intermediates generated
upon photolysis and thermolysis of these azides and some examples of their applications
in photoaffinity labeling and organic synthesis.
Conclusion:
In spite of the extensive research on the photochemistry of fluoro aryl azides, there are some areas
that remain to be investigated. The application of this reaction in the synthesis of novel heterocyclic compounds
has not been fully studied. Since fluorophenyl azides are known to undergo C-H and N-H insertion reactions,
they could be used to prepare new fluorinated molecules or in the biochemical process known as photoaffinity
labeling.
Collapse
Affiliation(s)
- Elisa Leyva
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 6, San Luis Potosí, S.L.P., 78210, Mexico
| | - Matthew S. Platz
- Department of Chemistry, University of Hawaii, Hilo, 200 West Kawili St. Hilo, HI 96720, United States
| | - Silvia E. Loredo-Carrillo
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 6, San Luis Potosí, S.L.P., 78210, Mexico
| | - Johana Aguilar
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 6, San Luis Potosí, S.L.P., 78210, Mexico
| |
Collapse
|
4
|
Holland JP, Gut M, Klingler S, Fay R, Guillou A. Photochemical Reactions in the Synthesis of Protein-Drug Conjugates. Chemistry 2019; 26:33-48. [PMID: 31599057 DOI: 10.1002/chem.201904059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 12/15/2022]
Abstract
The ability to modify biologically active molecules such as antibodies with drug molecules, fluorophores or radionuclides is crucial in drug discovery and target identification. Classic chemistry used for protein functionalisation relies almost exclusively on thermochemically mediated reactions. Our recent experiments have begun to explore the use of photochemistry to effect rapid and efficient protein functionalisation. This article introduces some of the principles and objectives of using photochemically activated reagents for protein ligation. The concept of simultaneous photoradiosynthesis of radiolabelled antibodies for use in molecular imaging is introduced as a working example. Notably, the goal of producing functionalised proteins in the absence of pre-association (non-covalent ligand-protein binding) introduces requirements that are distinct from the more regular use of photoactive groups in photoaffinity labelling. With this in mind, the chemistry of thirteen different classes of photoactivatable reagents that react through the formation of intermediate carbenes, electrophiles, dienes, or radicals, is assessed.
Collapse
Affiliation(s)
- Jason P Holland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Melanie Gut
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Simon Klingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Rachael Fay
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Amaury Guillou
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
5
|
Patra M, Klingler S, Eichenberger LS, Holland JP. Simultaneous Photoradiochemical Labeling of Antibodies for Immuno-Positron Emission Tomography. iScience 2019; 13:416-431. [PMID: 30903963 PMCID: PMC6430723 DOI: 10.1016/j.isci.2019.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/29/2019] [Accepted: 03/02/2019] [Indexed: 12/04/2022] Open
Abstract
A method for the simultaneous (one-step) photochemical conjugation and 89Zr-radiolabeling of antibodies is introduced. A photoactivatable chelate based on the functionalization of desferrioxamine B with an arylazide moiety (DFO-ArN3, [1]) was synthesized. The radiolabeled complex, 89Zr-1+, was produced and characterized. Density functional theory calculations were used to investigate the mechanism of arylazide photoactivation. 89Zr-radiolabeling experiments were also used to determine the efficiency of photochemical conjugation. A standard two-step approach gave a measured conjugation efficiency of 3.5% ± 0.4%. In contrast, the one-step process gave a higher photoradiolabeling efficiency of ∼76%. Stability measurements, cellular saturation binding assays, positron emission tomographic imaging, and biodistribution studies in mice bearing SK-OV-3 tumors confirmed the biochemical viability and tumor specificity of photoradiolabeled [89Zr]ZrDFO-azepin-trastuzumab. Experimental data support the conclusion that the combination of photochemistry and radiochemistry is a viable strategy for producing radiolabeled proteins for imaging and therapy. Photochemistry is combined with radiochemistry for radiosynthesis in a flash Simultaneous photoradiochemistry is achieved with high radiolabeling efficiency Photoradiochemistry produces viable 89Zr-radiolabeled antibodies Density functional theory calculations elucidate the photoactivation mechanism
Collapse
Affiliation(s)
- Malay Patra
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Simon Klingler
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Larissa S Eichenberger
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Jason P Holland
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, Zurich 8057, Switzerland.
| |
Collapse
|
6
|
Patra M, Eichenberger LS, Fischer G, Holland JP. Photochemische Konjugation und Eintopfradiomarkierung von Antikörpern für Immun-PET. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Malay Patra
- Universität Zürich; Institut für Chemie; Winterthurerstrasse 190 8057 Zürich Schweiz
- Derzeitige Adresse: Department of Chemical Sciences; Tata Institute of Fundamental Research; Homi Bhabha Road Mumbai 400005 Indien
| | | | - Gregor Fischer
- Universität Zürich; Institut für Labortierkunde; Schweiz
| | - Jason P. Holland
- Universität Zürich; Institut für Chemie; Winterthurerstrasse 190 8057 Zürich Schweiz
| |
Collapse
|
7
|
Patra M, Eichenberger LS, Fischer G, Holland JP. Photochemical Conjugation and One-Pot Radiolabelling of Antibodies for Immuno-PET. Angew Chem Int Ed Engl 2019; 58:1928-1933. [PMID: 30516314 DOI: 10.1002/anie.201813287] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Indexed: 12/19/2022]
Abstract
Monoclonal antibodies (mAbs), immunoglobulin fragments, and other proteins are important scaffolds in the development of radiopharmaceuticals for diagnostic immuno-positron emission tomography (immuno-PET) and targeted radioimmunotherapy (RIT). Conventional methods for radiolabelling proteins with metal ions such as 68 Ga, 64 Cu, 89 Zr, and 90 Y require multi-step procedures involving pre-purification, functionalisation with a chelate, and subsequent radiolabelling. Standard coupling chemistries are time-consuming, difficult to automate, and involve synthesis, isolation, and storage of an intermediate, new molecular entity (the conjugated mAb) whose biochemical properties can differ from those of the parent protein. To circumvent these issues, we developed a photoradiochemical approach that uses fast, chemoselective, light-induced protein modification under mild conditions with novel metal-ion-binding chelates derivatised with aryl azide (ArN3 ) groups. Experiments show that one-pot photochemical conjugation and radiolabelling of formulated mAbs can be achieved in <20 min.
Collapse
Affiliation(s)
- Malay Patra
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Current address: Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400005, India
| | - Larissa S Eichenberger
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Gregor Fischer
- University of Zurich, Laboratory Animal Services Center, Switzerland
| | - Jason P Holland
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
8
|
Eichenberger LS, Patra M, Holland JP. Photoactive chelates for radiolabelling proteins. Chem Commun (Camb) 2019; 55:2257-2260. [DOI: 10.1039/c8cc09660k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
New photoactivatable ligands have been developed that facilitate one-pot photoradiochemical labelling of proteins with different radioactive metal ions.
Collapse
Affiliation(s)
| | - Malay Patra
- University of Zurich
- Department of Chemistry
- Zurich
- Switzerland
| | | |
Collapse
|
9
|
Leyva E, Leyva S, Moctezuma E, González-Balderas RM, de Loera D. Microwave-assisted synthesis of substituted fluorophenyl mono- and diazides by SNAr. A fast methodology to prepare photoaffinity labeling and crosslinking reagents. J Fluor Chem 2013. [DOI: 10.1016/j.jfluchem.2013.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Budruev AV, Sinjagina DY. Photochemical modification of polyethylene surface with aryl azides. HIGH ENERGY CHEMISTRY 2013. [DOI: 10.1134/s0018143913050020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Wang X, Ramström O, Yan M. A photochemically initiated chemistry for coupling underivatized carbohydrates to gold nanoparticles. JOURNAL OF MATERIALS CHEMISTRY 2009; 19:8944-8949. [PMID: 20856694 PMCID: PMC2941222 DOI: 10.1039/b917900c] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sensitive optoelectronic properties of metal nanoparticles make nanoparticle-based materials a powerful tool to study fundamental biorecognition processes. Here we present a new and versatile method for coupling underivatized carbohydrates to gold nanoparticles (Au NPs) via the photochemically induced reaction of perfluorophenylazide (PFPA). A one-pot procedure was developed where Au NPs were synthesized and functionalized with PFPA by a ligand-exchange reaction. Carbohydrates were subsequently immobilized on the NPs by a fast light activation. The coupling reaction was efficient, resulting in high coupling yield as well as high ligand surface coverage. A colorimetric system based on the carbohydrate-modified Au NPs was used for the sensitive detection of carbohydrate-protein interactions. Binding and cross-reactivity studies were carried out between carbohydrate-functionalized Au NPs and lectins. Results showed that the surface-bound carbohydrates not only retained their binding affinities towards the corresponding lectin, but also exhibited affinity ranking consistent with that of the free ligands in solution.
Collapse
Affiliation(s)
- Xin Wang
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon, 97207-075, USA
| | - Olof Ramström
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon, 97207-075, USA
- Department of Chemistry, KTH - Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Mingdi Yan
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon, 97207-075, USA
| |
Collapse
|
12
|
Abstract
This Concept article surveys methods for attaching single polymer molecules on solid substrates. A general approach to single polymer immobilization based on the photochemistry of perfluorophenylazides is elaborated.
Collapse
Affiliation(s)
- Mingdi Yan
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207, USA.
| |
Collapse
|
13
|
Kurti L, Papagiannopoulou D, Papadopoulos M, Pirmettis I, Raptopoulou CP, Terzis A, Chiotellis E, Harmata M, Kuntz RR, Pandurangi RS. Synthesis and characterization of novel 99gTc(V) and Re(V) complexes with water-soluble tetraaza diamido dipyridino ligands: single-crystal X-ray structural investigations of mono- and dinuclear complexes. Inorg Chem 2003; 42:2960-7. [PMID: 12716188 DOI: 10.1021/ic020434q] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rhenium and technetium are known for their useful applications in nuclear medicine with similar properties. In this study, new diamido dipyridino (N(4)) water-soluble ligands (2-C(5)H(4)NCH(2)NHCO)(2)CH(2), 1 (L(1)H2), (2-C(5)H(4)NNHNHCO)(2)CH(2), 2, and [2-C(5)H(4)N(+)(O)(-)CH(2)NHCO](2)CH(2), 3, were synthesized. Reaction of L(1)H2 with ReOCl(3)(PPh(3))(2) resulted in the novel six-coordinated rhenium(V) complex, trans-ReO(L(1))(OEt), 4. The complex was characterized by spectroscopic methods, and its X-ray crystallographic analysis revealed that rhenium is coordinated to four nitrogen atoms of the ligand and to two oxygen atoms from the deprotonated ethanol and the oxo group respectively in a distorted octahedral geometry. In solution, complex 4 was transformed to a new complex 5, which was proved to be the dinuclear complex mu-oxo [ReO(L(1))](2)O. Reaction of 1 with [n-Bu(4)N][ReOCl(4)] resulted in the neutral complex 6, trans-[ReO(L(1))]Cl. Similarly, when ligand 1 was reacted with [n-Bu(4)N][(99g)TcOCl(4)], the neutral trans-[(99)TcO(L(1))]Cl complex 7 was formed, which upon dissolution transformed into a cationic complex 8, trans-[(99)TcO(L(1))(OH(2))](+)Cl(-). The single-crystal X-ray structure of 8 reveals that the coordination sphere about technetium is a distorted octahedron with four nitrogen atoms in the equitorial plane, while doubly bonded oxygen and coordinated water occupy the apical positions. Further dissolution of 8 resulted in the formation of dinuclear mu-oxo [TcO(L(1))](2)O, 9. This study shows that Tc and Re have similar metal core structures in solution for diamido dipyridino systems, besides similarity in geometrical structure, proved by the X-ray structures on the same ligands.
Collapse
Affiliation(s)
- Laszlo Kurti
- Chemistry Department, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rajagopalan R, Kuntz RR, Sharma U, Volkert WA, Pandurangi RS. Chemistry of bifunctional photoprobes. 6. Synthesis and characterization of high specific activity metalated photochemical probes: development of novel rhenium photoconjugates of human serum albumin and fab fragments. J Org Chem 2002; 67:6748-57. [PMID: 12227807 DOI: 10.1021/jo010782u] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Functionalization of perfluoro aryl azides by bifunctional chelating agents (BFCAs) capable of forming high specific activity complexes with (99m)Tc (for gamma-imaging) and (188)Re (for radiotherapy) is described. The synthesis of multidonor BFCAs containing N(2)S(2), N(4), and N(3)S donor groups containing imidazole, pyridine, and pyrazine functionalities that may be important for tuning the pharmacokinetic parameters is also described. Functionalization of perfluoro aryl azides at various sites on BFCAs yields novel bifunctional photolabile chelating agents (BFPCAs) that are useful for covalent attachment to biomolecules. A representative Re-BFPCA 8a in a model solvent, diethylamine, proceeded to give a high yield of intermolecular NH insertion product without the decomplexation of the metal ion from 8a. All products originated from the photolysis of 8a in diethylamine are characterized by analytical techniques, and a plausible mechanism of formation of different photolytic products is suggested. The high yield of intermolecular NH insertion of Re-BFPCA 8a is extended to labeling of human serum albumin (HSA) and Fab fragments under aqueous conditions. The photolabeling technology developed here offers a new way to attach diagnostically and therapeutically useful radiotracers (e.g., (99m)Tc, (188)Re) to Fab fragments for potential noninvasive imaging and therapy of cancer.
Collapse
|
15
|
Pandurangi RS, Katti KV, Stillwell L, Barnes CL. Retention of Inhibitory Potency of an ACE Inhibitor Conjugated with Rh(III) and Pd(II) (Iminophosphorano)phosphines. Synthesis and X-ray Structural Investigations. J Am Chem Soc 1998. [DOI: 10.1021/ja9802403] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raghoottama S. Pandurangi
- Contribution from the Department of Internal Medicine, Department of Chemistry, and Department of Radiology and Missouri University Research Reactor, University of Missouri, Columbia, Missouri 65211, and Monsanto, Chesterfield Pkw. St. Louis, Missouri 64321
| | - Kattesh V. Katti
- Contribution from the Department of Internal Medicine, Department of Chemistry, and Department of Radiology and Missouri University Research Reactor, University of Missouri, Columbia, Missouri 65211, and Monsanto, Chesterfield Pkw. St. Louis, Missouri 64321
| | - Loreen Stillwell
- Contribution from the Department of Internal Medicine, Department of Chemistry, and Department of Radiology and Missouri University Research Reactor, University of Missouri, Columbia, Missouri 65211, and Monsanto, Chesterfield Pkw. St. Louis, Missouri 64321
| | - Charles L. Barnes
- Contribution from the Department of Internal Medicine, Department of Chemistry, and Department of Radiology and Missouri University Research Reactor, University of Missouri, Columbia, Missouri 65211, and Monsanto, Chesterfield Pkw. St. Louis, Missouri 64321
| |
Collapse
|
16
|
|
17
|
|