1
|
Popova AV, Dobrev K, Velitchkova M, Ivanov AG. Differential temperature effects on dissipation of excess light energy and energy partitioning in lut2 mutant of Arabidopsis thaliana under photoinhibitory conditions. PHOTOSYNTHESIS RESEARCH 2019; 139:367-385. [PMID: 29725995 DOI: 10.1007/s11120-018-0511-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/22/2018] [Indexed: 06/08/2023]
Abstract
The high-light-induced alterations in photosynthetic performance of photosystem II (PSII) and photosystem I (PSI) as well as effectiveness of dissipation of excessive absorbed light during illumination for different periods of time at room (22 °C) and low (8-10 °C) temperature of leaves of Arabidopsis thaliana, wt and lut2, were followed with the aim of unraveling the role of lutein in the process of photoinhibition. Photosynthetic parameters of PSII and PSI were determined on whole leaves by PAM fluorometer and oxygen evolving activity-by a Clark-type electrode. In thylakoid membranes, isolated from non-illuminated and illuminated for 4.5 h leaves of wt and lut2 the photochemical activity of PSII and PSI and energy interaction between the main pigment-protein complexes was determined. Results indicate that in non-illuminated leaves of lut2 the maximum rate of oxygen evolution and energy utilization in PSII is lower, excitation pressure of PSII is higher and cyclic electron transport around PSI is faster than in wt leaves. Under high-light illumination, lut2 leaves are more sensitive in respect to PSII performance and the extent of increase of excitation pressure of PSII, ΦNO, and cyclic electron transport around PSI are higher than in wt leaves, especially when illumination is performed at low temperature. Significant part of the excessive light energy is dissipated via mechanism, not dependent on ∆pH and to functioning of xanthophyll cycle in LHCII, operating more intensively in lut2 leaves.
Collapse
Affiliation(s)
- Antoaneta V Popova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, 1113, Sofia, Bulgaria.
| | - Konstantin Dobrev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, 1113, Sofia, Bulgaria
| | - Maya Velitchkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, 1113, Sofia, Bulgaria
| | - Alexander G Ivanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, 1113, Sofia, Bulgaria
- Department of Biology, University of Western Ontario, 1151 Richmond Str. N., London, ON, N6A 5B7, Canada
| |
Collapse
|
2
|
Dobrev K, Stanoeva D, Velitchkova M, Popova AV. The Lack of Lutein Accelerates the Extent of Light-induced Bleaching of Photosynthetic Pigments in Thylakoid Membranes of Arabidopsis thaliana. Photochem Photobiol 2016; 92:436-45. [PMID: 26888623 DOI: 10.1111/php.12576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/24/2016] [Indexed: 11/30/2022]
Abstract
The high light-induced bleaching of photosynthetic pigments and the degradation of proteins of light-harvesting complexes of PSI and PSII were investigated in isolated thylakoid membranes of Arabidopsis thaliana, wt and lutein-deficient mutant lut2, with the aim of unraveling the role of lutein for the degree of bleaching and degradation. By the means of absorption spectroscopy and western blot analysis, we show that the lack of lutein leads to a higher extent of pigment photobleaching and protein degradation in mutant thylakoid membranes in comparison with wt. The highest extent of bleaching is suffered by chlorophyll a and carotenoids, while chlorophyll b is bleached in lut2 thylakoids during long periods at high illumination. The high light-induced degradation of Lhca1, Lhcb2 proteins and PsbS was followed and it is shown that Lhca1 is more damaged than Lhcb2. The degradation of analyzed proteins is more pronounced in lut2 mutant thylakoid membranes. The lack of lutein influences the high light-induced alterations in organization of pigment-protein complexes as revealed by 77 K fluorescence.
Collapse
Affiliation(s)
- Konstantin Dobrev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Bl. 21, Sofia, 1113, Bulgaria
| | - Daniela Stanoeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Bl. 21, Sofia, 1113, Bulgaria
| | - Maya Velitchkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Bl. 21, Sofia, 1113, Bulgaria
| | - Antoaneta V Popova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Bl. 21, Sofia, 1113, Bulgaria
| |
Collapse
|
3
|
|
4
|
β-Carotene–Lipid Interactions in Liposomes with Different Lipid Composition. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/b978-0-12-387720-8.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
5
|
Tracewell CA, Cua A, Bocian DF, Brudvig GW. Resonance Raman spectroscopy of carotenoids in Photosystem II core complexes. PHOTOSYNTHESIS RESEARCH 2005; 83:45-52. [PMID: 16143906 DOI: 10.1007/s11120-004-2350-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 08/23/2004] [Indexed: 05/04/2023]
Abstract
Resonance Raman (RR) spectroscopy has been used to examine the configuration of the carotenoids bound to Synechocystis PCC 6803 Photosystem II (PS II) core complexes. The excitation wavelengths used (514.5, 488.0, 476.5 and 457.9 nm) span the absorption bands of all of the approximately 12-17 neutral carotenoids in the PS II core complex. The RR spectra of the two carotenoids associated with the D1-D2 polypeptides (Car507 and Car489) of the reaction center are extracted via light versus dark difference experiments measured at 20 K. The RR results are consistent with all-trans configurations for both Car507 and Car489 and indicate that majority of the other carotenoids in the PS II core complex must also be in the all-trans configuration. The configuration of beta-carotene is relevant to its proposed function as a molecular wire in the secondary electron-transfer reactions of PS II.
Collapse
Affiliation(s)
- Cara A Tracewell
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8107, USA
| | | | | | | |
Collapse
|
6
|
Losi A, Yruela I, Reus M, Holzwarth AR, Braslavsky SE. Structural changes upon excitation of D1-D2-Cyt b559 photosystem II reaction centers depend on the beta-carotene content. Photochem Photobiol Sci 2003; 2:722-9. [PMID: 12911219 DOI: 10.1039/b301282d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Different preparations of D1-D2-Cyt b559 complexes from spinach with different beta-carotene (Car) content [on average from <0.5 to 2 per reaction center (RC)] were studied by means of laser-induced optoacoustic spectroscopy. phiP680(+)Pheo(-) does not depend on the preparation (or on the Car content) inasmuch as the magnitude of the prompt heat (produced within 20 ns) does not vary for the different samples upon excitation at 675 and 620 nm. The energy level of the primary charge-separated state, P680(+)Pheo(-), was determined as EP680(+)Pheo(-) = 1.55 eV. Thus, an enthalpy change accompanying charge separation from excited P680 of deltaH*P680Pheo-->P680(+)Pheo(-) = -0.27 eV is obtained. Calculations using the heat evolved during the time-resolved decay of P680(+)Pheo(-) (< or = 100 ns) affords a triplet (3[P680Pheo]) quantum yield phi3[P680Pheo] = 0.5 +/- 0.14. The structural volume change, deltaV1, corresponding to the formation of P680(+)Pheo(-), strongly depends on the Car content; it is ca. -2.5 A3 molecule(-1) for samples with <0.5 Car on average, decreases (in absolute value) to -0.5 +/- 0.2 A3 for samples with an average of 1 Car, and remains the same for samples with two Cars per RC. This suggests that the Car molecules induce changes in the ground-state RC conformation, an idea which was confirmed by preferential excitation of Car with blue light, which produced different carotene triplet lifetimes in samples with 2 Car compared to those containing less carotene. We conclude that the two beta-carotenes are not structurally equivalent. Upon blue-light excitation (480 nm, preferential carotene absorption) the fraction of energy stored is ca. 60% for the 9Chl-2Car sample, whereas it is 40% for the preparations with one or less Cars on average, indicating different paths of energy distribution after Car excitation in these RCs with remaining chlorophyll antennae.
Collapse
Affiliation(s)
- Aba Losi
- Max-Planck-Institut für Strahlenchemie, Postfach 10 13 65, 45413 Mülheim an der Ruhr, Germany
| | | | | | | | | |
Collapse
|
7
|
de Weerd FL, Dekker JP, van Grondelle R. Dynamics of β-Carotene-to-Chlorophyll Singlet Energy Transfer in the Core of Photosystem II. J Phys Chem B 2003. [DOI: 10.1021/jp027737q] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frank L. de Weerd
- Department of Biophysics and Physics of Complex Systems, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Jan P. Dekker
- Department of Biophysics and Physics of Complex Systems, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Biophysics and Physics of Complex Systems, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
8
|
|
9
|
Telfer A. What is beta-carotene doing in the photosystem II reaction centre? Philos Trans R Soc Lond B Biol Sci 2002; 357:1431-39; discussion 1439-40, 1469-70. [PMID: 12437882 PMCID: PMC1693050 DOI: 10.1098/rstb.2002.1139] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During photosynthesis carotenoids normally serve as antenna pigments, transferring singlet excitation energy to chlorophyll, and preventing singlet oxygen production from chlorophyll triplet states, by rapid spin exchange and decay of the carotenoid triplet to the ground state. The presence of two beta-carotene molecules in the photosystem II reaction centre (RC) now seems well established, but they do not quench the triplet state of the primary electron-donor chlorophylls, which are known as P(680). The beta-carotenes cannot be close enough to P(680) for triplet quenching because that would also allow extremely fast electron transfer from beta-carotene to P(+)(680), preventing the oxidation of water. Their transfer of excitation energy to chlorophyll, though not very efficient, indicates close proximity to the chlorophylls ligated by histidine 118 towards the periphery of the two main RC polypeptides. The primary function of the beta-carotenes is probably the quenching of singlet oxygen produced after charge recombination to the triplet state of P(680). Only when electron donation from water is disturbed does beta-carotene become oxidized. One beta-carotene can mediate cyclic electron transfer via cytochrome b559. The other is probably destroyed upon oxidation, which might trigger a breakdown of the polypeptide that binds the cofactors that carry out charge separation.
Collapse
Affiliation(s)
- Alison Telfer
- Wolfson Laboratories, Department of Biological Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AY, UK.
| |
Collapse
|
10
|
Fujii R, Furuichi K, Zhang JP, Nagae H, Hashimoto H, Koyama Y. Cis-to-trans Isomerization of Spheroidene in the Triplet State as Detected by Time-Resolved Absorption Spectroscopy. J Phys Chem A 2002. [DOI: 10.1021/jp011309n] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ritsuko Fujii
- Faculty of Science, Kwansei Gakuin University, Gakuen, Sanda 669-1337, Japan, Kobe City University of Foreign Studies, Gakuen-Higashimachi, Nishi-ku, Kobe 651-2187, Japan, and Department of Materials Science and Chemical Engineering, Faculty of Engineering, Shizuoka University, Johoku, Hamamatsu 432-8561, Japan
| | - Kentaro Furuichi
- Faculty of Science, Kwansei Gakuin University, Gakuen, Sanda 669-1337, Japan, Kobe City University of Foreign Studies, Gakuen-Higashimachi, Nishi-ku, Kobe 651-2187, Japan, and Department of Materials Science and Chemical Engineering, Faculty of Engineering, Shizuoka University, Johoku, Hamamatsu 432-8561, Japan
| | - Jian-Ping Zhang
- Faculty of Science, Kwansei Gakuin University, Gakuen, Sanda 669-1337, Japan, Kobe City University of Foreign Studies, Gakuen-Higashimachi, Nishi-ku, Kobe 651-2187, Japan, and Department of Materials Science and Chemical Engineering, Faculty of Engineering, Shizuoka University, Johoku, Hamamatsu 432-8561, Japan
| | - Hiroyoshi Nagae
- Faculty of Science, Kwansei Gakuin University, Gakuen, Sanda 669-1337, Japan, Kobe City University of Foreign Studies, Gakuen-Higashimachi, Nishi-ku, Kobe 651-2187, Japan, and Department of Materials Science and Chemical Engineering, Faculty of Engineering, Shizuoka University, Johoku, Hamamatsu 432-8561, Japan
| | - Hideki Hashimoto
- Faculty of Science, Kwansei Gakuin University, Gakuen, Sanda 669-1337, Japan, Kobe City University of Foreign Studies, Gakuen-Higashimachi, Nishi-ku, Kobe 651-2187, Japan, and Department of Materials Science and Chemical Engineering, Faculty of Engineering, Shizuoka University, Johoku, Hamamatsu 432-8561, Japan
| | - Yasushi Koyama
- Faculty of Science, Kwansei Gakuin University, Gakuen, Sanda 669-1337, Japan, Kobe City University of Foreign Studies, Gakuen-Higashimachi, Nishi-ku, Kobe 651-2187, Japan, and Department of Materials Science and Chemical Engineering, Faculty of Engineering, Shizuoka University, Johoku, Hamamatsu 432-8561, Japan
| |
Collapse
|
11
|
Tracewell CA, Vrettos JS, Bautista JA, Frank HA, Brudvig GW. Carotenoid photooxidation in photosystem II. Arch Biochem Biophys 2001; 385:61-9. [PMID: 11361027 DOI: 10.1006/abbi.2000.2150] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carotenoids are known to function as light-harvesting pigments and they play important roles in photoprotection in both plant and bacterial photosynthesis. These functions are also important for carotenoids in photosystem II. In addition, beta-carotene recently has been found to function as a redox intermediate in an alternate pathway of electron transfer within photosystem II. This redox role of a carotenoid in photosystem II is unique among photosynthetic reaction centers and stems from the very highly oxidizing intermediates that form in the process of water oxidation. In this minireview, an overview of the electron-transfer reactions in photosystem II is presented, with an emphasis on those involving carotenoids. The carotenoid composition of photosystem II and the physical methods used to study the structure of the redox-active carotenoid are reviewed. Possible roles of carotenoid cations in photoprotection of photosystem II are discussed.
Collapse
Affiliation(s)
- C A Tracewell
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, USA
| | | | | | | | | |
Collapse
|
12
|
Deligiannakis Y, Hanley J, Rutherford AW. Carotenoid Oxidation in Photosystem II: 1D- and 2D-Electron Spin−Echo Envelope Modulation Study. J Am Chem Soc 2000. [DOI: 10.1021/ja9926257] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Vrettos JS, Stewart DH, de Paula JC, Brudvig GW. Low-Temperature Optical and Resonance Raman Spectra of a Carotenoid Cation Radical in Photosystem II. J Phys Chem B 1999. [DOI: 10.1021/jp991464q] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John S. Vrettos
- Department of Chemistry Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041-1392
| | - David H. Stewart
- Department of Chemistry Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041-1392
| | - Julio C. de Paula
- Department of Chemistry Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041-1392
| | - Gary W. Brudvig
- Department of Chemistry Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041-1392
| |
Collapse
|