1
|
Ndabakuranye JP, Belcourt J, Sharma D, O'Connell CD, Mondal V, Srivastava SK, Stacey A, Long S, Fleiss B, Ahnood A. Miniature fluorescence sensor for quantitative detection of brain tumour. LAB ON A CHIP 2024; 24:946-954. [PMID: 38275166 DOI: 10.1039/d3lc00982c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Fluorescence-guided surgery has emerged as a vital tool for tumour resection procedures. As well as intraoperative tumour visualisation, 5-ALA-induced PpIX provides an avenue for quantitative tumour identification based on ratiometric fluorescence measurement. To this end, fluorescence imaging and fibre-based probes have enabled more precise demarcation between the cancerous and healthy tissues. These sensing approaches, which rely on collecting the fluorescence light from the tumour resection site and its "remote" spectral sensing, introduce challenges associated with optical losses. In this work, we demonstrate the viability of tumour detection at the resection site using a miniature fluorescence measurement system. Unlike the current bulky systems, which necessitate remote measurement, we have adopted a millimetre-sized spectral sensor chip for quantitative fluorescence measurements. A reliable measurement at the resection site requires a stable optical window between the tissue and the optoelectronic system. This is achieved using an antifouling diamond window, which provides stable optical transparency. The system achieved a sensitivity of 92.3% and specificity of 98.3% in detecting a surrogate tumour at a resolution of 1 × 1 mm2. As well as addressing losses associated with collecting and coupling fluorescence light in the current 'remote' sensing approaches, the small size of the system introduced in this work paves the way for its direct integration with the tumour resection tools with the aim of more accurate interoperative tumour identification.
Collapse
Affiliation(s)
| | | | - Deepak Sharma
- School of Engineering, RMIT University, VIC 3000, Australia.
- Photovoltaic Metrology Section, Advanced Materials and Device Metrology Division, CSIR-National Physical Laboratory, New Delhi, 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Cathal D O'Connell
- School of Engineering, RMIT University, VIC 3000, Australia.
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, VIC 3065, Australia
| | - Victor Mondal
- School of Health and Biomedical Sciences, RMIT University, VIC 3000, Australia
| | - Sanjay K Srivastava
- Photovoltaic Metrology Section, Advanced Materials and Device Metrology Division, CSIR-National Physical Laboratory, New Delhi, 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Alastair Stacey
- School of Science, RMIT University, VIC 3000, Australia
- Princeton Plasma Physics Laboratory, Princeton University, Princeton, 08540 New Jersey, USA
| | - Sam Long
- Veterinary Referral Hospital, Victoria, Australia
| | - Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, VIC 3000, Australia
| | - Arman Ahnood
- School of Engineering, RMIT University, VIC 3000, Australia.
| |
Collapse
|
2
|
Regression Analysis of Protoporphyrin IX Measurements Obtained During Dermatological Photodynamic Therapy. Cancers (Basel) 2019; 11:cancers11010072. [PMID: 30634715 PMCID: PMC6356372 DOI: 10.3390/cancers11010072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/04/2022] Open
Abstract
Photodynamic therapy (PDT) is a light activated drug therapy that can be used to treat a number of dermatological cancers and precancers. Improvement of efficacy is required to widen its application. Clinical protoporphyrin IX (PpIX) fluorescence data were obtained using a pre-validated, non-invasive imaging system during routine methyl aminolevulinate (MAL)-PDT treatment of 172 patients with licensed dermatological indications (37.2% actinic keratosis, 27.3% superficial basal cell carcinoma and 35.5% Bowen’s disease). Linear and logistic regressions were employed to model any relationships between variables that may have affected PpIX accumulation and/or PpIX photobleaching during irradiation and thus clinical outcome at three months. Patient age was found to be associated with lower PpIX accumulation/photobleaching, however only a reduction in PpIX photobleaching appeared to consistently adversely affect treatment efficacy. Clinical clearance was reduced in lesions located on the limbs, hands and feet with lower PpIX accumulation and subsequent photobleaching adversely affecting the outcome achieved. If air cooling pain relief was employed during light irradiation, PpIX photobleaching was lower and this resulted in an approximate three-fold reduction in the likelihood of achieving clinical clearance. PpIX photobleaching during the first treatment was concluded to be an excellent predictor of clinical outcome across all lesion types.
Collapse
|
3
|
Thong PSP, Lee K, Toh HJ, Dong J, Tee CS, Low KP, Chang PH, Bhuvaneswari R, Tan NC, Soo KC. Early assessment of tumor response to photodynamic therapy using combined diffuse optical and diffuse correlation spectroscopy to predict treatment outcome. Oncotarget 2017; 8:19902-19913. [PMID: 28423634 PMCID: PMC5386732 DOI: 10.18632/oncotarget.15720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 01/16/2017] [Indexed: 12/30/2022] Open
Abstract
Photodynamic therapy (PDT) of cancer involves the use of a photosensitizer that can be light-activated to eradicate tumors via direct cytotoxicity, damage to tumor vasculature and stimulating the body's immune system. Treatment outcome may vary between individuals even under the same regime; therefore a non-invasive tumor response monitoring system will be useful for personalization of the treatment protocol. We present the combined use of diffuse optical spectroscopy (DOS) and diffuse correlation spectroscopy (DCS) to provide early assessment of tumor response. The relative tissue oxygen saturation (rStO2) and relative blood flow (rBF) in tumors were measured using DOS and DCS respectively before and after PDT with reference to baseline values in a mouse model. In complete responders, PDT-induced decreases in both rStO2 and rBF levels were observed at 3 h post-PDT and the rBF remained low until 48 h post-PDT. Recovery of these parameters to baseline values was observed around 2 weeks after PDT. In partial responders, the rStO2 and rBF levels also decreased at 3 h post PDT, however the rBF values returned toward baseline values earlier at 24 h post-PDT. In contrast, the rStO2 and rBF readings in control tumors showed fluctuations above the baseline values within the first 48 h. Therefore tumor response can be predicted at 3 to 48 h post-PDT. Recovery or sustained decreases in the rBF at 48 h post-PDT corresponded to long-term tumor control. Diffuse optical measurements can thus facilitate early assessment of tumor response. This approach can enable physicians to personalize PDT treatment regimens for best outcomes.
Collapse
Affiliation(s)
| | - Kijoon Lee
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.,Nanyang Technological University, Singapore.,Current address: Daegu Gyeongbuk Institute of Science and Technology, Korea
| | - Hui-Jin Toh
- Division of Medical Sciences, National Cancer Centre, Singapore
| | - Jing Dong
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.,Nanyang Technological University, Singapore.,Current address: Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, USA
| | - Chuan-Sia Tee
- Division of Medical Sciences, National Cancer Centre, Singapore
| | - Kar-Perng Low
- Division of Medical Sciences, National Cancer Centre, Singapore
| | - Pui-Haan Chang
- Division of Medical Sciences, National Cancer Centre, Singapore
| | | | - Ngian-Chye Tan
- Division of Surgical Oncology, National Cancer Centre, Singapore
| | - Khee-Chee Soo
- Division of Medical Sciences, National Cancer Centre, Singapore
| |
Collapse
|
4
|
Smijs T, Dame Z, de Haas E, Aans JB, Pavel S, Sterenborg H. Photodynamic and Nail Penetration Enhancing Effects of Novel Multifunctional Photosensitizers Designed for The Treatment of Onychomycosis. Photochem Photobiol 2013; 90:189-200. [DOI: 10.1111/php.12196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/20/2013] [Indexed: 01/20/2023]
Affiliation(s)
- Threes Smijs
- Department of Radiaotherapy; Center for Optical Diagnostics and Therapy; Erasmus Medical Centre; Rotterdam The Netherlands
| | - Zoë Dame
- Department of Radiaotherapy; Center for Optical Diagnostics and Therapy; Erasmus Medical Centre; Rotterdam The Netherlands
| | - Ellen de Haas
- Department of Dermatology and Venereology; Erasmus Medical Centre; Rotterdam The Netherlands
| | - Jan-Bonne Aans
- Department of Radiaotherapy; Center for Optical Diagnostics and Therapy; Erasmus Medical Centre; Rotterdam The Netherlands
| | - Stan Pavel
- Department of dermatology; Faculty of Medicine; Charles University; Pilsen Czech Republic
| | - Henricus Sterenborg
- Department of Radiaotherapy; Center for Optical Diagnostics and Therapy; Erasmus Medical Centre; Rotterdam The Netherlands
| |
Collapse
|
5
|
de Visscher SAHJ, Witjes MJH, van der Vegt B, de Bruijn HS, van der Ploeg-van den Heuvel A, Amelink A, Sterenborg HJCM, Roodenburg JLN, Robinson DJ. Localization of liposomal mTHPC formulations within normal epithelium, dysplastic tissue, and carcinoma of oral epithelium in the 4NQO-carcinogenesis rat model. Lasers Surg Med 2013; 45:668-78. [PMID: 24174342 DOI: 10.1002/lsm.22197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Foslip and Fospeg are liposomal formulations of the photosensitizer mTHPC (Foscan), which is used for photodynamic therapy (PDT) of malignancies. Literature suggests that liposomal mTHPC formulations have better properties and increased tumor uptake compared to Foscan. To investigate this, we used the 4NQO-induced carcinogen model to compare the localization of the different mTHPC formulations within normal, precancerous, and cancerous tissue. In contrast to xenograft models, the 4NQO model closely mimics the carcinogenesis of human oral dysplasia. MATERIALS AND METHODS Fifty-four rats drank water with the carcinogen 4NQO. When oral examination revealed tumor, the rats received 0.15 mg/kg mTHPC (Foscan, Foslip, or Fospeg). At 2, 4, 8, 24, 48, or 96 hours after injection the rats were sacrificed. Oral tissue was sectioned for HE slides and for fluorescence confocal microscopy. The HE slides were scored on the severity of dysplasia by the epithelial atypia index (EAI). The calibrated fluorescence intensity per formulation or time point was correlated to EAI. RESULTS Fospeg showed higher mTHPC fluorescence in normal and tumor tissue compared to both Foscan and Foslip. Significant differences in fluorescence between tumor and normal tissue were found for all formulations. However, at 4, 8, and 24 hours only Fospeg showed a significant difference. The Pearson's correlation between EAI and mTHPC fluorescence proved weak for all formulations. CONCLUSION In our induced carcinogenesis model, Fospeg exhibited a tendency for higher fluorescence in normal and tumor tissue compared to Foslip and Foscan. In contrast to Foscan and Foslip, Fospeg showed significantly higher fluorescence in tumor versus normal tissue at earlier time points, suggesting a possible clinical benefit compared to Foscan. Low correlation between grade of dysplasia and mTHPC fluorescence was found.
Collapse
Affiliation(s)
- Sebastiaan A H J de Visscher
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Valentine RM, Wood K, Brown CTA, Ibbotson SH, Moseley H. Monte Carlo simulations for optimal light delivery in photodynamic therapy of non-melanoma skin cancer. Phys Med Biol 2012; 57:6327-45. [DOI: 10.1088/0031-9155/57/20/6327] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
7
|
Middelburg TA, Kanick SC, de Haas ERM, Sterenborg HJCM, Amelink A, Neumann MHAM, Robinson DJ. Monitoring blood volume and saturation using superficial fibre optic reflectance spectroscopy during PDT of actinic keratosis. JOURNAL OF BIOPHOTONICS 2011; 4:721-730. [PMID: 21842485 DOI: 10.1002/jbio.201100053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/08/2011] [Accepted: 07/25/2011] [Indexed: 05/31/2023]
Abstract
Optically monitoring the vascular physiology during photodynamic therapy (PDT) may help understand patient-specific treatment outcome. However, diffuse optical techniques have failed to observe changes herein, probably by optically sampling too deep. Therefore, we investigated using differential path-length spectroscopy (DPS) to obtain superficial measurements of vascular physiology in actinic keratosis (AK) skin. The AK-specific DPS interrogation depth was chosen up to 400 microns in depth, based on the thickness of AK histology samples. During light fractionated aminolevulinic acid-PDT, reflectance spectra were analyzed to yield quantitative estimates of blood volume and saturation. Blood volume showed significant lesion-specific changes during PDT without a general trend for all lesions and saturation remained high during PDT. This study shows that DPS allows optically monitoring the superficial blood volume and saturation during skin PDT. The patient-specific variability supports the need for dosimetric measurements. In DPS, the lesion-specific optimal interrogation depth can be varied based on lesion thickness.
Collapse
Affiliation(s)
- Tom A Middelburg
- Department of Dermatology, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
8
|
Wachowska M, Muchowicz A, Firczuk M, Gabrysiak M, Winiarska M, Wańczyk M, Bojarczuk K, Golab J. Aminolevulinic Acid (ALA) as a Prodrug in Photodynamic Therapy of Cancer. Molecules 2011. [PMCID: PMC6263343 DOI: 10.3390/molecules16054140] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aminolevulinic acid (ALA) is an endogenous metabolite normally formed in the mitochondria from succinyl-CoA and glycine. Conjugation of eight ALA molecules yields protoporphyrin IX (PpIX) and finally leads to formation of heme. Conversion of PpIX to its downstream substrates requires the activity of a rate-limiting enzyme ferrochelatase. When ALA is administered externally the abundantly produced PpIX cannot be quickly converted to its final product - heme by ferrochelatase and therefore accumulates within cells. Since PpIX is a potent photosensitizer this metabolic pathway can be exploited in photodynamic therapy (PDT). This is an already approved therapeutic strategy making ALA one of the most successful prodrugs used in cancer treatment.
Collapse
Affiliation(s)
- Małgorzata Wachowska
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Banacha 1A F Building, 02-097 Warsaw, Poland
| | - Angelika Muchowicz
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Banacha 1A F Building, 02-097 Warsaw, Poland
| | - Małgorzata Firczuk
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Banacha 1A F Building, 02-097 Warsaw, Poland
| | - Magdalena Gabrysiak
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Banacha 1A F Building, 02-097 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Banacha 1A F Building, 02-097 Warsaw, Poland
| | - Małgorzata Wańczyk
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Banacha 1A F Building, 02-097 Warsaw, Poland
| | - Kamil Bojarczuk
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Banacha 1A F Building, 02-097 Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Banacha 1A F Building, 02-097 Warsaw, Poland
- Department III, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Author to whom correspondence should be addressed; E-Mail: ; Tel. +48-22-5992199; Fax: +48-22-5992194
| |
Collapse
|
9
|
Tyrrell JS, Morton C, Campbell SM, Curnow A. Comparison of protoporphyrin IX accumulation and destruction during methylaminolevulinate photodynamic therapy of skin tumours located at acral and nonacral sites. Br J Dermatol 2011; 164:1362-8. [PMID: 21564050 DOI: 10.1111/j.1365-2133.2011.10265.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Topical photodynamic therapy (PDT) is successful in the treatment of nonmelanoma skin cancers and associated precancers, but efficacy is significantly reduced in actinic keratosis lesions not located on the face or scalp. OBJECTIVES To compare the changes in protoporphyrin IX (PpIX) fluorescence in lesions undergoing routine methylaminolevulinate (MAL) PDT and the clinical outcome observed 3 months after treatment in lesions located at acral and nonacral sites. METHODS This study was a noninterventional, nonrandomized, observational study, which monitored changes in PpIX fluorescence in 200 lesions during standard dermatological MAL-PDT. These data were subsequently analysed in terms of lesions located at acral and nonacral sites. RESULTS Clinical clearance was significantly reduced (P < 0·01) in acral skin lesions when compared with lesions located at nonacral sites. The accumulation and destruction of PpIX fluorescence was significantly reduced in these acral lesions (P < 0·05 and P < 0·001, respectively). Specifically, lesion location at acral sites significantly reduced changes in PpIX fluorescence in actinic keratosis lesions during MAL-PDT (P < 0·01 and P < 0·05). CONCLUSIONS These data suggest that reduced PpIX accumulation and the subsequent reduction in PpIX photobleaching within acral lesions result in the reduced responsiveness of these lesions to MAL-PDT. Future work should therefore aim to improve photosensitizer accumulation/photobleaching within lesions located at acral sites.
Collapse
Affiliation(s)
- J S Tyrrell
- Clinical Photobiology, European Centre of Environment and Human Health, Peninsula Medical School, University of Exeter, Royal Cornwall Hospital, Treliske, Truro, Cornwall, UK
| | | | | | | |
Collapse
|
10
|
Valentine RM, Brown CTA, Moseley H, Ibbotson S, Wood K. Monte Carlo modeling of in vivo protoporphyrin IX fluorescence and singlet oxygen production during photodynamic therapy for patients presenting with superficial basal cell carcinomas. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:048002. [PMID: 21529097 DOI: 10.1117/1.3562540] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present protoporphyrin IX (PpIX) fluorescence measurements acquired from patients presenting with superficial basal cell carcinoma during photodynamic therapy (PDT) treatment, facilitating in vivo photobleaching to be monitored. Monte Carlo (MC) simulations, taking into account photobleaching, are performed on a three-dimensional cube grid, which represents the treatment geometry. Consequently, it is possible to determine the spatial and temporal changes to the origin of collected fluorescence and generated singlet oxygen. From our clinical results, an in vivo photobleaching dose constant, β of 5-aminolaevulinic acid-induced PpIX fluorescence is found to be 14 ± 1 J/cm(2). Results from our MC simulations suggest that an increase from our typical administered treatment light dose of 75-150 J/cm(2) could increase the effective PDT treatment initially achieved at a depth of 2.7-3.3 mm in the tumor, respectively. Moreover, this increase reduces the surface PpIX fluorescence from 0.00012 to 0.000003 of the maximum value recorded before treatment. The recommendation of administrating a larger light dose, which advocates an increase in the treatment time after surface PpIX fluorescence has diminished, remains valid for different sets of optical properties and therefore should have a beneficial outcome on the total treatment effect.
Collapse
Affiliation(s)
- Ronan M Valentine
- University of St. Andrews, School of Physics and Astronomy, North Haugh, St Andrews, Fife KY16 9SS, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
The effect of air cooling pain relief on protoporphyrin IX photobleaching and clinical efficacy during dermatological photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 103:1-7. [DOI: 10.1016/j.jphotobiol.2010.12.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/15/2010] [Accepted: 12/21/2010] [Indexed: 11/17/2022]
|
12
|
Naghavi N, Miranbaygi MH, Sazgarnia A. Simulation of fractionated and continuous irradiation in photodynamic therapy: study the differences between photobleaching and singlet oxygen dose deposition. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2011; 34:203-11. [DOI: 10.1007/s13246-011-0064-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 03/08/2011] [Indexed: 11/24/2022]
|
13
|
In vivo quantification of photosensitizer fluorescence in the skin-fold observation chamber using dual-wavelength excitation and NIR imaging. Lasers Med Sci 2011; 26:789-801. [PMID: 21279401 PMCID: PMC3183248 DOI: 10.1007/s10103-011-0888-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 01/05/2011] [Indexed: 10/24/2022]
Abstract
A major challenge in biomedical optics is the accurate quantification of in vivo fluorescence images. Fluorescence imaging is often used to determine the pharmacokinetics of photosensitizers used for photodynamic therapy. Often, however, this type of imaging does not take into account differences in and changes to tissue volume and optical properties of the tissue under interrogation. To address this problem, a ratiometric quantification method was developed and applied to monitor photosensitizer meso-tetra(hydroxyphenyl) chlorin (mTHPC) pharmacokinetics in the rat skin-fold observation chamber. The method employs a combination of dual-wavelength excitation and dual-wavelength detection. Excitation and detection wavelengths were selected in the NIR region. One excitation wavelength was chosen to be at the Q band of mTHPC, whereas the second excitation wavelength was close to its absorption minimum. Two fluorescence emission bands were used; one at the secondary fluorescence maximum of mTHPC centered on 720 nm, and one in a region of tissue autofluorescence. The first excitation wavelength was used to excite the mTHPC and autofluorescence and the second to excite only autofluorescence, so that this could be subtracted. Subsequently, the autofluorescence-corrected mTHPC image was divided by the autofluorescence signal to correct for variations in tissue optical properties. This correction algorithm in principle results in a linear relation between the corrected fluorescence and photosensitizer concentration. The limitations of the presented method and comparison with previously published and validated techniques are discussed.
Collapse
|
14
|
Tyrrell J, Campbell SM, Curnow A. Monitoring the accumulation and dissipation of the photosensitizer protoporphyrin IX during standard dermatological methyl-aminolevulinate photodynamic therapy utilizing non-invasive fluorescence imaging and quantification. Photodiagnosis Photodyn Ther 2010; 8:30-8. [PMID: 21333932 DOI: 10.1016/j.pdpdt.2010.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/06/2010] [Accepted: 11/09/2010] [Indexed: 12/29/2022]
Abstract
BACKGROUND Dermatological methyl-aminolevulinate photodynamic therapy (MAL-PDT) is utilized to successfully treat dermatological conditions. This study monitored fluorescence changes attributed to the accumulation and destruction of the photosensitizer, protoporphyrin IX (PpIX), at several different stages during the first and second treatments of clinical dermatological MAL-PDT. METHODS A commercially available, non-invasive, fluorescence imaging system (Dyaderm, Biocam, Germany) was utilized to monitor fluorescence changes during the first and second MAL-PDT treatments in seventy-five lesions. RESULTS The clinical data indicated statistically significant increases in fluorescence within lesions following the application of MAL for both treatments (P<0.001 and P<0.01 respectively) and subsequent statistically significant decreases in fluorescence within the lesions following light irradiation for both treatments (P<0.001 and P<0.01 respectively) whilst normal skin fluorescence remained unaltered. Lesions receiving a second treatment accumulated and dissipated significantly less PpIX (P<0.05) than during the first treatment. No significant differences were noted in PpIX accumulation or dissipation during MAL-PDT when gender, age, lesion type and lesion surface area were considered. CONCLUSIONS It can therefore be concluded that PpIX fluorescence imaging can be used in real-time to assess PpIX levels during dermatological PDT. Similar observations were recorded from the three currently licensed indications indicating that the standard 'one size fits all' protocol currently employed appears to allow adequate PpIX accumulation, which is subsequently fully utilized during light irradiation regardless of patient age, gender or lesion surface area.
Collapse
Affiliation(s)
- Jessica Tyrrell
- Clinical Photobiology, Peninsula Medical School, University of Exeter, Royal Cornwall Hospital, Truro, Cornwall, UK
| | | | | |
Collapse
|
15
|
Naghavi N, Baygi MHM, Sazgarnia A. Determination of time-dependent protoporphyrin IX concentration for photodynamic therapy dosimetry in a mice colon tumor model using fluorescence spectroscopy. APPLIED SPECTROSCOPY 2010; 64:1350-1354. [PMID: 21144152 DOI: 10.1366/000370210793561682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Photodynamic therapy (PDT) is an effective treatment method for various types of invasive tumors. The efficiency of PDT treatment depends, to a great extent, on optimal dosimetry of light, the photosensitizer used, and on tissue oxygenation. Fluorescence spectroscopy can be employed for measurement of drug concentration in target tissue and can provide a basis for in vivo evaluation of treatment efficiency. We have developed an integrated system that can be used to determine photosensitizer concentration in vivo based on fluorescence measurements. In our study, we performed fluorescence measurements on colon tumors of Balb/c mice in which CT26 cells were injected subcutaneously in the right flank. 5-Aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) was used as the photosensitizer. ALA was administered intraperitoneally at a dose of 200 mg/kg and PpIX fluorescence profiles were followed up to 34 h after ALA administration. Maximum fluorescence intensity was found 8 h after ALA administration. Also, we determined the relationship between PpIX concentration in colon tumor tissue of Balb/c mice and its fluorescence intensity at the peak of the spectrum (635 nm). This was used to determine the PpIX content in the target tissue as a function of time after ALA administration.
Collapse
Affiliation(s)
- Nadia Naghavi
- Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
| | | | | |
Collapse
|
16
|
Tyrrell J, Campbell S, Curnow A. Protoporphyrin IX photobleaching during the light irradiation phase of standard dermatological methyl-aminolevulinate photodynamic therapy. Photodiagnosis Photodyn Ther 2010; 7:232-8. [PMID: 21112545 DOI: 10.1016/j.pdpdt.2010.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/24/2010] [Accepted: 09/24/2010] [Indexed: 11/25/2022]
Abstract
BACKGROUND Methyl-aminolevulinate photodynamic therapy (MAL-PDT) is a successful treatment for non-melanoma skin cancers in the UK. Monitoring the photobleaching of the photosensitiser, protoporphyrin IX (PpIX) during treatment has been demonstrated to indicate the efficacy of the treatment. This study investigated photobleaching during light irradiation. METHODS A validated non-invasive fluorescence imaging system was utilised to monitor changes in PpIX fluorescence during light irradiation. Fifty patients were recruited to this study, with patients monitored before, during (forty patients at the half way stage and ten at regular intervals in the initial phase of treatment) and after light irradiation. RESULTS Phased PpIX photobleaching was observed during light irradiation with a significantly greater change (P<0.001) in PpIX photobleaching during the first half of light treatment. Within the ten patients monitored periodically the phased photobleaching observed fitted a double exponential decay curve (r(2)=0.99, P<0.005) suggesting a rapid initial phase of reaction when the light treatment was commenced. CONCLUSIONS Photobleaching was observed to be maximal in the initial phases of treatment, however photobleaching of PpIX continued until the completion of light treatment indicating that current clinical protocols for MAL-PDT do not over-treat the lesion with light.
Collapse
Affiliation(s)
- Jessica Tyrrell
- Clinical Photobiology, European Centre for Environment and Human Health, Peninsula Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro TR1 3HD, UK
| | | | | |
Collapse
|
17
|
Liu B, Farrell TJ, Patterson MS. A dynamic model for ALA-PDT of skin: simulation of temporal and spatial distributions of ground-state oxygen, photosensitizer and singlet oxygen. Phys Med Biol 2010; 55:5913-32. [DOI: 10.1088/0031-9155/55/19/019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Tyrrell JS, Campbell SM, Curnow A. The relationship between protoporphyrin IX photobleaching during real-time dermatological methyl-aminolevulinate photodynamic therapy (MAL-PDT) and subsequent clinical outcome. Lasers Surg Med 2010; 42:613-9. [DOI: 10.1002/lsm.20943] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, Pogue BW, Hasan T. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 2010; 110:2795-838. [PMID: 20353192 PMCID: PMC2896821 DOI: 10.1021/cr900300p] [Citation(s) in RCA: 1692] [Impact Index Per Article: 112.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jonathan P Celli
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang KKH, Cottrell WJ, Mitra S, Oseroff AR, Foster TH. Simulations of measured photobleaching kinetics in human basal cell carcinomas suggest blood flow reductions during ALA-PDT. Lasers Surg Med 2010; 41:686-96. [PMID: 19802891 DOI: 10.1002/lsm.20847] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND OBJECTIVE In a recently completed pilot clinical study at Roswell Park Cancer Institute, patients with superficial basal cell carcinoma (sBCC) received topical application of 20% 5-aminolevulinic acid (ALA) and were irradiated with 633 nm light at 10-150 mW cm(-2). Protoporphyrin IX (PpIX) photobleaching in the lesion and the adjacent perilesion normal margin was monitored by fluorescence spectroscopy. In most cases, the rate of bleaching slowed as treatment progressed, leaving a fraction of the PpIX unbleached despite sustained irradiation. To account for this feature, we hypothesized a decrease in blood flow during ALA-photodynamic therapy (PDT) that reduced the rate of oxygen transported to the tissue and therefore attenuated the photobleaching process. We have performed a detailed analysis of this hypothesis. STUDY DESIGN/MATERIALS AND METHODS We used a comprehensive, previously published mathematical model to simulate the effects of therapy-induced blood flow reduction on the measured PpIX photobleaching. This mathematical model of PDT in vivo incorporates a singlet-oxygen-mediated photobleaching mechanism, dynamic unloading of oxygen from hemoglobin, and provides for blood flow velocity changes. It permits simulation of the in vivo photobleaching of PpIX in this patient population over the full range of irradiances and fluences. RESULTS The results suggest that the physiological equivalent of discrete blood flow reductions is necessary to simulate successfully the features of the bleaching data over the entire treatment fluence regime. Furthermore, the magnitude of the blood flow changes in the normal tissue margin and lesion for a wide range of irradiances is consistent with a nitric-oxide-mediated mechanism of vasoconstriction. CONCLUSION A detailed numerical study using a comprehensive PDT dosimetry model is consistent with the hypothesis that the observed trends in the in vivo PpIX photobleaching data from patients may be explained on the basis of therapy-induced blood flow reductions at specific fluences.
Collapse
Affiliation(s)
- Ken Kang-Hsin Wang
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | | | | | | | | |
Collapse
|
21
|
Kruijt B, van der Ploeg-van den Heuvel A, de Bruijn HS, Sterenborg HJCM, Amelink A, Robinson DJ. Monitoring interstitial m-THPC-PDT in vivo using fluorescence and reflectance spectroscopy. Lasers Surg Med 2010; 41:653-64. [PMID: 19802884 DOI: 10.1002/lsm.20845] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVE In order to understand the mechanisms of photodynamic therapy (PDT) it is important to monitor parameters during illumination that yield information on deposited PDT dose. The aim of this study is to investigate the possibility of monitoring implicit parameters, such as photobleaching, in addition to monitoring explicit parameters (fluence (rate), oxygenation, photosensitizer concentration) directly or indirectly. These parameters are monitored during PDT without interrupting the therapeutic illumination. MATERIALS AND METHODS Rats were injected with 0.3 mg kg(-1) m-THPC. Sixteen hours after administration the abdominal muscle in rats was irradiated for 1,500 seconds using clinically relevant fluence rates of 50, 100, and 250 mW cm(-1) of diffuser length at 652 nm. In addition to the linear diffuser for delivering treatment light, isotropic fiber-optic probes and fiber-optic probes for differential path-length spectroscopy (DPS) were placed on both sides of the muscle to monitor tissue physiological parameters, fluence rate, and fluorescence. RESULTS The m-THPC treatment groups show a decrease in fluence rate throughout PDT of 16%, 19%, and 27% for the 50, 100, and 250 mW cm(-1) groups, respectively. Both during and post-PDT differences in vascular response between treatment groups and animals within the same treatment group are observed. Furthermore we show fluence rate dependent bleaching of m-THPC up to a measured fluence rate of 100 mW cm(-1). CONCLUSION The data presented in this study show the possibility of simultaneously monitoring fluence (rate), fluorescence, hemoglobin oxygen saturation, and blood volume during PDT without interruptions to the therapeutic illumination. Differences in saturation profiles between animals and treatment groups indicate differences in vascular response during illumination. Furthermore, the relationship between fluence rate and m-THPC fluorescence photobleaching is complex in an interstitial environment.
Collapse
Affiliation(s)
- Bastiaan Kruijt
- Center for Optical Diagnostics and Therapy, Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Kruijt B, van der Snoek EM, Sterenborg HJCM, Amelink A, Robinson DJ. A dedicated applicator for light delivery and monitoring of PDT of intra-anal intraepithelial neoplasia. Photodiagnosis Photodyn Ther 2010; 7:3-9. [PMID: 20230986 DOI: 10.1016/j.pdpdt.2010.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 01/24/2010] [Accepted: 01/25/2010] [Indexed: 12/17/2022]
Abstract
The objective of this study was to develop an applicator for delivery of light and monitoring of photodynamic therapy (PDT) in the anal cavity for treatment of anal intraepithelial neoplasia grade III (AIN III), which can progress to invasive anal cancer. Forty-eight hours before treatment, patients participating in the study were injected with 0.03 (n=2) or 0.075 (n=2) mg kg(-1) m-THPC. For light delivery and monitoring of PDT, an applicator based on standard anoscopy equipment was developed which facilitates, in addition to a light treatment fiber, fiber optic probes to monitor blood saturation, blood volume, fluorescence and fluence (rate) at two different locations in situ. Patients were given a light dose of 10-17 J cm(-2) at a fluence rate of 45-50 mW cm(-2) based on in situ measured light treatment parameters. We demonstrate that the applicator does not influence the fluence rate profile of the light treatment fiber. Furthermore this study shows the possibility of monitoring blood saturation, blood volume, fluorescence and fluence (rate) during therapeutic illumination without changing the light treatment protocol.
Collapse
Affiliation(s)
- Bastiaan Kruijt
- Center for Optical Diagnostics and Therapy, Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
23
|
Kanick SC, Robinson DJ, Sterenborg HJCM, Amelink A. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth. Phys Med Biol 2009; 54:6991-7008. [PMID: 19887712 DOI: 10.1088/0031-9155/54/22/016] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Single fiber reflectance spectroscopy is a method to noninvasively quantitate tissue absorption and scattering properties. This study utilizes a Monte Carlo (MC) model to investigate the effect that optical properties have on the propagation of photons that are collected during the single fiber reflectance measurement. MC model estimates of the single fiber photon path length (L(SF)) show excellent agreement with experimental measurements and predictions of a mathematical model over a wide range of optical properties and fiber diameters. Simulation results show that L(SF) is unaffected by changes in anisotropy (g epsilon [0.8, 0.9, 0.95]), but is sensitive to changes in phase function (Henyey-Greenstein versus modified Henyey-Greenstein). A 20% decrease in L(SF) was observed for the modified Henyey-Greenstein compared with the Henyey-Greenstein phase function; an effect that is independent of optical properties and fiber diameter and is approximated with a simple linear offset. The MC model also returns depth-resolved absorption profiles that are used to estimate the mean sampling depth (Z(SF)) of the single fiber reflectance measurement. Simulated data are used to define a novel mathematical expression for Z(SF) that is expressed in terms of optical properties, fiber diameter and L(SF). The model of sampling depth indicates that the single fiber reflectance measurement is dominated by shallow scattering events, even for large fibers; a result that suggests that the utility of single fiber reflectance measurements of tissue in vivo will be in the quantification of the optical properties of superficial tissues.
Collapse
Affiliation(s)
- S C Kanick
- Center for Optical Diagnostics and Therapy, Department of Radiation Oncology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
24
|
Kruijt B, Kascakova S, de Bruijn HS, van der Ploeg-van den Heuvel A, Sterenborg HJCM, Robinson DJ, Amelink A. In vivo quantification of chromophore concentration using fluorescence differential path length spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:034022. [PMID: 19566315 DOI: 10.1117/1.3149862] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We present an optical method based on fluorescence spectroscopy for measuring chromophore concentrations in vivo. Fluorescence differential path length spectroscopy (FPDS) determines chromophore concentration based on the fluorescence intensity corrected for absorption. The concentration of the photosensitizer m-THPC (Foscan) was studied in vivo in normal rat liver, which is highly vascularized and therefore highly absorbing. Concentration estimates of m-THPC measured by FDPS on the liver are compared with chemical extraction. Twenty-five rats were injected with 0.3 mg kg m-THPC. In vivo optical concentration measurements were performed on tissue 3, 24, 48, and 96 h after m-THPC administration to yield a 10-fold variation in tissue concentration. After the optical measurements, the liver was harvested for chemical extraction. FDPS showed good correlation with chemical extraction. FDPS also showed a correlation between m-THPC fluorescence and blood volume fraction at the two shortest drug-light intervals. This suggests different compartmental localization of m-THPC for different drug-light intervals that can be resolved using fluorescence spectroscopy. Differences in measured m-THPC concentration between FDPS and chemical extraction are related to the interrogation volume of each technique; approximately 0.2 mm(3) and approximately 10(2) mm(3), respectively. This indicates intra-animal variation in m-THPC distribution in the liver on the scale of the FDPS sampling volume.
Collapse
Affiliation(s)
- Bastiaan Kruijt
- Centre for Optical Diagnostics and Therapy, Department of Radiation Oncology, Erasmus MC Room Ee1675, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
25
|
Kanick SC, Sterenborg HJCM, Amelink A. Empirical model of the photon path length for a single fiber reflectance spectroscopy device. OPTICS EXPRESS 2009; 17:860-71. [PMID: 19158901 DOI: 10.1364/oe.17.000860] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A reflectance spectroscopic device that utilizes a single fiber for both light delivery and collection has advantages over classical multi-fiber probes. This study presents a novel empirical relationship between the single fiber path length and the combined effect of both the absorption coefficient, mua (range: 0.1-6 mm-1), and the reduced scattering coefficient, micro's (range: 0.3 - 10 mm-1), for different anisotropy values (0.75 and 0.92), and is applicable to probes containing a wide range of fiber diameters (range: 200-2000 microm). The results indicate that the model is capable of accurately predicting the single fiber path length over a wide range (r = 0.995; range: 180-3940 microm) and predictions do not show bias as a function of either microa or micro's .
Collapse
Affiliation(s)
- S C Kanick
- Center for Optical Diagnostics and Therapy, Department of Radiation Oncology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | |
Collapse
|
26
|
Kanick SC, Sterenborg HJCM, Amelink A. Empirical model description of photon path length for differential path length spectroscopy: combined effect of scattering and absorption. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:064042. [PMID: 19123688 DOI: 10.1117/1.3050424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Differential path length spectroscopy (DPS) is a method of reflectance spectroscopy that utilizes a specialized fiber geometry to make the photon path length (tau) insensitive to variations in tissue optical properties over a wide range of absorption (mu(a)) and total scattering (mu(s)) coefficients, which are common within the ultraviolet/visible (UV/VIS) wavelength region. This study extends the description of tau to larger mu(a) and smaller mu(s) values, optical properties that are representative of the near-infrared region (NIR), a region where the DPS path length may be dependent on both coefficients. This study presents a novel empirical relationship between tau and the combined effect of both mu(a) (range: 0.1-12 mm(-1)) and mu(s) (range: 1.5-42 mm(-1)), anisotropy of 0.8, and is applicable to DPS probes containing a wide range of fiber diameters (range: 100-1000 microm). The results indicate that the simple empirical formula, including only one fitted parameter, is capable of accurately predicting tau over a wide range (r=0.985; range: 80-940 microm) and predictions are not biased versus mu(a) or mu(s). This novel relationship is applicable to analysis of DPS measurements of tissue in both the UV/VIS and NIR wavelength regions and may provide information about the wavelength-specific tissue volume optically sampled during measurement.
Collapse
Affiliation(s)
- Stephen C Kanick
- Erasmus Medical Center, Department of Radiation Oncology, Center for Optical Diagnostics and Therapy, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | |
Collapse
|
27
|
de Bruijn HS, Meijers C, van der Ploeg-van den Heuvel A, Sterenborg HJCM, Robinson DJ. Microscopic localisation of protoporphyrin IX in normal mouse skin after topical application of 5-aminolevulinic acid or methyl 5-aminolevulinate. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2008; 92:91-7. [PMID: 18571933 DOI: 10.1016/j.jphotobiol.2008.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 04/25/2008] [Accepted: 05/01/2008] [Indexed: 11/27/2022]
Abstract
Light fractionation does not enhance the response to photodynamic therapy (PDT) after topical methyl-aminolevulinate (MAL) application, whereas it is after topical 5-aminolevulinic acid (ALA). The differences in biophysical and biochemical characteristics between MAL and ALA may result in differences in localisation that cause the differences in response to PDT. We therefore investigated the spatial distribution of protoporphyrin IX (PpIX) fluorescence in normal mouse skin using fluorescence microscopy and correlated that with the PDT response histologically observed at 2.5, 24 and 48 h after PDT. As expected high fluorescence intensities were observed in the epidermis and pilosebaceous units and no fluorescence in the cutaneous musculature after both MAL and ALA application. The dermis showed localised fluorescence that corresponds to the cytoplasma of dermal cells like fibroblast and mast cells. Spectral analysis showed a typical PpIX fluorescence spectrum confirming that it is PpIX fluorescence. There was no clear difference in the depth and spatial distribution of PpIX fluorescence between the two precursors in these normal mouse skin samples. This result combined with the conclusion of Moan et al. that ALA but not MAL is systemically distributed after topical application on mouse skin [Moan et al., Pharmacology of protoporphyrin IX in nude mice after application of ALA and ALA esters, Int. J. Cancer 103 (2003) 132-135] suggests that endothelial cells are involved in increased response of tissues to ALA-PDT using light fractionation. Histological analysis 2.5h after PDT showed more edema formation after ALA-PDT compared to MAL-PDT that was not accompanied by a difference in the inflammatory response. This suggests that endothelial cells respond differently to ALA and MAL-PDT. Further investigation is needed to determine the role of endothelial cells in ALA-PDT and the underlying mechanism behind the increased effectiveness of light fractionation using a dark interval of 2h found after ALA but not after MAL-PDT.
Collapse
Affiliation(s)
- Henriëtte S de Bruijn
- Center for Optical Diagnostics and Therapy, Department of Radiation Oncology, Erasmus MC, Room Wk-319, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|