1
|
Linsaenkart P, Ruksiriwanich W, Muangsanguan A, Sommano SR, Sringarm K, Arjin C, Rachtanapun P, Jantanasakulwong K, Castagnini JM, Chutoprapat R, Boonpisuttinant K. Antioxidant, Anti-Inflammation, and Melanogenesis Inhibition of Sang 5 CMU Rice ( Oryza sativa) Byproduct for Cosmetic Applications. PLANTS (BASEL, SWITZERLAND) 2024; 13:1795. [PMID: 38999635 PMCID: PMC11244455 DOI: 10.3390/plants13131795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/15/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Prolonged exposure to environmental oxidative stress can result in visible signs of skin aging such as wrinkles, hyperpigmentation, and thinning of the skin. Oryza sativa variety Sang 5 CMU, an inbred rice cultivar from northern Thailand, contains phenolic and flavonoid compounds in its bran and husk portions that are known for their natural antioxidant properties. In this study, we evaluated the cosmetic properties of crude extracts from rice bran and husk of Sang 5 CMU, focusing on antioxidant, anti-inflammatory, anti-melanogenesis, and collagen-regulating properties. Our findings suggest that both extracts possess antioxidant potential against DPPH, ABTS radicals, and metal ions. Additionally, they could downregulate TBARS levels from 125% to 100% of the control, approximately, while increasing the expression of genes related to the NRF2-mediated antioxidant pathway, such as NRF2 and HO-1, in H2O2-induced human fibroblast cells. Notably, rice bran and husk extracts could increase mRNA levels of HO-1 more greatly than the standard L-ascorbic acid, by about 1.29 and 1.07 times, respectively. Furthermore, the crude extracts exhibited anti-inflammatory activity by suppressing nitric oxide production in both mouse macrophage and human fibroblast cells. Specifically, the bran and husk extracts inhibited the gene expression of the inflammatory cytokine IL-6 in LPS-induced inflammation in fibroblasts. Moreover, both extracts demonstrated potential for inhibiting melanin production and intracellular tyrosinase activity in human melanoma cells by decreasing the expression of the transcription factor MITF and the pigmentary genes TYR, TRP-1, and DCT. They also exhibit collagen-stimulating effects by reducing MMP-2 expression in H2O2-induced fibroblasts from 135% to 80% of the control, approximately, and increasing the gene associated with type I collagen production, COL1A1. Overall, the rice bran and husk extracts of Sang 5 CMU showed promise as effective natural ingredients for cosmetic applications.
Collapse
Affiliation(s)
- Pichchapa Linsaenkart
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Valorization and Bio-Green Transformation for Translation Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Anurak Muangsanguan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sarana Rose Sommano
- Cluster of Valorization and Bio-Green Transformation for Translation Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Korawan Sringarm
- Cluster of Valorization and Bio-Green Transformation for Translation Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Juan M Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Romchat Chutoprapat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand
| | - Korawinwich Boonpisuttinant
- Innovative Natural Products from Thai Wisdoms (INPTW), Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Pathum Thani 12130, Thailand
| |
Collapse
|
2
|
Chen X, Su J, Wang R, Hao R, Fu C, Chen J, Li J, Wang X. Structural Optimization of Cannabidiol as Multifunctional Cosmetic Raw Materials. Antioxidants (Basel) 2023; 12:antiox12020314. [PMID: 36829873 PMCID: PMC9952480 DOI: 10.3390/antiox12020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Cannabidiol (CBD), derived from the plant cannabis, can be used in the cosmetics industry for its antioxidant, anti-inflammatory, anti-wrinkle and whitening effects. However, CBD is purified from the hemp plant extract, its source is very limited and under strict control. So in this study, computational and experimental methods were combined to search for novel CBD substitutes with high biology potencies. The action mode between CBD and target protein cannabidiol receptor 1 was studied to find the key skeleton, which was used to virtually screen a natural products database to search for compounds with 70% similarity. The hit compounds with high docking scores were selected for the ABTS and DPPH free radical scavenging experiments for antioxidant evaluation. The effects on the expressions of nitric oxide (NO), interleukin-6 (IL-6), COX-2 and iNOS in RAW264.7 cell line were detected to demonstrate their anti-inflammatory abilities. The effect of anti-wrinkle ability were evaluated by detecting the extracellular matrix, such as collagen, elastin, fibronectin and reactive oxygen species (ROS) in HFF-1. The effects on melanin production and tyrosinase activity in Bb16F10 were also detected. As a result, two compounds were found to be superior to cannabidiol, in terms of antioxidant, anti-wrinkle and whitening efficacy with a lower cytotoxicity.
Collapse
|
3
|
Structural mechanism of calcium-mediated hormone recognition and Gβ interaction by the human melanocortin-1 receptor. Cell Res 2021; 31:1061-1071. [PMID: 34453129 PMCID: PMC8486761 DOI: 10.1038/s41422-021-00557-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Melanocortins are peptide hormones critical for the regulation of stress response, energy homeostasis, inflammation, and skin pigmentation. Their functions are mediated by five G protein-coupled receptors (MC1R-MC5R), predominately through the stimulatory G protein (Gs). MC1R, the founding member of melanocortin receptors, is mainly expressed in melanocytes and is involved in melanogenesis. Dysfunction of MC1R is associated with the development of melanoma and skin cancer. Here we present three cryo-electron microscopy structures of the MC1R-Gs complexes bound to endogenous hormone α-MSH, a marketed drug afamelanotide, and a synthetic agonist SHU9119. These structures reveal the orthosteric binding pocket for the conserved HFRW motif among melanocortins and the crucial role of calcium ion in ligand binding. They also demonstrate the basis of differential activities among different ligands. In addition, unexpected interactions between MC1R and the Gβ subunit were discovered from these structures. Together, our results elucidate a conserved mechanism of calcium-mediated ligand recognition, a specific mode of G protein coupling, and a universal activation pathway of melanocortin receptors.
Collapse
|
4
|
Mahendra CK, Abidin SAZ, Htar TT, Chuah LH, Khan SU, Ming LC, Tang SY, Pusparajah P, Goh BH. Counteracting the Ramifications of UVB Irradiation and Photoaging with Swietenia macrophylla King Seed. Molecules 2021; 26:molecules26072000. [PMID: 33916053 PMCID: PMC8037697 DOI: 10.3390/molecules26072000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
In this day and age, the expectation of cosmetic products to effectively slow down skin photoaging is constantly increasing. However, the detrimental effects of UVB on the skin are not easy to tackle as UVB dysregulates a wide range of molecular changes on the cellular level. In our research, irradiated keratinocyte cells not only experienced a compromise in their redox system, but processes from RNA translation to protein synthesis and folding were also affected. Aside from this, proteins involved in various other processes like DNA repair and maintenance, glycolysis, cell growth, proliferation, and migration were affected while the cells approached imminent cell death. Additionally, the collagen degradation pathway was also activated by UVB irradiation through the upregulation of inflammatory and collagen degrading markers. Nevertheless, with the treatment of Swietenia macrophylla (S. macrophylla) seed extract and fractions, the dysregulation of many genes and proteins by UVB was reversed. The reversal effects were particularly promising with the S. macrophylla hexane fraction (SMHF) and S. macrophylla ethyl acetate fraction (SMEAF). SMHF was able to oppose the detrimental effects of UVB in several different processes such as the redox system, DNA repair and maintenance, RNA transcription to translation, protein maintenance and synthesis, cell growth, migration and proliferation, and cell glycolysis, while SMEAF successfully suppressed markers related to skin inflammation, collagen degradation, and cell apoptosis. Thus, in summary, our research not only provided a deeper insight into the molecular changes within irradiated keratinocytes, but also serves as a model platform for future cosmetic research to build upon. Subsequently, both SMHF and SMEAF also displayed potential photoprotective properties that warrant further fractionation and in vivo clinical trials to investigate and obtain potential novel bioactive compounds against photoaging.
Collapse
Affiliation(s)
- Camille Keisha Mahendra
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.); (S.U.K.)
| | - Syafiq Asnawi Zainal Abidin
- Liquid Chromatography Mass Spectrometry (LCMS) Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia;
| | - Thet Thet Htar
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.); (S.U.K.)
| | - Lay-Hong Chuah
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.); (S.U.K.)
| | - Shafi Ullah Khan
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.); (S.U.K.)
- Department of Pharmacy, Abasyn University, Peshawar 25000, Pakistan
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei;
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- Advanced Engineering Platform, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Tropical Medicine and Biology Platform, School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Priyia Pusparajah
- Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (P.P.); (B.H.G.)
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.); (S.U.K.)
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (P.P.); (B.H.G.)
| |
Collapse
|
5
|
Neumann Andersen G, Andersen M, Nagaeva O, Wikberg JES, Mincheva-Nilsson L. Dermal Melanocortin Receptor Rebound in Diffuse Systemic Sclerosis after Anti-TGFβ1 Antibody Therapy. Scand J Immunol 2012; 76:478-82. [DOI: 10.1111/j.1365-3083.2012.02757.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Henri P, Beaumel S, Guezennec A, Poumès C, Stoebner PE, Stasia MJ, Guesnet J, Martinez J, Meunier L. MC1R expression in HaCaT keratinocytes inhibits UVA-induced ROS production via NADPH oxidase- and cAMP-dependent mechanisms. J Cell Physiol 2012; 227:2578-85. [PMID: 21898403 DOI: 10.1002/jcp.22996] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ultraviolet A (UVA) radiations are responsible for deleterious effects, mainly due to reactive oxygen species (ROS) production. Alpha-melanocyte stimulating hormone (α-MSH) binds to melanocortin-1 receptor (MC1R) in melanocytes to stimulate pigmentation and modulate cutaneous inflammatory responses. MC1R may be induced in keratinocytes after UV exposure. To investigate the effect of MC1R signaling on UVA-induced ROS (UVA-ROS) production, we generated HaCaT cells that stably express human MC1R (HaCaT-MC1R) or the Arg151Cys (R(151)C) non-functional variant (HaCaT-R(151)C). We then assessed ROS production immediately after UVA exposure and found that: (1) UVA-ROS production was strongly reduced in HaCaT-MC1R but not in HaCaT-R(151)C cells compared to parental HaCaT cells; (2) this inhibitory effect was further amplified by incubation of HaCaT-MC1R cells with α-MSH before UVA exposure; (3) protein kinase A (PKA)-dependent NoxA1 phosphorylation was increased in HaCaT-MC1R compared to HaCaT and HaCaT-R(151)C cells. Inhibition of PKA in HaCaT-MC1R cells resulted in a marked increase of ROS production after UVA irradiation; (4) the ability of HaCaT-MC1R cells to produce UVA-ROS was restored by inhibiting epidermal growth factor receptor (EGFR) or extracellular signal-regulated kinases (ERK) activity before UVA exposure. Our findings suggest that constitutive activity of MC1R in keratinocytes may reduce UVA-induced oxidative stress via EGFR and cAMP-dependent mechanisms.
Collapse
Affiliation(s)
- Pauline Henri
- Institute of Biomolecules Max Mousseron (IBMM), University Montpellier I and II, UMR CNRS 5247, Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gerlo S, Kooijman R, Beck IM, Kolmus K, Spooren A, Haegeman G. Cyclic AMP: a selective modulator of NF-κB action. Cell Mol Life Sci 2011; 68:3823-41. [PMID: 21744067 PMCID: PMC11114830 DOI: 10.1007/s00018-011-0757-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/10/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
It has been known for several decades that cyclic AMP (cAMP), a prototypical second messenger, transducing the action of a variety of G-protein-coupled receptor ligands, has potent immunosuppressive and anti-inflammatory actions. These actions have been attributed in part to the ability of cAMP-induced signals to interfere with the function of the proinflammatory transcription factor Nuclear Factor-kappaB (NF-κB). NF-κB plays a crucial role in switching on the gene expression of a plethora of inflammatory and immune mediators, and as such is one of the master regulators of the immune response and a key target for anti-inflammatory drug design. A number of fundamental molecular mechanisms, contributing to the overall inhibitory actions of cAMP on NF-κB function, are well established. Paradoxically, recent reports indicate that cAMP, via its main effector, the protein kinase A (PKA), also promotes NF-κB activity. Indeed, cAMP actions appear to be highly cell type- and context-dependent. Importantly, several novel players in the cAMP/NF-κB connection, which selectively direct cAMP action, have been recently identified. These findings not only open up exciting new research avenues but also reveal novel opportunities for the design of more selective, NF-κB-targeting, anti-inflammatory drugs.
Collapse
Affiliation(s)
- Sarah Gerlo
- VIB Department of Medical Protein Research, Ghent University (UGent), Albert Baertsoenkaai, Belgium.
| | | | | | | | | | | |
Collapse
|
8
|
Holbrook TC, McFarlane D, Schott HC. Neuroendocrine and non-neuroendocrine markers of inflammation associated with performance in endurance horses. Equine Vet J 2011:123-8. [PMID: 21058993 DOI: 10.1111/j.2042-3306.2010.00256.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
REASONS FOR PERFORMING STUDY The inflammatory and neuroendocrine response to endurance exercise and relationship of these parameters to performance is not well documented in horses. HYPOTHESES OR OBJECTIVES: Evidence of systemic inflammation is associated with poor performance in horses competing in endurance events. METHODS Blood was collected prior to and at the finish or elimination point from horses competing in both the 80 and 160 km American Endurance Ride National Championship competitions in 2006. Immunoreactive alpha-melanocyte stimulating hormone (α-MSH) and tumour necrosis factor-alpha (TNF-α) were quantified utilising radioimmunoassay (RIA) and enzyme-linked immunosorbent assay (ELISA) techniques, respectively. The concentration of total thiobarbituric acid reactive substances (TBARS) was measured fluorometrically. RESULTS Thirty horses were included in the study. Endurance exercise was associated with a significant increase in TBARS in the 80 km group but not the 160 km group. TNF-α and α-MSH did not significantly change as a result of exercise in either distance group. Precompetition TBARS was significantly higher in horses that failed to finish the 80 km race, as well as when distances were combined. In addition, precompetition α-MSH was significantly lower in nonfinishers in the 160 km group. Furthermore, competition speed was positively correlated with precompetition α-MSH in the 80 km and negatively correlated with precompetition TNF-α when distances were combined. CONCLUSIONS Our results suggest that basal oxidative stress markers, circulating cytokines and anti-inflammatory neuroendocrine hormones appear to correlate with endurance performance in horses. POTENTIAL RELEVANCE Basal oxidative stress markers, circulating cytokines and anti-inflammatory neuroendocrine hormones may be predictive of athletic performance in endurance horses. Future studies evaluating the effect of training on these markers in endurance horses are warranted.
Collapse
Affiliation(s)
- T C Holbrook
- Department of Veterinary Clinical Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, USA.
| | | | | |
Collapse
|
9
|
Mogha A, Fautrel A, Mouchet N, Guo N, Corre S, Adamski H, Watier E, Misery L, Galibert MD. Merkel cell polyomavirus small T antigen mRNA level is increased following in vivo UV-radiation. PLoS One 2010; 5:e11423. [PMID: 20625394 PMCID: PMC2896396 DOI: 10.1371/journal.pone.0011423] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 06/01/2010] [Indexed: 12/14/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare but aggressive skin cancer involving Merkel cells. Recently, a new human polyomavirus was implicated in MCC, being present in 80% of the samples analyzed. In virus-positive MCC, the Merkel cell polyomavirus (MCPyV) is clonally integrated into the patients DNA, and carries mutations in its large T antigen, leading to a truncated protein. In non-symptomatic tissue MCPyV can reside at very low levels. MCC is also associated with older age, immunosuppression and sun exposure. However, the link with solar exposure remains unknown, as the precise mechanism and steps involved between time of infection by MCPyV and the development of MCC. We thus investigated the potential impact of solar simulated radiation (SSR) on MCPyV transcriptional activity. We screened skin samples of 20 healthy patients enrolled in a photodermatological protocol based on in vivo-administered 2 and 4 J/cm(2) SSR. Two patients were infected with two new variants of MCPyV, present in their episomal form and RT-QPCR analyses on SSR-irradiated skin samples showed a specific and unique dose-dependent increase of MCPyV small t antigen transcript. A luciferase based in vitro assay confirmed that small t promoter is indeed UV-inducible. These findings demonstrate that solar radiation has an impact on MCPyV mRNA levels that may explain the association between MCC and solar exposure.
Collapse
Affiliation(s)
- Ariane Mogha
- Faculté de Médecine, CNRS UMR 6061 Institut de Génétique et Développement de Rennes, Equipe RTO, Rennes, France
- Université de Rennes 1, IFR140 GFAS, Rennes, France
| | - Alain Fautrel
- Faculté de Médecine, Université de Rennes 1, Plateforme Histopathologie – BioGenouest IFR140 GFAS, Rennes, France
| | - Nicolas Mouchet
- Faculté de Médecine, CNRS UMR 6061 Institut de Génétique et Développement de Rennes, Equipe RTO, Rennes, France
- Université de Rennes 1, IFR140 GFAS, Rennes, France
- PROCLAIM, Saint Grégoire, France
| | - Na Guo
- Faculté de Médecine, CNRS UMR 6061 Institut de Génétique et Développement de Rennes, Equipe RTO, Rennes, France
- Université de Rennes 1, IFR140 GFAS, Rennes, France
| | - Sébastien Corre
- Faculté de Médecine, CNRS UMR 6061 Institut de Génétique et Développement de Rennes, Equipe RTO, Rennes, France
- Université de Rennes 1, IFR140 GFAS, Rennes, France
| | - Henri Adamski
- CHU Pontchaillou, Service de Dermatologie, Rennes, France
| | - Eric Watier
- Hopital Sud, Service de Chirurgie Plastique, Rennes, France
| | - Laurent Misery
- EA 4326 Laboratoire de Neurobiologie Cutanée, Université de Brest, Brest, France
| | - Marie-Dominique Galibert
- Faculté de Médecine, CNRS UMR 6061 Institut de Génétique et Développement de Rennes, Equipe RTO, Rennes, France
- Université de Rennes 1, IFR140 GFAS, Rennes, France
- Laboratoire de Génomique Médicale, CHU Pontchaillou, Plateforme Transcriptomique GenOuest, Rennes, France
- * E-mail:
| |
Collapse
|