1
|
Zhong YR, Yu TY, Chu LK. Roles of functional lipids in bacteriorhodopsin photocycle in various delipidated purple membranes. Biophys J 2022; 121:1789-1798. [PMID: 35440419 DOI: 10.1016/j.bpj.2022.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022] Open
Abstract
Purple membrane (PM) is composed of several native lipids and the transmembrane protein bacteriorhodopsin (bR) in trimeric configuration. The delipidated PM (dPM) samples can be prepared by treating PM with CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) to partially remove native lipids while maintaining bR in the trimeric configuration. By correlating the photocycle kinetics of bR and the exact lipid compositions of the various dPM samples, one can reveal the roles of native PM lipids. However, it is challenging to compare the lipid compositions of the various dPM samples quantitatively. Here, we utilized the absorbances of extracted retinal at 382 nm to normalize the concentrations of the remaining lipids in each dPM sample, which were then quantified by mass spectrometry, allowing us to compare the lipid compositions of different samples in a quantitative manner. The corresponding photocycle kinetics of bR were probed by transient difference absorption spectroscopy. We found that the removal rate of the polar lipids follows the order of BPG ≈ GlyC < S-TGD-1 ≈ PG < PGP-Me ≈ PGS. Since BPG and GlyC have more nonpolar phytanyl groups than other lipids at the hydrophobic tail, causing a higher affinity with the hydrophobic surface of bR, the corresponding removal rates are slowest. In addition, as the reaction period of PM and CHAPS increases, the residual amounts of PGS and PGP-Me significantly decrease, in concomitance with the decelerated rates of the recovery of ground state and the decay of intermediate M, and the reduced transient population of intermediate O. PGS and PGP-Me are the lipids with the highest correlation to the photocycle activity among the six polar lipids of PM. From a practical viewpoint, combining optical spectroscopy and mass spectrometry appears a promising approach to simultaneously track the functions and the concomitant active components in a given biological system.
Collapse
Affiliation(s)
- Yi-Rui Zhong
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Li-Kang Chu
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan.
| |
Collapse
|
2
|
Huang HY, Syue ML, Chen IC, Yu TY, Chu LK. Influence of Lipid Compositions in the Events of Retinal Schiff Base of Bacteriorhodopsin Embedded in Covalently Circularized Nanodiscs: Thermal Isomerization, Photoisomerization, and Deprotonation. J Phys Chem B 2019; 123:9123-9133. [PMID: 31584816 DOI: 10.1021/acs.jpcb.9b07788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Covalently circularized nanodiscs using circular membrane scaffold protein (MSP) serve as a suitable membrane mimetic for transmembrane proteins by providing stability and tunability in lipid compositions, providing controllable biological environments for targeted proteins. In this work, monomeric bacteriorhodopsin (mbR) was embedded in lipid nanodiscs of different lipid compositions using negatively charged lipid dioleoyl phosphatidylglycerol (DOPG) and the zwitterion lipid dioleoyl phosphatidylcholine (DOPC), and the events associated with the retinal Schiff base, including the thermal isomerization during the dark adaptation, photoisomerization, and deprotonation, were investigated. The retinal thermal isomerization from all-trans, 15-anti to the 13-cis, 15-syn configuration during the dark adaptation was accelerated in the DOPG bilayer, whereas the processes in the DOPC bilayer and in Triton X-100 micelles were similar. This observation indicated that the negatively charged lipid reduced the barrier for retinal thermal isomerization at C13═C14-C15═N in the ground electronic state. Furthermore, the broader absorption contour of mbR in the DOPC nanodisc probably indicated various retinal isomers in the light-adapted state, consistent with the observed nontwo-state dark adaptation kinetics. Moreover, the kinetics of the photoisomerization of the retinal was slightly decelerated upon increasing the content of DOPC. However, the cascading deprotonation of the protonated Schiff base is not dependent on the types of the surrounding lipids in the nanodiscs. In summary, our research deepens the understanding of the coupling between lipid membrane and the photochemistry of bR retinal Schiff base. Combined with the results of our previous works (Lee, T.-Y.; Yeh, V.; Chuang, J.; Chan, J. C. C.; Chu, L.-K.; Yu, T.-Y. Biophys. J. 2015, 109, 1899-1906; Kao, Y.-M.; Cheng, C.-H.; Syue, M.-L.; Huang, H.-Y.; Chen, I-C.; Yu, T.-Y.; Chu, L.-K. J. Phys. Chem. B 2019, 123, 2032-2039), these outcomes extend our understanding of the control of photochemistry and biophysical events for other photosynthetic proteins via altering the lipid environments.
Collapse
Affiliation(s)
- Hsin-Yu Huang
- Department of Chemistry , National Tsing Hua University , 101, Sec. 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| | - Ming-Lun Syue
- Department of Chemistry , National Tsing Hua University , 101, Sec. 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| | - I-Chia Chen
- Department of Chemistry , National Tsing Hua University , 101, Sec. 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica , 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan.,International Graduate Program of Molecular Science and Technology , National Taiwan University , Taipei , Taiwan
| | - Li-Kang Chu
- Department of Chemistry , National Tsing Hua University , 101, Sec. 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| |
Collapse
|
3
|
Idso MN, Baxter NR, Narayanan S, Chang E, Fisher J, Chmelka BF, Han S. Proteorhodopsin Function Is Primarily Mediated by Oligomerization in Different Micellar Surfactant Solutions. J Phys Chem B 2019; 123:4180-4192. [DOI: 10.1021/acs.jpcb.9b00922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Kao YM, Cheng CH, Syue ML, Huang HY, Chen IC, Yu TY, Chu LK. Photochemistry of Bacteriorhodopsin with Various Oligomeric Statuses in Controlled Membrane Mimicking Environments: A Spectroscopic Study from Femtoseconds to Milliseconds. J Phys Chem B 2019; 123:2032-2039. [DOI: 10.1021/acs.jpcb.9b01224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu-Min Kao
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Chung-Hao Cheng
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ming-Lun Syue
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Hsin-Yu Huang
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - I-Chia Chen
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Li-Kang Chu
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| |
Collapse
|
5
|
Structurally modified bacteriorhodopsin as an efficient bio-sensitizer for solar cell applications. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 48:61-71. [DOI: 10.1007/s00249-018-1331-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 07/19/2018] [Accepted: 08/27/2018] [Indexed: 01/12/2023]
|
6
|
Effects of Mutations of Lys41 and Asp102 of Bacteriorhodopsin. Biosci Biotechnol Biochem 2014; 75:1364-70. [DOI: 10.1271/bbb.110180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Ng KC, Chu LK. Effects of Surfactants on the Purple Membrane and Bacteriorhodopsin: Solubilization or Aggregation? J Phys Chem B 2013; 117:6241-9. [DOI: 10.1021/jp401254j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ka Chon Ng
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013,
Taiwan
| | - Li-Kang Chu
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013,
Taiwan
| |
Collapse
|
8
|
Study of the reactive excited-state dynamics of delipidated bacteriorhodopsin upon surfactant treatments. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Ranaghan MJ, Schwall CT, Alder NN, Birge RR. Green proteorhodopsin reconstituted into nanoscale phospholipid bilayers (nanodiscs) as photoactive monomers. J Am Chem Soc 2011; 133:18318-27. [PMID: 21951206 PMCID: PMC3218432 DOI: 10.1021/ja2070957] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over 4000 putative proteorhodopsins (PRs) have been identified throughout the oceans and seas of the Earth. The first of these eubacterial rhodopsins was discovered in 2000 and has expanded the family of microbial proton pumps to all three domains of life. With photophysical properties similar to those of bacteriorhodopsin, an archaeal proton pump, PRs are also generating interest for their potential use in various photonic applications. We perform here the first reconstitution of the minimal photoactive PR structure into nanoscale phospholipid bilayers (nanodiscs) to better understand how protein-protein and protein-lipid interactions influence the photophysical properties of PR. Spectral (steady-state and time-resolved UV-visible spectroscopy) and physical (size-exclusion chromatography and electron microscopy) characterization of these complexes confirms the preparation of a photoactive PR monomer within nanodiscs. Specifically, when embedded within a nanodisc, monomeric PR exhibits a titratable pK(a) (6.5-7.1) and photocycle lifetime (∼100-200 ms) that are comparable to the detergent-solubilized protein. These ndPRs also produce a photoactive blue-shifted absorbance, centered at 377 or 416 nm, that indicates that protein-protein interactions from a PR oligomer are required for a fast photocycle. Moreover, we demonstrate how these model membrane systems allow modulation of the PR photocycle by variation of the discoidal diameter (i.e., 10 or 12 nm), bilayer thickness (i.e., 23 or 26.5 Å), and degree of saturation of the lipid acyl chain. Nanodiscs also offer a highly stable environment of relevance to potential device applications.
Collapse
Affiliation(s)
- Matthew J. Ranaghan
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269 (USA)
| | - Christine T. Schwall
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269 (USA)
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269 (USA)
| | - Robert R. Birge
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269 (USA)
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269 (USA)
| |
Collapse
|