1
|
Cammarata A, Marino J, Atia MN, Durán H, Glisoni RJ. Novel doxycycline gold nanoparticles via green synthesis using PEO-PPO block copolymers for enhanced radiosensitization of melanoma. Biomater Sci 2025. [PMID: 40261332 DOI: 10.1039/d5bm00253b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
This study focuses on a green and sustainable nanoplatform for the delivery of therapeutic agents, based on gold nanoparticles (AuNPs) synthesized using PEO-PPO block copolymers (F127, F68, P85, and their F127:P85 combination) as dual-function reducing and stabilizing agents. This eco-friendly approach eliminates the need for toxic chemical reductants, adheres to green chemistry principles, and yields highly stable, biocompatible nanosystems. The resulting polymer-stabilized AuNPs were associated with doxycycline (DOXY), a mitochondrial biogenesis inhibitor with radiosensitizing properties, and characterized using UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), and X-ray fluorescence (XRF). The nanoparticles exhibited high colloidal stability, with tunable hydrodynamic diameters modulated by the copolymer composition. In vitro studies on A-375 and IIB-MEL-J melanoma cell lines revealed that DOXY-associated AuNPs, combined with gamma radiation (2 Gy, 137Cs), significantly enhanced radiosensitivity, reducing both cell viability and clonogenic survival. The physicochemical features of the nanosystems, particularly particle size and surface composition, influenced cellular uptake and therapeutic response. Notably, AuNPs stabilized with F127:P85 copolymer combination (∼19 nm) outperformed those with F127 (∼30 nm), despite displaying slightly higher polydispersity. Compared to Turkevich AuNPs, our copolymer-coated nanosystems demonstrated superior colloidal stability and cellular internalization. These findings highlight the potential of green-synthesized AuNPs as multifunctional, biocompatible platforms for therapeutic delivery, supporting the development of effective and environmentally responsible multimodal cancer therapies. Moreover, the simplicity, scalability, and cost-effectiveness of the synthesis process support its potential for future translational applications.
Collapse
Affiliation(s)
- Agostina Cammarata
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Biotecnología, Junín 956, C1113AAD Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina.
| | - Julieta Marino
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Mariel N Atia
- Comisión Nacional de Energía Atómica (CNEA), Gerencia de Investigación y Aplicaciones, Subgerencia de Tecnología y Aplicaciones de Aceleradores, San Martín, Buenos Aires, Argentina
- Instituto de Nanociencia y Nanotecnología (INN-CNEA-CONICET), San Martín, Buenos Aires, Argentina
| | - Hebe Durán
- Comisión Nacional de Energía Atómica (CNEA), Gerencia de Investigación y Aplicaciones, Subgerencia de Tecnología y Aplicaciones de Aceleradores, San Martín, Buenos Aires, Argentina
- Instituto de Nanociencia y Nanotecnología (INN-CNEA-CONICET), San Martín, Buenos Aires, Argentina
- Universidad Nacional de San Martín, Escuela de Ciencia y Tecnología, San Martín, Buenos Aires, Argentina
| | - Romina J Glisoni
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Biotecnología, Junín 956, C1113AAD Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Kara M, Kocaaga N, Akgul B, Abamor ES, Erdogmus A, Topuzogullari M, Acar S. Micelles of poly[oligo(ethylene glycol) methacrylate] as delivery vehicles for zinc phthalocyanine photosensitizers. NANOTECHNOLOGY 2024; 35:475602. [PMID: 39173645 DOI: 10.1088/1361-6528/ad726b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Drug-loaded polymeric micelles have proven to be highly effective carrier systems for the efficient delivery of hydrophobic photosensitizers (PSs) in photodynamic therapy (PDT). This study introduces the micellization potential of poly(oligoethylene glycol methyl ether methacrylate) (pOEGMA) as a novel approach, utilizing the hydrophobic methacrylate segments of pOEGMA to interact with highly hydrophobic zinc phthalocyanine (ZnPc), thereby forming a potential micellar drug carrier system. The ZnPc molecule was synthesized from phthalonitrile derivatives and its fluorescence, photodegradation, and singlet oxygen quantum yields were determined in various solvents. In solvents such as tetrahydrofuran, dimethyl sulfoxide, and N,N-dimethylformamide, the ZnPc compound exhibited the requisite photophysical and photochemical properties for PDT applications. The pOEGMA homopolymer was synthesized via reversible addition-fragmentation chain-transfer polymerization, while ZnPc-loaded pOEGMA micelles were prepared using the nanoprecipitation method. Characterization of the pOEGMA, ZnPc, and micelles was conducted using FTIR,1H-NMR, dynamic light scattering, matrix-assisted laser desorption/ionization time-of-flight mass spectrometries, gel permeation chromatography, and transmission electron microscopy. The critical micelle concentration was determined to be 0.027 mg ml-1using fluorescence spectrometry. The drug loading and encapsulation efficiencies of the ZnPc-loaded micelles were calculated to be 0.67% and 0.47%, respectively. Additionally, the release performance of ZnPc from pOEGMA micelles was monitored over a period of nearly 10 d, while the lyophilized micelles exhibited stability for 3 months. Lastly, the ZnPc-loaded micelles were more biocompatible than ZnPc on L929 cell line. The results suggest that the pOEGMA homopolymer possesses the capability to micellize through its methacrylate segments when interacting with highly hydrophobic molecules, presenting a promising avenue for enhancing the delivery efficiency of hydrophobic PSs in PDT. Moreover, it was also deciphered that obtained formulations were highly biocompatible according to cytotoxicity results and could be safely employed as drug delivery systems in further applications.
Collapse
Affiliation(s)
- Merve Kara
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Nagihan Kocaaga
- Faculty of Arts and Sciences, Department of Chemistry, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Busra Akgul
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Emrah S Abamor
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Ali Erdogmus
- Faculty of Arts and Sciences, Department of Chemistry, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Murat Topuzogullari
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Serap Acar
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| |
Collapse
|
3
|
Zhang Y, Doan BT, Gasser G. Metal-Based Photosensitizers as Inducers of Regulated Cell Death Mechanisms. Chem Rev 2023; 123:10135-10155. [PMID: 37534710 DOI: 10.1021/acs.chemrev.3c00161] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Over the last few decades, various forms of regulated cell death (RCD) have been discovered and were found to improve cancer treatment. Although there are several reviews on RCD induced by photodynamic therapy (PDT), a comprehensive summary covering metal-based photosensitizers (PSs) as RCD inducers has not yet been presented. In this review, we systematically summarize the works on metal-based PSs that induce different types of RCD, including ferroptosis, immunogenic cell death (ICD), and pyroptosis. The characteristics and mechanisms of each RCD are explained. At the end of each section, a summary of the reported commonalities between different metal-based PSs inducing the same RCD is emphasized, and future perspectives on metal-based PSs inducing novel forms of RCD are discussed at the end of the review. Considering the essential roles of metal-based PSs and RCD in cancer therapy, we hope that this review will provide the stage for future advances in metal-based PSs as RCD inducers.
Collapse
Affiliation(s)
- Yiyi Zhang
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, 75005 Paris, France
| | - Bich-Thuy Doan
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory of Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis, 75005 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, 75005 Paris, France
| |
Collapse
|
4
|
Polymeric Nanosystems Applied for Metal-Based Drugs and Photosensitizers Delivery: The State of the Art and Recent Advancements. Pharmaceutics 2022; 14:pharmaceutics14071506. [PMID: 35890401 PMCID: PMC9320085 DOI: 10.3390/pharmaceutics14071506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Nanotechnology-based approaches for targeting the delivery and controlled release of metal-based therapeutic agents have revealed significant potential as tools for enhancing the therapeutic effect of metal-based agents and minimizing their systemic toxicities. In this context, a series of polymer-based nanosized systems designed to physically load or covalently conjugate metal-based therapeutic agents have been remarkably improving their bioavailability and anticancer efficacy. Initially, the polymeric nanocarriers were applied for platinum-based chemotherapeutic agents resulting in some nanoformulations currently in clinical tests and even in medical applications. At present, these nanoassemblies have been slowly expanding for nonplatinum-containing metal-based chemotherapeutic agents. Interestingly, for metal-based photosensitizers (PS) applied in photodynamic therapy (PDT), especially for cancer treatment, strategies employing polymeric nanocarriers have been investigated for almost 30 years. In this review, we address the polymeric nanocarrier-assisted metal-based therapeutics agent delivery systems with a specific focus on non-platinum systems; we explore some biological and physicochemical aspects of the polymer–metallodrug assembly. Finally, we summarize some recent advances in polymeric nanosystems coupled with metal-based compounds that present potential for successful clinical applications as chemotherapeutic or photosensitizing agents. We hope this review can provide a fertile ground for the innovative design of polymeric nanosystems for targeting the delivery and controlled release of metal-containing therapeutic agents.
Collapse
|
5
|
Gourdon L, Cariou K, Gasser G. Phototherapeutic anticancer strategies with first-row transition metal complexes: a critical review. Chem Soc Rev 2022; 51:1167-1195. [PMID: 35048929 DOI: 10.1039/d1cs00609f] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) are therapeutic techniques based on a photosensitizer (PS) and light. These techniques allow the spatial and temporal control of the activation of drugs with light. Transition metal complexes are attractive compounds as photoactivatable prodrugs since their excited states can be appropriately designed by subtle modifications of the ligands, the metal centre, or the oxidation state. However, most metal-based PSs contain heavy metals such as Ru, Os, Ir, Pt or Au, which are expensive and non-earth-abundant, contrary to first-row transition metals. In this context, the exploration of the photochemical properties of complexes based on first-row transition metals appears to be extremely promising. This did encourage several groups to develop promising PSs based on these metals. This review presents up-to-date state-of-the-art information on first-row-transition metal complexes, from titanium to zinc in regard to their application as PSs for phototherapeutic applications.
Collapse
Affiliation(s)
- Lisa Gourdon
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| |
Collapse
|
6
|
Lamch Ł, Gancarz R, Tsirigotis-Maniecka M, Moszyńska IM, Ciejka J, Wilk KA. Studying the "Rigid-Flexible" Properties of Polymeric Micelle Core-Forming Segments with a Hydrophobic Phthalocyanine Probe Using NMR and UV Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4316-4330. [PMID: 33794644 PMCID: PMC8154882 DOI: 10.1021/acs.langmuir.1c00328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The aim of the performed studies was to thoroughly examine the internal structure of self-assembled nanocarriers (i.e., polymeric micelles-PMs) by means of a hydrophobic phthalocyanine probe in order to identify the crucial features that are required to enhance the photoactive probe stability and reactivity. PMs of hydrophilic poly(ethylene glycol) and hydrophobic poly(ε-caprolactone) (PCL) or poly(d,l-lactide) (PDLLA) were fabricated and loaded with tetra tert-butyl zinc(II) phthalocyanine (ZnPc-t-but4), a multifunctional spectroscopic probe with a profound ability to generate singlet oxygen upon irradiation. The presence of subdomains, comprising "rigid" and "flexible" regions, in the studied block copolymers' micelles as well as their interactions with the probe molecules, were assessed by various high-resolution NMR measurements [e.g., through-space magnetic interactions by the 1D NOE effect, pulsed field gradient spin-echo, and spin-lattice relaxation time (T1) techniques]. The studies of the impact of the core-type microenvironment on the ZnPc-t-but4 photochemical performance also included photobleaching and reactive oxygen species measurements. ZnPc-t-but4 molecules were found to exhibit spatial proximity effects with both (PCL and PDLLA) hydrophobic polymer chains and interact with both subdomains, which are characterized by different rigidities. It was deduced that the interfaces between particular subdomains constitute an optimal host space for probe molecules, especially in the context of photochemical stability, photoactivity (i.e., for significant enhancement of singlet oxygen generation rates), and aggregation prevention. The present contribution proves that the combination of an appropriate probe, high-resolution NMR techniques, and UV-vis spectroscopy enables one to gain complex information about the subtle structure of PMs essential for their application as nanocarriers for photoactive compounds, for example, in photodynamic therapy, nanotheranostics, combination therapy, or photocatalysis, where the micelles constitute the optimal microenvironment for the desired photoreactions.
Collapse
|
7
|
Obata M, Masuda S, Takahashi M, Yazaki K, Hirohara S. Effect of the hydrophobic segment of an amphiphilic block copolymer on micelle formation, zinc phthalocyanine loading, and photodynamic activity. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Stockert JC, Carou MC, Casas AG, García Vior MC, Ezquerra Riega SD, Blanco MM, Espada J, Blázquez-Castro A, Horobin RW, Lombardo DM. Fluorescent redox-dependent labeling of lipid droplets in cultured cells by reduced phenazine methosulfate. Heliyon 2020; 6:e04182. [PMID: 32566788 PMCID: PMC7298651 DOI: 10.1016/j.heliyon.2020.e04182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 11/14/2022] Open
Abstract
Natural and synthetic phenazines are widely used in biomedical sciences. In dehydrogenase histochemistry, phenazine methosulfate (PMS) is applied as a redox reagent for coupling reduced coenzymes to the reduction of tetrazolium salts into colored formazans. PMS is also currently used for cytotoxicity and viability assays of cell cultures using sulfonated tetrazoliums. Under UV (340 nm) excitation, aqueous solutions of the cationic PMS show green fluorescence (λem: 526 nm), whereas the reduced hydrophobic derivative (methyl-phenazine, MPH) shows blue fluorescence (λem: 465 nm). Under UV (365 nm) excitation, cultured cells (LM2, IGROV-1, BGC-1, and 3T3-L1 adipocytes) treated with PMS (5 μg/mL, 30 min) showed cytoplasmic granules with bright blue fluorescence, which correspond to lipid droplets labeled by the lipophilic methyl-phenazine. After formaldehyde fixation blue-fluorescing droplets could be stained with oil red O. Interestingly, PMS-treated 3T3-L1 adipocytes observed under UV excitation 24 h after labeling showed large lipid droplets with a weak green emission within a diffuse pale blue-fluorescing cytoplasm, whereas a strong green emission was observed in small lipid droplets. This fluorescence change from blue to green indicates that reoxidation of methyl-phenazine to PMS can occur. Regarding cell uptake and labeling mechanisms, QSAR models predict that the hydrophilic PMS is not significantly membrane-permeant, so most PMS reduction is expected to be extracellular and associated with a plasma membrane NAD(P)H reductase. Once formed, the lipophilic and blue-fluorescing methyl-phenazine enters live cells and mainly accumulates in lipid droplets. Overall, the results reported here indicate that PMS is an excellent fluorescent probe to investigate labeling and redox dynamics of lipid droplets in cultured cells.
Collapse
Affiliation(s)
- Juan C Stockert
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Buenos Aires, C1427CWO, Argentina.,Universidad de Buenos Aires, Instituto de Oncología "Angel H. Roffo", Area Investigación, Buenos Aires, C1417DTB, Argentina
| | - María C Carou
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Buenos Aires, C1427CWO, Argentina
| | - Adriana G Casas
- Centro de Investigaciones sobre Porfirinas y Porfirias, Hospital de Clínicas, Universidad de Buenos Aires, CONICET, C1120AAF, Argentina
| | - María C García Vior
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, C1113AAD, CABA, Argentina
| | - Sergio D Ezquerra Riega
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, C1113AAD, CABA, Argentina
| | - María M Blanco
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, C1113AAD, CABA, Argentina
| | - Jesús Espada
- Experimental Dermatology and Skin Biology Group, Ramón y Cajal Institute for Health Research, Ramón y Cajal University Hospital, 28034, Madrid, Spain.,Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O´Higgins, Santiago, 8370854, Chile
| | - Alfonso Blázquez-Castro
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Richard W Horobin
- Chemical Biology and Precision Synthesis, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Daniel M Lombardo
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Buenos Aires, C1427CWO, Argentina
| |
Collapse
|
9
|
Chiarante N, Duhalde Vega M, Valli F, Zotta E, Daghero H, Basika T, Bollati-Fogolin M, García Vior MC, Marino J, Roguin LP. In Vivo Photodynamic Therapy With a Lipophilic Zinc(II) Phthalocyanine Inhibits Colorectal Cancer and Induces a Th1/CD8 Antitumor Immune Response. Lasers Surg Med 2020; 53:344-358. [PMID: 32525252 DOI: 10.1002/lsm.23284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES Photodynamic therapy (PDT) is an antitumor procedure clinically approved for the treatment of different cancer types. Despite strong efforts and promising results in this field, PDT has not yet been approved by any regulatory authority for the treatment of colorectal cancer, one of the most prevalent gastrointestinal tumors. In the search of novel therapeutic strategies, we examined the in vivo effect of PDT with a lipophilic phthalocyanine (Pc9) encapsulated into polymeric poloxamine micelles (T1107) in a murine colon carcinoma model. STUDY DESIGN/MATERIALS AND METHODS In vivo assays were performed with BALB/c mice challenged with CT26 cells. Pc9 tumor uptake was evaluated with an in vivo imaging system. Immunofluorescence, western blot, and flow cytometry assays were carried out to characterize the activation of apoptosis and an antitumor immune response. RESULTS Pc9-T1107 effectively delayed tumor growth and prolonged mice survival, without generating systemic or tissue-specific toxicity. The induction of an apoptotic response was characterized by a decrease in the expression levels of Bcl-XL , Bcl-2, procaspase 3, full length Bid, a significant increment in the amount of active caspase-3 and the detection of PARP-1 cleavage. Infiltration of CD8+ CD107a+ T cells and higher levels of interferon-γ and tumor necrosis factor-α were also found in PDT-treated tumors. CONCLUSIONS Pc9-T1107 PDT treatment reduced tumor growth, inducing an apoptotic cell death and activating an immune response. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Nicolás Chiarante
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina
| | - Maite Duhalde Vega
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina
| | - Federico Valli
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina
| | - Elsa Zotta
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires, C1113AAD, Argentina
| | - Hellen Daghero
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Tatiana Basika
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | | | - María C García Vior
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina
| | - Julieta Marino
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina
| | - Leonor P Roguin
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina
| |
Collapse
|
10
|
Domingues C, Alvarez-Lorenzo C, Concheiro A, Veiga F, Figueiras A. Nanotheranostic Pluronic-Like Polymeric Micelles: Shedding Light into the Dark Shadows of Tumors. Mol Pharm 2019; 16:4757-4774. [DOI: 10.1021/acs.molpharmaceut.9b00945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cátia Domingues
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-295, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra 3004-504, Portugal
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra 3004-531, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-295, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra 3004-504, Portugal
| | - Ana Figueiras
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-295, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra 3004-504, Portugal
| |
Collapse
|
11
|
Aggarwal A, Samaroo D, Jovanovic IR, Singh S, Tuz MP, Mackiewicz MR. Porphyrinoid-based photosensitizers for diagnostic and therapeutic applications: An update. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619300118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Porphyrin-based molecules are actively studied as dual function theranostics: fluorescence-based imaging for diagnostics and fluorescence-guided therapeutic treatment of cancers. The intrinsic fluorescent and photodynamic properties of the bimodal molecules allows for these theranostic approaches. Several porphyrinoids bearing both hydrophilic and/or hydrophobic units at their periphery have been developed for the aforementioned applications, but better tumor selectivity and high efficacy to destroy tumor cells is always a key setback for their use. Another issue related to their effective clinical use is that, most of these chromophores form aggregates under physiological conditions. Nanomaterials that are known to possess incredible properties that cannot be achieved from their bulk systems can serve as carriers for these chromophores. Porphyrinoids, when conjugated with nanomaterials, can be enabled to perform as multifunctional nanomedicine devices. The integrated properties of these porphyrinoid-nanomaterial conjugated systems make them useful for selective drug delivery, theranostic capabilities, and multimodal bioimaging. This review highlights the use of porphyrins, chlorins, bacteriochlorins, phthalocyanines and naphthalocyanines as well as their multifunctional nanodevices in various biomedical theranostic platforms.
Collapse
Affiliation(s)
- Amit Aggarwal
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | - Diana Samaroo
- New York City College of Technology, Department of Chemistry, 285 Jay Street, Brooklyn, NY 11201, USA
- Graduate Center, 365 5th Ave, New York, NY 10016, USA
| | | | - Sunaina Singh
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | - Michelle Paola Tuz
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | | |
Collapse
|
12
|
Zinc(II) phthalocyanines as photosensitizers for antitumor photodynamic therapy. Int J Biochem Cell Biol 2019; 114:105575. [PMID: 31362060 DOI: 10.1016/j.biocel.2019.105575] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/31/2022]
Abstract
Photodynamic therapy (PDT) is a highly specific and clinically approved method for cancer treatment in which a nontoxic drug known as photosensitizer (PS) is administered to a patient. After selective tumor irradiation, an almost complete eradication of the tumor can be reached as a consequence of reactive oxygen species (ROS) generation, which not only damage tumor cells, but also lead to tumor-associated vasculature occlusion and the induction of an immune response. Despite exhaustive investigation and encouraging results, zinc(II) phthalocyanines (ZnPcs) have not been approved as PSs for clinical use yet. This review presents an overview on the physicochemical properties of ZnPcs and biological results obtained both in vitro and in more complex models, such as 3D cell cultures, chicken chorioallantoic membranes and tumor-bearing mice. Cell death pathways induced after PDT treatment with ZnPcs are discussed in each case. Finally, combined therapeutic strategies including ZnPcs and the currently available clinical trials are mentioned.
Collapse
|
13
|
Folate-directed zinc (II) phthalocyanine loaded polymeric micelles engineered to generate reactive oxygen species for efficacious photodynamic therapy of cancer. Photodiagnosis Photodyn Ther 2019; 25:480-491. [DOI: 10.1016/j.pdpdt.2019.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022]
|
14
|
Obata M, Tanaka S, Mizukoshi H, Ishihara E, Takahashi M, Hirohara S. RAFT synthesis of polystyrene-block-poly(polyethylene glycol monomethyl ether acrylate) for zinc phthalocyanine-loaded polymeric micelles as photodynamic therapy photosensitizers. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28929] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Makoto Obata
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi, 4-4-37 Takeda; Kofu 400-8510 Japan
| | - Shuto Tanaka
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi, 4-4-37 Takeda; Kofu 400-8510 Japan
| | - Hiroshi Mizukoshi
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi, 4-4-37 Takeda; Kofu 400-8510 Japan
| | - Eika Ishihara
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi, 4-4-37 Takeda; Kofu 400-8510 Japan
| | - Masaki Takahashi
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi, 4-4-37 Takeda; Kofu 400-8510 Japan
| | - Shiho Hirohara
- Department of Chemical and Biological Engineering; National Institute of Technology, Ube College, 2-14-1 Tokiwadai; Ube 755-8555 Japan
| |
Collapse
|
15
|
Phototoxic action of a zinc(II) phthalocyanine encapsulated into poloxamine polymeric micelles in 2D and 3D colon carcinoma cell cultures. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:140-151. [DOI: 10.1016/j.jphotobiol.2017.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/14/2017] [Accepted: 04/10/2017] [Indexed: 12/16/2022]
|
16
|
Tang Y, Chen H, Chang K, Liu Z, Wang Y, Qu S, Xu H, Wu C. Photo-Cross-Linkable Polymer Dots with Stable Sensitizer Loading and Amplified Singlet Oxygen Generation for Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3419-3431. [PMID: 28067486 DOI: 10.1021/acsami.6b14325] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photodynamic therapy (PDT) is a promising treatment modality for clinical cancer therapy. However, the therapeutic effect of PDT is strongly dependent on the property of photosensitizer. Here, we developed photo-cross-linkable semiconductor polymer dots doped with photosensitizer Chlorin e6 (Ce6) to construct a nanoparticle platform for photodynamic therapy. Photoreactive oxetane groups were attached to the side chains of the semiconductor polymer. After photo-cross-linking reaction, the Ce6-doped Pdots formed an interpenetrated structure to prevent Ce6 leaching out from the Pdot matrix. Spectroscopic characterizations revealed an efficient energy transfer from the polymer to Ce6 molecules, resulting in amplified generation of singlet oxygen. We evaluated the cellular uptake, cytotoxicity, and photodynamic effect of the Pdots in gastric adenocarcinoma cells. In vitro photodynamic experiments indicated that the Ce6-doped Pdots (∼10 μg/mL) effectively killed the cancer cells under low dose of light irradiation (∼60 J/cm2). Furthermore, in vivo photodynamic experiments were carried out in tumor-bearing nude mice, which indicated that the Pdot photosensitizer apparently suppressed the growth of solid tumors. Our results demonstrate that the photo-cross-linkable Pdots doped with photosensitizer are promising for photodynamic cancer treatment.
Collapse
Affiliation(s)
- Ying Tang
- Department of Gastroenterology, The First Hospital of Jilin University , Changchun 130021, China
| | - Haobin Chen
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun 130012, China
| | - Kaiwen Chang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun 130012, China
| | - Zhihe Liu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun 130012, China
| | - Yu Wang
- Department of Gastroenterology, The First Hospital of Jilin University , Changchun 130021, China
| | - Songnan Qu
- State Key Laboratory of Luminescence and Applications, Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University , Changchun 130021, China
| | - Changfeng Wu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun 130012, China
| |
Collapse
|
17
|
Young J, Yee M, Kim H, Cheung J, Chino T, Düzgüneş N, Konopka K. Phototoxicity of Liposomal Zn- and Al-phthalocyanine Against Cervical and Oral Squamous Cell Carcinoma Cells In Vitro. Med Sci Monit Basic Res 2016; 22:156-164. [PMID: 27932777 PMCID: PMC5299971 DOI: 10.12659/msmbr.901039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Photodynamic therapy (PDT) utilizes light to activate a photosensitizer in the presence of oxygen, and leads to local photodamage by the generation of highly reactive oxygen species (ROS). Liposomal delivery of photosensitizers is adaptable to the treatment of cancers. We examined the phototoxicity of free or liposome-embedded phthalocyanine photosensitizers using HeLa cervical carcinoma and HSC-3 oral squamous cell carcinoma cells. Material/Methods Liposomes were composed of palmitoyloleoyphosphatidylcholine (POPC): phosphatidylglycerol (PG), and contained either zinc phthalocyanine (ZnPc) or aluminum phthalocyanine chloride (AlPc). Free or liposomal ZnPc and AlPc were incubated with cells for 24 h at 37°C. Cells incubated with ZnPc were exposed to broadband visible light (350–800 nm; light dose 43.2 J/cm2), whereas cells treated with AlPc were exposed to light at 690 nm (light dose 3.6 J/cm2). The effect of folate receptor-targeted liposomal ZnPc was evaluated with HeLa cells. Cytotoxicity was analyzed by the Alamar Blue assay. Results Cell viability, expressed as a percentage of control cells, was calculated according to the formula [(A570–A600) of test cells]×100/[(A570–A600) of control cells]. The relative percentage changes then defined the phototoxic efficacy of the experimental conditions. In HeLa cells, 1 μM free ZnPc and AlPc, reduced cell viability to 52.7±2.1 and 15.4±8.0%, respectively. Liposomal phthalocyanines, at 0.1, 0.5, and 1.0 μM, reduced the viability to 68.0±8.6, 15.1±9.9 and 0% (ZnPc), and to 25.8±8.2, 0 and 0% (AlPc), respectively. In HSC-3 cells, 1 μM free ZnPc and AlPc, reduced cell viability to 22.1±2.8 and 56.6±8.6%, respectively. With 1 μM liposomal ZnPc and AlPc, the viability was reduced to 0 and 21.3±0.3%, respectively. Conclusions The embedding of phthalocyanines in liposomes enhanced their phototoxicity and this effect was dependent on cell type.
Collapse
Affiliation(s)
- Jason Young
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, USA
| | - Michael Yee
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, USA
| | - Hayoung Kim
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, USA
| | - Jennifer Cheung
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, USA
| | - Takahiro Chino
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, USA
| | - Nejat Düzgüneş
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, USA
| | - Krystyna Konopka
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, USA
| |
Collapse
|
18
|
Lamch Ł, Tylus W, Jewgiński M, Latajka R, Wilk KA. Location of Varying Hydrophobicity Zinc(II) Phthalocyanine-Type Photosensitizers in Methoxy Poly(ethylene oxide) and Poly(l-lactide) Block Copolymer Micelles Using 1H NMR and XPS Techniques. J Phys Chem B 2016; 120:12768-12780. [PMID: 27973818 DOI: 10.1021/acs.jpcb.6b10267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrophobic zinc(II) phthalocyanine-type derivatives, solubilized in polymeric micelles (PMs), provide a befitting group of so-called nanophotosensitizers, suitable for a variety of photodynamic therapy (PDT) protocols. The factors that influence the success of such products in PDT are the location of the active cargo in the PMs and the nanocarrier-enhanced ability to safely interact with biological systems and fulfill their therapeutic functions. Therefore, the aim of this work was to determine the solubilization loci of three phthalocyanines of varying hydrophobicity, i.e., zinc(II) phthalocyanine (ZnPc), along with its tetrasulfonic acid (ZnPc-sulfo4) and perfluorinated (ZnPcF16) derivatives, loaded in polymeric micelles of methoxy poly(ethylene oxide)-b-poly(l-lactide) (mPEG-b-PLLA), by means of 1H nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) combined with ion sputtering. Furthermore, the microenvironment influence upon the chemical and physical status of the solubilized cargo in PMs, expressed by photobleaching and reactive oxygen species (ROS) generation comparing to the same properties of native cargoes in solution, was also evaluated and discussed in regards to the probing location data. The studied phthalocyanine-loaded PMs exhibited good physical stability, high drug-loading efficiency, and a size of less than ca. 150 nm with low polydispersity indices. The formation of polymeric micelles and the solubilization locus were investigated by 1H NMR and XPS. ZnPc localized within the PM core, whereas both ZnPcF16 and ZnPc-sulfo4 - in the corona of PMs. We proved that the cargo locus is crucial for the photochemical properties of the studied phthalocyanines; the increase in photostability and ability to generate ROS in micellar solution compared to free photosensitizer was most significant for the photosensitizer in the PM core. Our results indicate the role of the cargo location in the PM microenvironment and demonstrate that such attempts are fundamental for improving the properties of photosensitizers and their assumed efficiency as nanophotosensitizers in PDT.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Technology , Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Włodzimierz Tylus
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Technology , Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Michał Jewgiński
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Technology , Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Rafał Latajka
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Technology , Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Kazimiera A Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Technology , Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
19
|
Lamch Ł, Kulbacka J, Pietkiewicz J, Rossowska J, Dubińska-Magiera M, Choromańska A, Wilk KA. Preparation and characterization of new zinc(II) phthalocyanine — Containing poly(l-lactide)-b-poly(ethylene glycol) copolymer micelles for photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 160:185-97. [DOI: 10.1016/j.jphotobiol.2016.04.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 11/26/2022]
|
20
|
Mehraban N, Freeman HS. Developments in PDT Sensitizers for Increased Selectivity and Singlet Oxygen Production. MATERIALS (BASEL, SWITZERLAND) 2015; 8:4421-4456. [PMID: 28793448 PMCID: PMC5455656 DOI: 10.3390/ma8074421] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 12/20/2022]
Abstract
Photodynamic therapy (PDT) is a minimally-invasive procedure that has been clinically approved for treating certain types of cancers. This procedure takes advantage of the cytotoxic activity of singlet oxygen (¹O₂) and other reactive oxygen species (ROS) produced by visible and NIR light irradiation of dye sensitizers following their accumulation in malignant cells. The main two concerns associated with certain clinically-used PDT sensitizers that have been influencing research in this arena are low selectivity toward malignant cells and low levels of ¹O₂ production in aqueous media. Solving the selectivity issue would compensate for photosensitizer concerns such as dark toxicity and aggregation in aqueous media. One main approach to enhancing dye selectivity involves taking advantage of key methods used in pharmaceutical drug delivery. This approach lies at the heart of the recent developments in PDT research and is a point of emphasis in the present review. Of particular interest has been the development of polymeric micelles as nanoparticles for delivering hydrophobic (lipophilic) and amphiphilic photosensitizers to the target cells. This review also covers methods employed to increase ¹O₂ production efficiency, including the design of two-photon absorbing sensitizers and triplet forming cyclometalated Ir(III) complexes.
Collapse
Affiliation(s)
- Nahid Mehraban
- Fiber & Polymer Science Program, North Carolina State University, Raleigh, NC 27695-8301, USA
| | - Harold S Freeman
- Fiber & Polymer Science Program, North Carolina State University, Raleigh, NC 27695-8301, USA.
| |
Collapse
|
21
|
Ezquerra Riega SD, García Vior MC, Awruch J. Synthesis and properties of a novel alkylselenium substituted phthalocyanine. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
22
|
Sosnik A, Menaker Raskin M. Polymeric micelles in mucosal drug delivery: Challenges towards clinical translation. Biotechnol Adv 2015; 33:1380-92. [PMID: 25597531 DOI: 10.1016/j.biotechadv.2015.01.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/06/2015] [Accepted: 01/10/2015] [Indexed: 12/19/2022]
Abstract
Polymeric micelles are nanostructures formed by the self-aggregation of copolymeric amphiphiles above the critical micellar concentration. Due to the flexibility to tailor different molecular features, they have been exploited to encapsulate motley poorly-water soluble therapeutic agents. Moreover, the possibility to combine different amphiphiles in one single aggregate and produce mixed micelles that capitalize on the features of the different components substantially expands the therapeutic potential of these nanocarriers. Despite their proven versatility, polymeric micelles remain elusive to the market and only a few products are currently undergoing advanced clinical trials or reached clinical application, all of them for the therapy of different types of cancer and administration by the intravenous route. At the same time, they emerge as a nanotechnology platform with great potential for non-parenteral mucosal administration. However, for this, the interaction of polymeric micelles with mucus needs to be strengthened. The present review describes the different attempts to develop mucoadhesive polymeric micelles and discusses the challenges faced in the near future for a successful bench-to-bedside translation.
Collapse
Affiliation(s)
- Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Maya Menaker Raskin
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
23
|
Glisoni RJ, Sosnik A. Novel Poly(Ethylene Oxide)-b-Poly(Propylene Oxide) Copolymer-Glucose Conjugate by the Microwave-Assisted Ring Opening of a Sugar Lactone. Macromol Biosci 2014; 14:1639-51. [DOI: 10.1002/mabi.201400235] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/30/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Romina J. Glisoni
- The Group of Biomaterials and Nanotechnology for Improved Medicines (BIONIMED), Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry; University of Buenos Aires; Buenos Aires CP1113 Argentina
- National Science Research Council (CONICET); Buenos Aires Argentina
| | - Alejandro Sosnik
- Group of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering; Technion-Israel Institute of Technology; Technion City 32000 Haifa Israel
- Department of Materials Science and Engineering, De-Jur Building, Office 607; Technion-Israel Institute of Technology; Technion City 32000 Haifa Israel
| |
Collapse
|
24
|
Abstract
Light can be a powerful therapeutic and diagnostic tool. Light-sensitive molecules can be used to develop locally targeted cancer therapeutics. This approach is known as photodynamic therapy (PDT). Similarly, it is possible to diagnose diseases and track the course of treatment in vivo using ligh-sensitive molecules. This methodology is referred to as photodynamic diagnosis (PDD). Despite the potential, many PDT and PDD agents have imperfect physiochemical properties for their successful clinical application. Nanotechnology may solve these issues by improving the viability of PDT and PDD. This review summarizes the current state of PDT and PDD development, the integration of nanotechnology in the field, and the prospective future applications, demonstrating the potential of PDT and PDD for improved cancer treatment and diagnosis.
Collapse
|