1
|
Mattern S, Hollfoth V, Bag E, Ali A, Riemenschneider P, Jarboui MA, Boldt K, Sulyok M, Dickemann A, Luibrand J, Fusco S, Franz-Wachtel M, Singer K, Goeppert B, Schilling O, Malek N, Fend F, Macek B, Ueffing M, Singer S. An AI-assisted morphoproteomic approach is a supportive tool in esophagitis-related precision medicine. EMBO Mol Med 2025; 17:441-468. [PMID: 39901020 PMCID: PMC11903792 DOI: 10.1038/s44321-025-00194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 02/05/2025] Open
Abstract
Esophagitis is a frequent, but at the molecular level poorly characterized condition with diverse underlying etiologies and treatments. Correct diagnosis can be challenging due to partially overlapping histological features. By proteomic profiling of routine diagnostic FFPE biopsy specimens (n = 55) representing controls, Reflux- (GERD), Eosinophilic-(EoE), Crohn's-(CD), Herpes simplex (HSV) and Candida (CA)-esophagitis by LC-MS/MS (DIA), we identified distinct signatures and functional networks (e.g. mitochondrial translation (EoE), immunoproteasome, complement and coagulations system (CD), ribosomal biogenesis (GERD)), and pathogen-specific proteins for HSV and CA. Moreover, combining these signatures with histological parameters in a machine learning model achieved high diagnostic accuracy (100% training set, 93.8% test set), and supported diagnostic decisions in borderline/challenging cases. Applied to a young patient representing a use case, the external GERD diagnosis could be revised to CD and ICAM1 was identified as highly abundant therapeutic target. This resulted in CyclosporinA as a personalized treatment recommendation by the local multidisciplinary molecular inflammation board. Our integrated AI-assisted morphoproteomic approach allows deeper insights in disease-specific molecular alterations and represents a promising tool in esophagitis-related precision medicine.
Collapse
Affiliation(s)
- Sven Mattern
- Department of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
- Center for Personalized Medicine (ZPM), Tübingen, Germany
| | - Vanessa Hollfoth
- Department of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Eyyub Bag
- Department of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Arslan Ali
- Department of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | | | - Mohamed A Jarboui
- Core Facility for Medical Proteomics, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Karsten Boldt
- Core Facility for Medical Proteomics, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Mihaly Sulyok
- Department of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Anabel Dickemann
- Department of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Julia Luibrand
- Department of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Stefano Fusco
- Center for Personalized Medicine (ZPM), Tübingen, Germany
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | | | - Kerstin Singer
- Department of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Benjamin Goeppert
- Institute of Pathology and Neuropathology, Hospital RKH Kliniken Ludwigsburg, Ludwigsburg, Germany
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Oliver Schilling
- Institute of Pathology, University Medical Center Freiburg, Faculty of Medicine - University of Freiburg, Freiburg, Germany
- Center for Personalized Medicine (ZPM), Freiburg, Germany
| | - Nisar Malek
- Center for Personalized Medicine (ZPM), Tübingen, Germany
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Falko Fend
- Department of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Marius Ueffing
- Core Facility for Medical Proteomics, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Stephan Singer
- Department of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany.
- Center for Personalized Medicine (ZPM), Tübingen, Germany.
| |
Collapse
|
2
|
Gisbert JP, Chaparro M. Clinical Usefulness of Proteomics in Inflammatory Bowel Disease: A Comprehensive Review. J Crohns Colitis 2019; 13:374-384. [PMID: 30307487 DOI: 10.1093/ecco-jcc/jjy158] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The protein domain is probably the most ubiquitously affected in disease, response and recovery, and therefore proteomics holds special promise for biomarker discovery in general, and particularly in inflammatory bowel disease [IBD], i.e. ulcerative colitis and Crohn's disease. Tremendous progress has been made over the past decade in the development and refinement of proteomics technologies. These advances provide opportunities for a long-anticipated personalized medicine approach to the treatment of IBD. The present review examines the current state of IBD proteomics research and its usefulness in clinical practice. We performed a systematic bibliographic search to identify studies investigating the use of proteomics in patients with IBD, and we then summarized the current 'state of the art' in the applications of proteomic technologies in the study of IBD. In particular, in the present review we provide: [1] a brief introduction to proteomics in health and disease; [2] a review of the different stages from biomarker discovery to clinical application; and [3] a comprehensive review of the clinical usefulness and application of proteomics in IBD, including: [a] screening to differentiate IBD from healthy controls; [b] differentiating Crohn's disease from ulcerative colitis; [c] prediction of the behaviour or the IBD course; [d] prediction of IBD response to biological treatment; and [e] monitoring response to treatment. We also review the importance of the type of sample-blood vs intestinal tissue-for the study of proteomics in IBD patients. Finally, we emphasize the current limitations of proteomic studies in IBD.
Collapse
Affiliation(s)
- Javier P Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - María Chaparro
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| |
Collapse
|
3
|
D'Hooghe T, Kyriakidi K, Karassa FB, Politis D, Skamnelos A, Christodoulou DK, Katsanos KH. Biomarker Development in Chronic Inflammatory Diseases. BIOMARKERS FOR ENDOMETRIOSIS 2017. [PMCID: PMC7122305 DOI: 10.1007/978-3-319-59856-7_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic inflammatory diseases, such as inflammatory bowel disease—namely, Crohn’s disease and ulcerative colitis—psoriasis, multiple sclerosis, rheumatoid arthritis, and many others affect millions of people worldwide, causing a high burden of disease, socioeconomic impact, and healthcare cost. These diseases have common features including autoimmune pathogenesis and frequent co morbidity. The treatment of these chronic inflammatory diseases usually requires long-term immunosuppressive therapies with undesirable side effects. The future of chronic inflammatory disease prevention, detection, and treatment will be greatly influenced by the use of more effective biomarkers with enhanced performance. Given the practical issues of collecting tissue samples in inflammatory diseases, biomarkers derived from body fluids have great potential for optimized patient management through the circumvention of the abovementioned limitations. In this chapter, peripheral blood, urine, and cerebrospinal fluid biomarkers used in chronic inflammatory conditions are reviewed. In detail, this chapter reviews biomarkers to fore used or emerging to be used in patients with chronic inflammatory conditions. Those include inflammatory bowel diseases, chronic inflammatory conditions of the liver, biliary tract, pancreas, psoriasis, atopic disease, inflammatory skin diseases, rheumatic diseases, demyelination, and also the chronic inflammatory component of various other diseases in general medicine—including diabetes, cardiovascular disease, renal disease, and chronic obstructive pulmonary disease. Development of personalized medicine is closely linked to biomarkers, which may serve as the basis for diagnosis, drug discovery, and monitoring of diseases.
Collapse
Affiliation(s)
- Thomas D'Hooghe
- 0000 0001 0668 7884grid.5596.fDepartment of Development and Regeneration Organ Systems, Group Biomedical Sciences, KU Leuven (University of Leuven), Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Despite advances in our understanding of the pathophysiology underlying inflammatory bowel disease, there remains a significant need for biomarkers that can differentiate between Crohn's disease and ulcerative colitis with high sensitivity and specificity, in a cost-efficient manner. As the focus on personalized approaches to the delivery of medical treatment increases, new biomarkers are being developed to predict an individual's response to therapy and their overall disease course. In this review, we will outline many of the existing and recently developed biomarkers, detailing their role in the assessment of patients with inflammatory bowel disease. We will identify opportunities for improvement in our biomarkers, including better differentiation between the subtypes of inflammatory bowel disease. We will also discuss new targets and strategies in biomarker development, including combining modalities to create biomarker signatures to improve the ability to predict disease courses and response to therapy among individual patients.
Collapse
|
5
|
Kyriakidi KS, Tsianos VE, Karvounis E, Christodoulou DK, Katsanos KH, Tsianos EV. Neutrophil anti-neutrophil cytoplasmic autoantibody proteins: bactericidal increasing protein, lactoferrin, cathepsin, and elastase as serological markers of inflammatory bowel and other diseases. Ann Gastroenterol 2016; 29:258-67. [PMID: 27366026 PMCID: PMC4923811 DOI: 10.20524/aog.2016.0028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/26/2016] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract comprising Crohn's disease and ulcerative colitis. Although the pathogenesis of the disease is not clearly defined yet, environmental, genetic and other factors contribute to the onset of the disease. Apart from the clinical and histopathological findings, several serological biomarkers are also employed to detect IBD. One of the most thoroughly studied biomarker is anti-neutrophil cytoplasmic autoantibody (ANCA). We herein provide an overview of the current knowledge on the use of ANCA and certain ANCA proteins, such as bactericidal increasing protein, lactoferrin, cathepsin G and elastase, as serological markers for IBD and other diseases.
Collapse
Affiliation(s)
- Kallirroi S. Kyriakidi
- Research Laboratory of Immunology (Kallirroi S. Kyriakidi, Vasileios E. Tsianos, Evaggelos Karvounis), Ioannina, Greece
| | - Vasileios E. Tsianos
- Research Laboratory of Immunology (Kallirroi S. Kyriakidi, Vasileios E. Tsianos, Evaggelos Karvounis), Ioannina, Greece
| | - Evaggelos Karvounis
- Research Laboratory of Immunology (Kallirroi S. Kyriakidi, Vasileios E. Tsianos, Evaggelos Karvounis), Ioannina, Greece
| | | | - Konstantinos H. Katsanos
- Division of Gastroenterology (Dimitrios K. Christodoulou, Konstantinos H. Katsanos), Ioannina, Greece
| | - Epameinondas V. Tsianos
- Faculty of Medicine, School of Health Sciences (Epameinondas V. Tsianos), University of Ioannina, Ioannina, Greece
| |
Collapse
|
6
|
Abstract
BACKGROUND Crohn's disease (CD) is a form of inflammatory bowel disease with different described behaviors, including stricture. At present, there are no laboratory studies that can differentiate stricturing CD from other phenotypes of inflammatory bowel disease. We performed a pilot study to examine differences in the proteome among patients with stricturing CD, nonstricturing CD, and ulcerative colitis. METHODS Serum samples were selected from the Ocean State Crohn's and Colitis Area Registry, an established cohort of patients with inflammatory bowel disease. Patients with CD with surgically resected stricture were matched with similar patients with CD without known stricture and with ulcerative colitis. Serum samples from each patient were digested and analyzed using liquid chromatography-mass spectrometry to characterize the proteome. Statistical analyses were performed to identify peptides and proteins that can differentiate CD with stricture. RESULTS Samples from 9 patients in each group (27 total patients) were analyzed. Baseline demographic characteristics were similar among the 3 groups. We quantified 7668 peptides and 897 proteins for analysis. Receiver operating characteristic analysis identified a subset of peptides with an area under the curve greater than 0.9, indicating greater separation potential. Partial least squares discriminant analysis was able to distinguish among the three groups with up to 70% accuracy by peptides and up to 80% accuracy by proteins. We identified the significantly different proteins and peptides and determined their function based on previously published literature. CONCLUSIONS The serum of patients with stricturing CD, nonstricturing CD, and ulcerative colitis is distinguishable through proteomic analysis. Some of the proteins that differentiate the stricturing phenotype have been implicated in complement activation, fibrinolytic pathways, and lymphocyte adhesion.
Collapse
|
7
|
Park JM, Han NY, Han YM, Chung MK, Lee HK, Ko KH, Kim EH, Hahm KB. Predictive proteomic biomarkers for inflammatory bowel disease-associated cancer: Where are we now in the era of the next generation proteomics? World J Gastroenterol 2014; 20:13466-13476. [PMID: 25309077 PMCID: PMC4188898 DOI: 10.3748/wjg.v20.i37.13466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/10/2014] [Accepted: 06/17/2014] [Indexed: 02/06/2023] Open
Abstract
Recent advances in genomic medicine have opened up the possibility of tailored medicine that may eventually replace traditional “one-size-fits all” approaches to the treatment of inflammatory bowel disease (IBD). In addition to exploring the interactions between hosts and microbes, referred to as the microbiome, a variety of strategies that can be tailored to an individual in the coming era of personalized medicine in the treatment of IBD are being investigated. These include prompt genomic screening of patients at risk of developing IBD, the utility of molecular discrimination of IBD subtypes among patients diagnosed with IBD, and the discovery of proteome biomarkers to diagnose or predict cancer risks. Host genetic factors influence the etiology of IBD, as do microbial ecosystems in the human bowel, which are not uniform, but instead represent many different microhabitats that can be influenced by diet and might affect processes essential to bowel metabolism. Further advances in basic research regarding intestinal inflammation may reveal new insights into the role of inflammatory mediators, referred to as the inflammasome, and the macromolecular complex of metabolites formed by intestinal bacteria. Collectively, knowledge of the inflammasome and metagenomics will lead to the development of biomarkers for IBD that target specific pathogenic mechanisms involved in the spontaneous progress of IBD. In this review article, our recent results regarding the discovery of potential proteomic biomarkers using a label-free quantification technique are introduced and on-going projects contributing to either the discrimination of IBD subtypes or to the prediction of cancer risks are accompanied by updated information from IBD biomarker research.
Collapse
|
8
|
Niciu MJ, Mathews DC, Nugent AC, Ionescu DF, Furey ML, Richards EM, Machado-Vieira R, Zarate CA. Developing biomarkers in mood disorders research through the use of rapid-acting antidepressants. Depress Anxiety 2014; 31:297-307. [PMID: 24353110 PMCID: PMC3984598 DOI: 10.1002/da.22224] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 01/10/2023] Open
Abstract
An impediment to progress in mood disorders research is the lack of analytically valid and qualified diagnostic and treatment biomarkers. Consistent with the National Institute of Mental Health (NIMH)'s Research Domain Criteria (RDoC) initiative, the lack of diagnostic biomarkers has precluded us from moving away from a purely subjective (symptom-based) toward a more objective diagnostic system. In addition, treatment response biomarkers in mood disorders would facilitate drug development and move beyond trial-and-error toward more personalized treatments. As such, biomarkers identified early in the pathophysiological process are proximal biomarkers (target engagement), while those occurring later in the disease process are distal (disease pathway components). One strategy to achieve this goal in biomarker development is to increase efforts at the initial phases of biomarker development (i.e. exploration and validation) at single sites with the capability of integrating multimodal approaches across a biological systems level. Subsequently, resultant putative biomarkers could then undergo characterization and surrogacy as these latter phases require multisite collaborative efforts. We have used multimodal approaches - genetics, proteomics/metabolomics, peripheral measures, multimodal neuroimaging, neuropsychopharmacological challenge paradigms and clinical predictors - to explore potential predictor and mediator/moderator biomarkers of the rapid-acting antidepressants ketamine and scopolamine. These exploratory biomarkers may then be used for a priori stratification in larger multisite controlled studies during the validation and characterization phases with the ultimate goal of surrogacy. In sum, the combination of target engagement and well-qualified disease-related measures are crucial to improve our pathophysiological understanding, personalize treatment selection, and expand our armamentarium of novel therapeutics.
Collapse
Affiliation(s)
- Mark J. Niciu
- Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, and Department of Health and Human Services, Bethesda, Maryland
| | | | - Allison C. Nugent
- Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, and Department of Health and Human Services, Bethesda, Maryland
| | - Dawn F. Ionescu
- Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, and Department of Health and Human Services, Bethesda, Maryland
| | - Maura L. Furey
- Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, and Department of Health and Human Services, Bethesda, Maryland
| | - Erica M. Richards
- Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, and Department of Health and Human Services, Bethesda, Maryland
| | - Rodrigo Machado-Vieira
- Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, and Department of Health and Human Services, Bethesda, Maryland
| | - Carlos A. Zarate
- Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, and Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|
9
|
Bennike T, Birkelund S, Stensballe A, Andersen V. Biomarkers in inflammatory bowel diseases: Current status and proteomics identification strategies. World J Gastroenterol 2014; 20:3231-3244. [PMID: 24696607 PMCID: PMC3964395 DOI: 10.3748/wjg.v20.i12.3231] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/13/2014] [Accepted: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
Unambiguous diagnosis of the two main forms of inflammatory bowel diseases (IBD): Ulcerative colitis (UC) and Crohn’s disease (CD), represents a challenge in the early stages of the diseases. The diagnosis may be established several years after the debut of symptoms. Hence, protein biomarkers for early and accurate diagnostic could help clinicians improve treatment of the individual patients. Moreover, the biomarkers could aid physicians to predict disease courses and in this way, identify patients in need of intensive treatment. Patients with low risk of disease flares may avoid treatment with medications with the concomitant risk of adverse events. In addition, identification of disease and course specific biomarker profiles can be used to identify biological pathways involved in the disease development and treatment. Knowledge of disease mechanisms in general can lead to improved future development of preventive and treatment strategies. Thus, the clinical use of a panel of biomarkers represents a diagnostic and prognostic tool of potentially great value. The technological development in recent years within proteomic research (determination and quantification of the complete protein content) has made the discovery of novel biomarkers feasible. Several IBD-associated protein biomarkers are known, but none have been successfully implemented in daily use to distinguish CD and UC patients. The intestinal tissue remains an obvious place to search for novel biomarkers, which blood, urine or stool later can be screened for. When considering the protein complexity encountered in intestinal biopsy-samples and the recent development within the field of mass spectrometry driven quantitative proteomics, a more thorough and accurate biomarker discovery endeavor could today be performed than ever before. In this review, we report the current status of the proteomics IBD biomarkers and discuss various emerging proteomic strategies for identifying and characterizing novel biomarkers, as well as suggesting future targets for analysis.
Collapse
|
10
|
Abstract
Quantitative proteomics by LC-MS/MS is a widely used approach for quantifying a significant portion of any complex proteome. Among the different techniques used for this purpose, one is by use of Data Independent Acquisition (DIA). We present a descriptive protocol for label-free quantitation of proteins by one DIA method termed LC-MS(E), which facilitates large-scale quantification of proteins without the need for isotopic labelling and with no theoretical limit to the number of samples included in an experiment.
Collapse
Affiliation(s)
- Alon Savidor
- Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | |
Collapse
|