1
|
Wenne R. Microsatellites as Molecular Markers with Applications in Exploitation and Conservation of Aquatic Animal Populations. Genes (Basel) 2023; 14:genes14040808. [PMID: 37107566 PMCID: PMC10138012 DOI: 10.3390/genes14040808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
A large number of species and taxa has been studied for genetic polymorphism. Microsatellites have been known as hypervariable neutral molecular markers with the highest resolution power in comparison with any other markers. However, the discovery of a new type of molecular marker—single nucleotide polymorphism (SNP) has put the existing applications of microsatellites to the test. To ensure good resolution power in studies of populations and individuals, a number of microsatellite loci from 14 to 20 was often used, which corresponds to about 200 independent alleles. Recently, these numbers have tended to be increased by the application of genomic sequencing of expressed sequence tags (ESTs), and the choice of the most informative loci for genotyping depends on the aims of research. Examples of successful applications of microsatellite molecular markers in aquaculture, fisheries, and conservation genetics in comparison with SNPs have been summarized in this review. Microsatellites can be considered superior markers in such topics as kinship and parentage analysis in cultured and natural populations, the assessment of gynogenesis, androgenesis and ploidization. Microsatellites can be coupled with SNPs for mapping QTL. Microsatellites will continue to be used in research on genetic diversity in cultured stocks, and also in natural populations as an economically advantageous genotyping technique.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
2
|
Perry WB, Kaufmann J, Solberg MF, Brodie C, Coral Medina AM, Pillay K, Egerton A, Harvey A, Phillips KP, Coughlan J, Egan F, Grealis R, Hutton S, Leseur F, Ryan S, Poole R, Rogan G, Ryder E, Schaal P, Waters C, Wynne R, Taylor M, Prodöhl P, Creer S, Llewellyn M, McGinnity P, Carvalho G, Glover KA. Domestication-induced reduction in eye size revealed in multiple common garden experiments: The case of Atlantic salmon ( Salmo salar L.). Evol Appl 2021; 14:2319-2332. [PMID: 34603501 PMCID: PMC8477603 DOI: 10.1111/eva.13297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022] Open
Abstract
Domestication leads to changes in traits that are under directional selection in breeding programmes, though unintentional changes in nonproduction traits can also arise. In offspring of escaping fish and any hybrid progeny, such unintentionally altered traits may reduce fitness in the wild. Atlantic salmon breeding programmes were established in the early 1970s, resulting in genetic changes in multiple traits. However, the impact of domestication on eye size has not been studied. We measured body size corrected eye size in 4000 salmon from six common garden experiments conducted under artificial and natural conditions, in freshwater and saltwater environments, in two countries. Within these common gardens, offspring of domesticated and wild parents were crossed to produce 11 strains, with varying genetic backgrounds (wild, domesticated, F1 hybrids, F2 hybrids and backcrosses). Size-adjusted eye size was influenced by both genetic and environmental factors. Domesticated fish reared under artificial conditions had smaller adjusted eye size when compared to wild fish reared under identical conditions, in both the freshwater and marine environments, and in both Irish and Norwegian experiments. However, in parr that had been introduced into a river environment shortly after hatching and sampled at the end of their first summer, differences in adjusted eye size observed among genetic groups were of a reduced magnitude and were nonsignificant in 2-year-old sea migrating smolts sampled in the river immediately prior to sea entry. Collectively, our findings could suggest that where natural selection is present, individuals with reduced eye size are maladapted and consequently have reduced fitness, building on our understanding of the mechanisms that underlie a well-documented reduction in the fitness of the progeny of domesticated salmon, including hybrid progeny, in the wild.
Collapse
Affiliation(s)
- William Bernard Perry
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Biological ScienceBangor UniversityBangor, GwyneddUK
- Water Research InstituteSchool of BiosciencesCardiff UniversityCardiffUK
- Population Genetics Research GroupInstitute of Marine ResearchBergenNorway
| | - Joshka Kaufmann
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | | | - Christopher Brodie
- Ecosystems and Environment Research CentreSchool of Environment and Life SciencesUniversity of SalfordSalfordUK
| | | | - Kirthana Pillay
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Biological ScienceBangor UniversityBangor, GwyneddUK
| | - Anna Egerton
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Biological ScienceBangor UniversityBangor, GwyneddUK
| | - Alison Harvey
- Population Genetics Research GroupInstitute of Marine ResearchBergenNorway
| | - Karl P. Phillips
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Jamie Coughlan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Fintan Egan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Ronan Grealis
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Steve Hutton
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Floriane Leseur
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Sarah Ryan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | | | - Ger Rogan
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Elizabeth Ryder
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Patrick Schaal
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
- Institute of BiodiversityAnimal Health & Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Catherine Waters
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Robert Wynne
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Martin Taylor
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Paulo Prodöhl
- Institute for Global Food SecuritySchool of Biological SciencesMedical Biology CentreQueen’s UniversityBelfastUK
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Biological ScienceBangor UniversityBangor, GwyneddUK
| | - Martin Llewellyn
- Institute of BiodiversityAnimal Health & Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Philip McGinnity
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Gary Carvalho
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Biological ScienceBangor UniversityBangor, GwyneddUK
| | - Kevin Alan Glover
- Population Genetics Research GroupInstitute of Marine ResearchBergenNorway
- Institute of BiologyUniversity of BergenBergenNorway
| |
Collapse
|
3
|
Finlay R, Poole R, Coughlan J, Phillips KP, Prodöhl P, Cotter D, McGinnity P, Reed TE. Telemetry and genetics reveal asymmetric dispersal of a lake-feeding salmonid between inflow and outflow spawning streams at a microgeographic scale. Ecol Evol 2020; 10:1762-1783. [PMID: 32128115 PMCID: PMC7042748 DOI: 10.1002/ece3.5937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/01/2022] Open
Abstract
The degree of natal philopatry relative to natal dispersal in animal populations has important demographic and genetic consequences and often varies substantially within species. In salmonid fishes, lakes have been shown to have a strong influence on dispersal and gene flow within catchments; for example, populations spawning in inflow streams are often reproductively isolated and genetically distinct from those spawning in relatively distant outflow streams. Less is known, however, regarding the level of philopatry and genetic differentiation occurring at microgeographic scales, for example, where inflow and outflow streams are separated by very small expanses of lake habitat. Here, we investigated the interplay between genetic differentiation and fine-scale spawning movements of brown trout between their lake-feeding habitat and two spawning streams (one inflow, one outflow, separated by <100 m of lake habitat). Most (69.2%) of the lake-tagged trout subsequently detected during the spawning period were recorded in just one of the two streams, consistent with natal fidelity, while the remainder were detected in both streams, creating an opportunity for these individuals to spawn in both natal and non-natal streams. The latter behavior was supported by genetic sibship analysis, which revealed several half-sibling dyads containing one individual that was sampled as a fry in the outflow and another that was sampled as fry in the inflow. Genetic clustering analyses in conjunction with telemetry data suggested that asymmetrical dispersal patterns were occurring, with natal fidelity being more common among individuals originating from the outflow than the inflow stream. This was corroborated by Bayesian analysis of gene flow, which indicated significantly higher rates of gene flow from the inflow into the outflow than vice versa. Collectively, these results reveal how a combination of telemetry and genetics can identify distinct reproductive behaviors and associated asymmetries in natal dispersal that produce subtle, but nonetheless biologically relevant, population structuring at microgeographic scales.
Collapse
Affiliation(s)
- Ross Finlay
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnaceNewportIreland
| | | | - Jamie Coughlan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Karl P. Phillips
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnaceNewportIreland
| | - Paulo Prodöhl
- Institute for Global Food SecuritySchool of Biological SciencesQueen's University BelfastBelfastIreland
| | | | - Philip McGinnity
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnaceNewportIreland
| | - Thomas E. Reed
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| |
Collapse
|
4
|
Vanessa Huml J, Taylor MI, Edwin Harris W, Sen R, Ellis JS. Neutral variation does not predict immunogenetic variation in the European grayling (Thymallus thymallus)-implications for management. Mol Ecol 2018; 27:4157-4173. [PMID: 30194888 DOI: 10.1111/mec.14864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/21/2018] [Accepted: 08/29/2018] [Indexed: 11/28/2022]
Abstract
Preservation of genetic diversity is critical to successful conservation, and there is increasing demand for the inclusion of ecologically meaningful genetic information in management decisions. Supportive breeding programmes are increasingly implemented to combat declines in many species, yet their effect on adaptive genetic variation is understudied. This is despite the fact that supportive breeding may interfere with natural evolutionary processes. Here, we assessed the performance of neutral and adaptive markers (major histocompatibility complex; MHC) to inform management of European grayling (Thymallus thymallus), which routinely involves supplementation of natural populations with hatchery-reared fish (stocking). This study is the first to characterize MH II DAA and DAB loci in grayling and to investigate immune genetic variation in relation to management practice in this species. High-throughput Illumina sequencing of "introduced," "stocked native" and "non-stocked native" populations revealed significantly higher levels of allelic richness and heterozygosity for MH markers than microsatellites exclusively in non-stocked native populations. Likewise, significantly lower differentiation at the MH II than for microsatellites was apparent when considering non-stocked native populations, but not stocked populations. We developed a simulation model to test the effects of relaxation of selection during the early life stage within captivity. Dependent on the census population size and stocking intensity, there may be long-term effects of stocking on MH II, but not neutral genetic diversity. This is consistent with our empirical results. This study highlights the necessity for considering adaptive genetic variation in conservation decisions and raises concerns about the efficiency of stocking as a management practice.
Collapse
Affiliation(s)
- J Vanessa Huml
- School of Science & Environment, Manchester Metropolitan University, Manchester, UK.,School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Martin I Taylor
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - W Edwin Harris
- School of Science & Environment, Manchester Metropolitan University, Manchester, UK
| | - Robin Sen
- School of Science & Environment, Manchester Metropolitan University, Manchester, UK
| | - Jonathan S Ellis
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
5
|
Tentelier C, Barroso-Gomila O, Lepais O, Manicki A, Romero-Garmendia I, Jugo BM. Testing mate choice and overdominance at MH in natural families of Atlantic salmon Salmo salar. JOURNAL OF FISH BIOLOGY 2017; 90:1644-1659. [PMID: 28097664 DOI: 10.1111/jfb.13260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to test mate choice and selection during early life stages on major histocompatibility (MH) genotype in natural families of Atlantic salmon Salmo salar spawners and juveniles, using nine microsatellites to reconstruct families, one microsatellite linked to an MH class I gene and one minisatellite linked to an MH class II gene. MH-based mate choice was only detected for the class I locus on the first year, with lower expected heterozygosity in the offspring of actually mated pairs than predicted under random mating. The genotype frequencies of MH-linked loci observed in the juveniles were compared with frequencies expected from Mendelian inheritance of parental alleles to detect selection during early life stages. No selection was detected on the locus linked to class I gene. For the locus linked to class II gene, observed heterozygosity was higher than expected in the first year and lower in the second year, suggesting overdominance and underdominance, respectively. Within family, juveniles' body size was linked to heterozygosity at the same locus, with longer heterozygotes in the first year and longer homozygotes in the second year. Selection therefore seems to differ from one locus to the other and from year to year.
Collapse
Affiliation(s)
- C Tentelier
- ECOBIOP, INRA, Univ. Pau & Pays Adour, 64310, Saint-Pée-sur-Nivelle, France
| | - O Barroso-Gomila
- Euskal Herriko Unibertsitatea UPV EHU, Zientzia & Teknol Fak, Genet Antropol Fis & Animalien Fisiol Saila, E-48080, Bilbao, Spain
| | - O Lepais
- ECOBIOP, INRA, Univ. Pau & Pays Adour, 64310, Saint-Pée-sur-Nivelle, France
| | - A Manicki
- ECOBIOP, INRA, Univ. Pau & Pays Adour, 64310, Saint-Pée-sur-Nivelle, France
| | - I Romero-Garmendia
- Euskal Herriko Unibertsitatea UPV EHU, Zientzia & Teknol Fak, Genet Antropol Fis & Animalien Fisiol Saila, E-48080, Bilbao, Spain
| | - B M Jugo
- Euskal Herriko Unibertsitatea UPV EHU, Zientzia & Teknol Fak, Genet Antropol Fis & Animalien Fisiol Saila, E-48080, Bilbao, Spain
| |
Collapse
|
6
|
O'Toole CL, Reed TE, Bailie D, Bradley C, Cotter D, Coughlan J, Cross T, Dillane E, McEvoy S, Ó Maoiléidigh N, Prodöhl P, Rogan G, McGinnity P. The signature of fine scale local adaptation in Atlantic salmon revealed from common garden experiments in nature. Evol Appl 2015; 8:881-900. [PMID: 26495041 PMCID: PMC4610385 DOI: 10.1111/eva.12299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/08/2015] [Indexed: 11/18/2022] Open
Abstract
Understanding the extent, scale and genetic basis of local adaptation (LA) is important for conservation and management. Its relevance in salmonids at microgeographic scales, where dispersal (and hence potential gene flow) can be substantial, has however been questioned. Here, we compare the fitness of communally reared offspring of local and foreign Atlantic salmon Salmo salar from adjacent Irish rivers and reciprocal F1 hybrid crosses between them, in the wild ‘home’ environment of the local population. Experimental groups did not differ in wild smolt output but a catastrophic flood event may have limited our ability to detect freshwater performance differences, which were evident in a previous study. Foreign parr exhibited higher, and hybrids intermediate, emigration rates from the natal stream relative to local parr, consistent with genetically based behavioural differences. Adult return rates were lower for the foreign compared to the local group. Overall lifetime success of foreigners and hybrids relative to locals was estimated at 31% and 40% (mean of both hybrid groups), respectively. The results imply a genetic basis to fitness differences among populations separated by only 50 km, driven largely by variation in smolt to adult return rates. Hence even if supplementary stocking programs obtain broodstock from neighbouring rivers, the risk of extrinsic outbreeding depression may be high.
Collapse
Affiliation(s)
- Ciar L O'Toole
- School of Biological, Earth & Environmental Sciences, University College Cork Cork, Ireland
| | - Thomas E Reed
- School of Biological, Earth & Environmental Sciences, University College Cork Cork, Ireland
| | - Deborah Bailie
- Institute for Global Food Security, School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Northern Ireland
| | - Caroline Bradley
- Institute for Global Food Security, School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Northern Ireland
| | | | - Jamie Coughlan
- School of Biological, Earth & Environmental Sciences, University College Cork Cork, Ireland
| | - Tom Cross
- School of Biological, Earth & Environmental Sciences, University College Cork Cork, Ireland
| | - Eileen Dillane
- School of Biological, Earth & Environmental Sciences, University College Cork Cork, Ireland
| | - Sarah McEvoy
- Marine Institute, Furnace Newport, Co. Mayo, Ireland
| | | | - Paulo Prodöhl
- Institute for Global Food Security, School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Northern Ireland
| | - Ger Rogan
- Marine Institute, Furnace Newport, Co. Mayo, Ireland
| | - Philip McGinnity
- School of Biological, Earth & Environmental Sciences, University College Cork Cork, Ireland
| |
Collapse
|
7
|
Maslo B, Fefferman NH. A case study of bats and white-nose syndrome demonstrating how to model population viability with evolutionary effects. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2015; 29:1176-1185. [PMID: 25808080 DOI: 10.1111/cobi.12485] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Ecological factors generally affect population viability on rapid time scales. Traditional population viability analyses (PVA) therefore focus on alleviating ecological pressures, discounting potential evolutionary impacts on individual phenotypes. Recent studies of evolutionary rescue (ER) focus on cases in which severe, environmentally induced population bottlenecks trigger a rapid evolutionary response that can potentially reverse demographic threats. ER models have focused on shifting genetics and resulting population recovery, but no one has explored how to incorporate those findings into PVA. We integrated ER into PVA to identify the critical decision interval for evolutionary rescue (DIER) under which targeted conservation action should be applied to buffer populations undergoing ER against extinction from stochastic events and to determine the most appropriate vital rate to target to promote population recovery. We applied this model to little brown bats (Myotis lucifugus) affected by white-nose syndrome (WNS), a fungal disease causing massive declines in several North American bat populations. Under the ER scenario, the model predicted that the DIER period for little brown bats was within 11 years of initial WNS emergence, after which they stabilized at a positive growth rate (λ = 1.05). By comparing our model results with population trajectories of multiple infected hibernacula across the WNS range, we concluded that ER is a potential explanation of observed little brown bat population trajectories across multiple hibernacula within the affected range. Our approach provides a tool that can be used by all managers to provide testable hypotheses regarding the occurrence of ER in declining populations, suggest empirical studies to better parameterize the population genetics and conservation-relevant vital rates, and identify the DIER period during which management strategies will be most effective for species conservation.
Collapse
Affiliation(s)
- Brooke Maslo
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, 08901, U.S.A
- Rutgers Cooperative Extension, New Jersey Agricultural Experiment Station, Rutgers, The State University of New Jersey, 88 Lipman Drive, New Brunswick, NJ, 08901, U.S.A
| | - Nina H Fefferman
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, 08901, U.S.A
- The Center for Discrete Mathematics and Theoretical Computer Science (DIMACS), Rutgers, The State University of New Jersey, 96 Frelinghuysen Road, Piscataway, NJ, 08854, U.S.A
| |
Collapse
|
8
|
Miller KM, Teffer A, Tucker S, Li S, Schulze AD, Trudel M, Juanes F, Tabata A, Kaukinen KH, Ginther NG, Ming TJ, Cooke SJ, Hipfner JM, Patterson DA, Hinch SG. Infectious disease, shifting climates, and opportunistic predators: cumulative factors potentially impacting wild salmon declines. Evol Appl 2014; 7:812-55. [PMID: 25469162 PMCID: PMC4227861 DOI: 10.1111/eva.12164] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/06/2014] [Indexed: 12/23/2022] Open
Abstract
Emerging diseases are impacting animals under high-density culture, yet few studies assess their importance to wild populations. Microparasites selected for enhanced virulence in culture settings should be less successful maintaining infectivity in wild populations, as once the host dies, there are limited opportunities to infect new individuals. Instead, moderately virulent microparasites persisting for long periods across multiple environments are of greatest concern. Evolved resistance to endemic microparasites may reduce susceptibilities, but as barriers to microparasite distributions are weakened, and environments become more stressful, unexposed populations may be impacted and pathogenicity enhanced. We provide an overview of the evolutionary and ecological impacts of infectious diseases in wild salmon and suggest ways in which modern technologies can elucidate the microparasites of greatest potential import. We present four case studies that resolve microparasite impacts on adult salmon migration success, impact of river warming on microparasite replication, and infection status on susceptibility to predation. Future health of wild salmon must be considered in a holistic context that includes the cumulative or synergistic impacts of multiple stressors. These approaches will identify populations at greatest risk, critically needed to manage and potentially ameliorate the shifts in current or future trajectories of wild populations.
Collapse
Affiliation(s)
- Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
- Forest and Conservation Sciences, University of British ColumbiaVancouver, BC, Canada
| | - Amy Teffer
- Biology Department, University of VictoriaVictoria, BC, Canada
| | - Strahan Tucker
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Angela D Schulze
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Marc Trudel
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
- Biology Department, University of VictoriaVictoria, BC, Canada
| | - Francis Juanes
- Biology Department, University of VictoriaVictoria, BC, Canada
| | - Amy Tabata
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Norma G Ginther
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Tobi J Ming
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton UniverisyOttawa, ON, Canada
| | - J Mark Hipfner
- Environment Canada, Wildlife Research DivisionDelta, BC, Canada
| | - David A Patterson
- Fisheries and Oceans Canada, School of Resource and Environmental Management, Simon Fraser University, Science BranchBurnaby, BC, Canada
| | - Scott G Hinch
- Forest and Conservation Sciences, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
9
|
Lamaze FC, Pavey SA, Normandeau E, Roy G, Garant D, Bernatchez L. Neutral and selective processes shape MHC gene diversity and expression in stocked brook charr populations (Salvelinus fontinalis). Mol Ecol 2014; 23:1730-48. [PMID: 24795997 DOI: 10.1111/mec.12684] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The capacity of an individual to battle infection is an important fitness determinant in wild vertebrate populations. The major histocompatibility complex (MHC) genes are crucial for a host's adaptive immune system to detect pathogens. However, anthropogenic activities may disrupt natural cycles of co-evolution between hosts and pathogens. In this study, we investigated the dynamic sequence and expression variation of host parasite interactions in brook charr (Salvelinus fontinalis) in a context of past human disturbance via population supplementation from domestic individuals. To do so, we developed a new method to examine selection shaping MHC diversity within and between populations and found a complex interplay between neutral and selective processes that varied between lakes that were investigated. We provided evidence for a lower introgression rate of domestic alleles and found that parasite infection increased with domestic genomic background of individuals. We also documented an association between individual MHC alleles and parasite taxa. Finally, longer cis-regulatory minisatellites were positively correlated with MHC II down-regulation and domestic admixture, suggesting that inadvertent selection during domestication resulted in a lower immune response capacity, through a trade-off between growth and immunity, which explained the negative selection of domestic alleles at least under certain circumstances.
Collapse
|
10
|
Wellband KW, Heath DD. The relative contribution of drift and selection to transcriptional divergence among Babine Lake tributary populations of juvenile rainbow trout. J Evol Biol 2013; 26:2497-508. [DOI: 10.1111/jeb.12247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 06/20/2013] [Accepted: 08/09/2013] [Indexed: 01/14/2023]
Affiliation(s)
- K. W. Wellband
- Great Lakes Institute for Environmental Research; University of Windsor; Windsor ON Canada
| | - D. D. Heath
- Great Lakes Institute for Environmental Research; University of Windsor; Windsor ON Canada
- Department of Biological Sciences; University of Windsor; Windsor ON Canada
| |
Collapse
|
11
|
McClelland EK, Ming TJ, Tabata A, Kaukinen KH, Beacham TD, Withler RE, Miller KM. Patterns of selection and allele diversity of class I and class II major histocompatibility loci across the species range of sockeye salmon (Oncorhynchus nerka). Mol Ecol 2013; 22:4783-800. [DOI: 10.1111/mec.12424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Erin K. McClelland
- Fisheries and Oceans Canada; Pacific Biological Station 3190 Hammond Bay Rd Nanaimo BC V9T 6N7 Canada
| | - Tobi J. Ming
- Fisheries and Oceans Canada; Pacific Biological Station 3190 Hammond Bay Rd Nanaimo BC V9T 6N7 Canada
| | - Amy Tabata
- Fisheries and Oceans Canada; Pacific Biological Station 3190 Hammond Bay Rd Nanaimo BC V9T 6N7 Canada
| | - Karia H. Kaukinen
- Fisheries and Oceans Canada; Pacific Biological Station 3190 Hammond Bay Rd Nanaimo BC V9T 6N7 Canada
| | - Terry D. Beacham
- Fisheries and Oceans Canada; Pacific Biological Station 3190 Hammond Bay Rd Nanaimo BC V9T 6N7 Canada
| | - Ruth E. Withler
- Fisheries and Oceans Canada; Pacific Biological Station 3190 Hammond Bay Rd Nanaimo BC V9T 6N7 Canada
| | - Kristina M. Miller
- Fisheries and Oceans Canada; Pacific Biological Station 3190 Hammond Bay Rd Nanaimo BC V9T 6N7 Canada
| |
Collapse
|
12
|
Wellband KW, Heath DD. Environmental associations with gene transcription in Babine Lake rainbow trout: evidence for local adaptation. Ecol Evol 2013; 3:1194-208. [PMID: 23762507 PMCID: PMC3678475 DOI: 10.1002/ece3.531] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/12/2013] [Accepted: 01/17/2013] [Indexed: 12/27/2022] Open
Abstract
The molecular genetic mechanisms facilitating local adaptation in salmonids continue to be poorly characterized. Gene transcription is a highly regulated step in the expression of a phenotype and it has been shown to respond to selection and thus may be one mechanism that facilitates the development of local adaptation. Advances in molecular genetic tools and an increased understanding of the functional roles of specific genes allow us to test hypotheses concerning the role of variable environments in shaping transcription at known-function candidate loci. To address these hypotheses, wild rainbow trout were collected in their first summer and subjected to metabolic and immune challenges. We assayed gene transcription at candidate loci that play a role in the molecular genetic response to these stresses, and correlated transcription with temperature data from the streams and the abundance and diversity of bacteria as characterized by massively parallel pyrosequencing. Patterns of transcriptional regulation from resting to induced levels varied among populations for both treatments. Co-inertia analysis demonstrated significant associations between resting levels of metabolic gene transcription and thermal regime (R (2) = 0.19, P = 0.013) as well as in response to challenge (R (2) = 0.39, P = 0.001) and resting state and challenged levels of cytokine gene transcription with relative abundances of bacteria (resting: R (2) = 0.25, P = 0.009, challenged: R (2) = 0.65, P = 0.001). These results show that variable environments, even within a small geographic range (<250 km), can drive divergent selection among populations for transcription of genes related to surviving stress.
Collapse
Affiliation(s)
- Kyle W Wellband
- Great Lakes Institute for Environmental Research, University of Windsor Windsor, Ontario, Canada
| | | |
Collapse
|
13
|
Garcia de Leaniz C. William Crozier Jordan (Bill) 1962–2011 [corrected]. JOURNAL OF FISH BIOLOGY 2011; 79:1089-1093. [PMID: 22026594 DOI: 10.1111/j.1095-8649.2011.03119.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- C Garcia de Leaniz
- Swansea University Department of BioSciences Singleton Park Swansea SA2 8PP U.K
| |
Collapse
|