1
|
Reznik SY, Dolgovskaya MY, Karpun NN, Zakharchenko VY, Saulich AK, Musolin DL. The Invasive Caucasian Populations of the Brown Marmorated Stink Bug Halyomorpha halys (Hemiptera: Heteroptera: Pentatomidae) Rapidly Adapt Their Ecophysiological Traits to the Local Environmental Conditions. INSECTS 2023; 14:insects14050424. [PMID: 37233052 DOI: 10.3390/insects14050424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
The ability to rapidly adapt to new environmental conditions is a crucial prerequisite for the wide-scale invasion of pests or intentional introduction of beneficial insects. A photoperiodically induced facultative winter diapause is an important adaptation ensuring synchronization of insect development and reproduction with the local seasonal dynamics of environmental factors. We conducted a laboratory study aimed to compare photoperiodic responses of two invasive Caucasian populations of the brown marmorated stink bug Halyomorpha halys (Hemiptera: Heteroptera: Pentatomidae), which recently invaded neighboring regions with subtropical (Sukhum, Abkhazia) and temperate (Abinsk, Russia) climates. Under the temperature of 25 °C and the near-critical photoperiods of L:D = 15:9 h and 15.5:8.5 h, the population from Abinsk showed a slower pre-adult development and a stronger tendency to enter winter adult (reproductive) diapause compared to the population from Sukhum. This finding agreed with the difference between the local dynamics of the autumnal temperature decrease. Similar adaptive interpopulation differences in the patterns of diapause-inducing responses are known in other insect species but our finding is distinguished by a very short adaptation time: H. halys was first recorded in Sukhum in 2015 and in Abinsk in 2018. Thus, the differences between the compared populations might have evolved over a relatively short span of several years.
Collapse
Affiliation(s)
- Sergey Ya Reznik
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya Nab. 1, 199034 Saint Petersburg, Russia
| | - Margarita Yu Dolgovskaya
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya Nab. 1, 199034 Saint Petersburg, Russia
| | - Natalia N Karpun
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Yana Fabritsiusa Str. 2/28, 354002 Sochi, Russia
- Department of Forest Protection, Wood Science and Game Management, St. Petersburg State Forest Technical University, Institutskiy Per. 5, 194021 Saint Petersburg, Russia
| | - Vilena Ye Zakharchenko
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Yana Fabritsiusa Str. 2/28, 354002 Sochi, Russia
| | - Aida Kh Saulich
- Department of Entomology, Saint Petersburg State University, Universitetskaya Nab. 7-9, 199034 Saint Petersburg, Russia
| | - Dmitrii L Musolin
- European and Mediterranean Plant Protection Organization, 21 Boulevard Richard Lenoir, 75011 Paris, France
| |
Collapse
|
2
|
Walsh GC, Sosa AJ, Mc Kay F, Maestro M, Hill M, Hinz HL, Paynter Q, Pratt PD, Raghu S, Shaw R, Tipping PW, Winston RL. Is Biological Control of Weeds Conservation’s Blind Spot? THE QUARTERLY REVIEW OF BIOLOGY 2023. [DOI: 10.1086/723930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
3
|
Stahlke AR, Bitume EV, Özsoy ZA, Bean DW, Veillet A, Clark MI, Clark EI, Moran P, Hufbauer RA, Hohenlohe PA. Hybridization and range expansion in tamarisk beetles ( Diorhabda spp.) introduced to North America for classical biological control. Evol Appl 2022; 15:60-77. [PMID: 35126648 PMCID: PMC8792477 DOI: 10.1111/eva.13325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/31/2023] Open
Abstract
With the global rise of human-mediated translocations and invasions, it is critical to understand the genomic consequences of hybridization and mechanisms of range expansion. Conventional wisdom is that high genetic drift and loss of genetic diversity due to repeated founder effects will constrain introduced species. However, reduced genetic variation can be countered by behavioral aspects and admixture with other distinct populations. As planned invasions, classical biological control (biocontrol) agents present important opportunities to understand the mechanisms of establishment and spread in a novel environment. The ability of biocontrol agents to spread and adapt, and their effects on local ecosystems, depends on genomic variation and the consequences of admixture in novel environments. Here, we use a biocontrol system to examine the genome-wide outcomes of introduction, spread, and hybridization in four cryptic species of a biocontrol agent, the tamarisk beetle (Diorhabda carinata, D. carinulata, D. elongata, and D. sublineata), introduced from six localities across Eurasia to control the invasive shrub tamarisk (Tamarix spp.) in western North America. We assembled a de novo draft reference genome and applied RADseq to over 500 individuals across laboratory cultures, the native ranges, and the introduced range. Despite evidence of a substantial genetic bottleneck among D. carinulata in N. America, populations continue to establish and spread, possibly due to aggregation behavior. We found that D. carinata, D. elongata, and D. sublineata hybridize in the field to varying extents, with D. carinata × D. sublineata hybrids being the most abundant. Genetic diversity was greater at sites with hybrids, highlighting potential for increased ability to adapt and expand. Our results demonstrate the complex patterns of genomic variation that can result from introduction of multiple ecotypes or species for biocontrol, and the importance of understanding them to predict and manage the effects of biocontrol agents in novel ecosystems.
Collapse
Affiliation(s)
- Amanda R. Stahlke
- Initiative for Bioinformatics and Evolutionary StudiesDepartment of Biological SciencesUniversity of IdahoMoscowIdahoUSA
- U.S. Department of Agriculture, Agricultural Research Service (USDA‐ARS)Beltsville Agricultural Research Center, Bee Research LaboratoryBeltsvilleMarylandUSA
| | - Ellyn V. Bitume
- U.S. Department of Agriculture, Agricultural Research Service (USDA‐ARS), Invasive Species and Pollinator Health Research UnitAlbanyCaliforniaUSA
- U.S. Department of Agriculture, Forest Service (USDA‐FS), Pacific Southwest, Institute of Pacific Islands ForestryHiloHawaiiUSA
| | - Zeynep A. Özsoy
- Department of Biological SciencesColorado Mesa UniversityGrand JunctionColoradoUSA
| | - Dan W. Bean
- Colorado Department of AgriculturePalisadeColoradoUSA
| | - Anne Veillet
- Initiative for Bioinformatics and Evolutionary StudiesDepartment of Biological SciencesUniversity of IdahoMoscowIdahoUSA
| | - Meaghan I. Clark
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Eliza I. Clark
- Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
| | - Patrick Moran
- U.S. Department of Agriculture, Agricultural Research Service (USDA‐ARS), Invasive Species and Pollinator Health Research UnitAlbanyCaliforniaUSA
| | - Ruth A. Hufbauer
- Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
| | - Paul A. Hohenlohe
- Initiative for Bioinformatics and Evolutionary StudiesDepartment of Biological SciencesUniversity of IdahoMoscowIdahoUSA
| |
Collapse
|
4
|
Wepprich T, Grevstad FS. Divergence in Photoperiod Responses of a Classical Biological Control Agent, Galerucella calmariensis (Coleoptera: Chrysomelidae), Across a Climatic and Latitudinal Gradient. ENVIRONMENTAL ENTOMOLOGY 2021; 50:306-316. [PMID: 33346818 DOI: 10.1093/ee/nvaa161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 06/12/2023]
Abstract
A key knowledge gap in classical biological control is to what extent insect agents evolve to novel environments. The introduction of biological control agents to new photoperiod regimes and climates may disrupt the coordination of diapause timing that evolved to the growing season length in the native range. We tested whether populations of Galerucella calmariensis L. have evolved in response to the potential mismatch of their diapause timing since their intentional introduction to the United States from Germany in the 1990s. Populations collected from 39.4° to 48.8° latitude in the western United States were reared in growth chambers to isolate the effects of photoperiod on diapause induction and development time. For all populations, shorter day lengths increased the proportion of beetles that entered diapause instead of reproducing. The critical photoperiods, or the day length at which half of a population diapauses, differed significantly among the sampled populations, generally decreasing at lower latitudes. The latitudinal trend reflects changes in growing season length, which determines the number of generations possible, and in local day lengths, at the time when beetles are sensitive to this cue. Development times were similar across populations, with one exception, and did not vary with photoperiod. These results show that there was sufficient genetic variation from the two German source populations to evolve different photoperiod responses across a range of environmental conditions. This study adds to the examples of rapid evolution of seasonal adaptations in introduced insects.
Collapse
Affiliation(s)
- Tyson Wepprich
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
| | - Fritzi S Grevstad
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
| |
Collapse
|
5
|
Sethuraman A, Janzen FJ, Weisrock DW, Obrycki JJ. Insights from Population Genomics to Enhance and Sustain Biological Control of Insect Pests. INSECTS 2020; 11:E462. [PMID: 32708047 PMCID: PMC7469154 DOI: 10.3390/insects11080462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 01/25/2023]
Abstract
Biological control-the use of organisms (e.g., nematodes, arthropods, bacteria, fungi, viruses) for the suppression of insect pest species-is a well-established, ecologically sound and economically profitable tactic for crop protection. This approach has served as a sustainable solution for many insect pest problems for over a century in North America. However, all pest management tactics have associated risks. Specifically, the ecological non-target effects of biological control have been examined in numerous systems. In contrast, the need to understand the short- and long-term evolutionary consequences of human-mediated manipulation of biological control organisms for importation, augmentation and conservation biological control has only recently been acknowledged. Particularly, population genomics presents exceptional opportunities to study adaptive evolution and invasiveness of pests and biological control organisms. Population genomics also provides insights into (1) long-term biological consequences of releases, (2) the ecological success and sustainability of this pest management tactic and (3) non-target effects on native species, populations and ecosystems. Recent advances in genomic sequencing technology and model-based statistical methods to analyze population-scale genomic data provide a much needed impetus for biological control programs to benefit by incorporating a consideration of evolutionary consequences. Here, we review current technology and methods in population genomics and their applications to biological control and include basic guidelines for biological control researchers for implementing genomic technology and statistical modeling.
Collapse
Affiliation(s)
- Arun Sethuraman
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA
| | - Fredric J Janzen
- Department of Ecology, Evolution, & Organismal Biology, Iowa State University, Ames, IA 50010, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI 49060, USA
| | - David W Weisrock
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - John J Obrycki
- Department of Entomology, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
6
|
Sun Y, Ding J, Siemann E, Keller SR. Biocontrol of invasive weeds under climate change: progress, challenges and management implications. CURRENT OPINION IN INSECT SCIENCE 2020; 38:72-78. [PMID: 32200301 DOI: 10.1016/j.cois.2020.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Climate change is predicted to increase the frequency and impact of plant invasions, creating a need for new control strategies as part of mitigation planning. The complex interactions between invasive plants and biocontrol agents have created distinct policy and management challenges, including the effectiveness and risk assessment of biocontrol under different climate change scenarios. In this brief review, we synthesize recent studies describing the potential ecological and evolutionary outcomes for biocontrol agents/candidates for plant invaders under climate change. We also discuss potential methodologies that can be used as a framework for predicting ecological and evolutionary responses of plant-natural enemy interactions under climate change, and for refining our understanding of the efficacy and risk of using biocontrol on invasive plants.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biology/Ecology & Evolution, University of Fribourg, 1700 Fribourg, Switzerland.
| | - Jianqing Ding
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Evan Siemann
- Biosciences Department, Rice University, Houston, TX USA
| | | |
Collapse
|
7
|
Müller-Schärer H, Bouchemousse S, Litto M, McEvoy PB, Roderick GK, Sun Y. How to better predict long-term benefits and risks in weed biocontrol: an evolutionary perspective. CURRENT OPINION IN INSECT SCIENCE 2020; 38:84-91. [PMID: 32240967 DOI: 10.1016/j.cois.2020.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 06/11/2023]
Abstract
Classical biological control (also called importation biological control) of weeds has a remarkable track record for efficiency and safety, but further improvement is still needed, particularly to account for potential evolutionary changes after release. Here, we discuss the increasing yet limited evidence of post-introduction evolution and describe approaches to predict evolutionary change. Recent advances include using experimental evolution studies over several generations that combine -omics tools with behavioral bioassays. This novel approach in weed biocontrol is well suited to explore the potential for rapid evolutionary change in real-time and thus can be used to estimate more accurately potential benefits and risks of agents before their importation. We outline this approach with a chrysomelid beetle used to control invasive common ragweed.
Collapse
Affiliation(s)
| | | | - Maria Litto
- Dep. Biology, University of Fribourg, Fribourg, Switzerland
| | - Peter B McEvoy
- Oregon State University, Corvallis, Oregon, United States
| | | | - Yan Sun
- Dep. Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
8
|
Evidence does not support the targeting of cryptic invaders at the subspecies level using classical biological control: the example of Phragmites. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02014-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Szűcs M, Salerno PE, Teller BJ, Schaffner U, Littlefield JL, Hufbauer RA. The effects of agent hybridization on the efficacy of biological control of tansy ragwort at high elevations. Evol Appl 2019; 12:470-481. [PMID: 30828368 PMCID: PMC6383738 DOI: 10.1111/eva.12726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 12/02/2022] Open
Abstract
The success rate of weed biological control programs is difficult to evaluate and the factors affecting it remain poorly understood. One aspect which is still unclear is whether releases of multiple, genetically distinct populations of a biological control agent increase the likelihood of success, either by independent colonization of different environmental niches or by hybridization that may increase the agent's fitness and adaptive ability. Since hybridization is often invoked to explain the success of unintentionally introduced exotic species, hybridization among biocontrol agents may be similarly important in shaping the effectiveness of biological control programs. In this study, we first evaluated intraspecific hybridization among populations of a weed biological control agent, the ragwort flea beetle, Longitarsus jacobaeae. These insects were introduced as part of a classical biological control program from Italy and Switzerland. We genotyped 204 individuals from 15 field sites collected in northwest Montana, and an additional 52 individuals that served as references for Italian and Swiss populations. Bayesian analysis of population structure assigned seven populations as pure Swiss and one population as pure Italian, while intraspecific hybrid individuals were detected in seven populations at frequencies of 5%-69%. Subsequently, we conducted a 2-year exclusion experiment using six sites with Swiss beetles and three with hybrid beetles to evaluate the impact of biological control. We found that biological control by Swiss beetles and by hybrid beetles is effective, increasing mortality of the target plant, Jacobaea vulgaris, by 42% and 45%, and reducing fecundity of surviving plants by 44% and 72%, respectively. Beetle densities were higher and mortality of larger plants was higher at sites with hybrids present. These results suggest that hybridization of ragwort flea beetles at high-elevation sites may improve biological control of tansy ragwort and that intraspecific hybridization of agents could benefit biological control programs.
Collapse
Affiliation(s)
- Marianna Szűcs
- Department of EntomologyMichigan State UniversityEast LansingMichigan
- Department of Bioagricultural Sciences and Pest ManagementColorado State UniversityFort CollinsColorado
| | | | - Brittany J. Teller
- Department of BiologyPennsylvania State UniversityState CollegePennsylvania
| | - Urs Schaffner
- Centre for Agriculture and Biosciences InternationalDelémontSwitzerland
| | - Jeffrey L. Littlefield
- Department of Land Resources and Environmental SciencesMontana State UniversityBozemanMontana
| | - Ruth A. Hufbauer
- Department of Bioagricultural Sciences and Pest ManagementColorado State UniversityFort CollinsColorado
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColorado
| |
Collapse
|
10
|
Magoga G, Sahin DC, Fontaneto D, Montagna M. Barcoding of Chrysomelidae of Euro-Mediterranean area: efficiency and problematic species. Sci Rep 2018; 8:13398. [PMID: 30194432 PMCID: PMC6128942 DOI: 10.1038/s41598-018-31545-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/03/2018] [Indexed: 11/16/2022] Open
Abstract
Leaf beetles (Coleoptera: Chrysomelidae), with more than 37,000 species worldwide and about 2,300 in the Euro-Mediterranean region, are an ecological and economical relevant family, making their molecular identification of interest also in agriculture. This study, part of the Mediterranean Chrysomelidae Barcoding project (www.c-bar.org), aims to: (i) develop a reference Cytochrome c oxidase I (COI) library for the molecular identification of the Euro-Mediterranean Chrysomelidae; (ii) test the efficiency of DNA barcoding for leaf beetles identification; (iii) develop and compare optimal thresholds for distance-based identifications estimated at family and subfamily level, minimizing false positives and false negatives. Within this study, 889 COI nucleotide sequences of 261 species were provided; after the inclusion of information from other sources, a dataset of 7,237 sequences (542 species) was analysed. The average intra-interspecific distances were in the range of those recorded for Coleoptera: 1.6–24%. The estimated barcoding efficiency (~94%) confirmed the usefulness of this tool for Chrysomelidae identification. The few cases of failure were recorded for closely related species (e.g., Cryptocephalus marginellus superspecies, Cryptocephalus violaceus - Cryptocephalus duplicatus and some Altica species), even with morphologically different species sharing the same COI haplotype. Different optimal thresholds were achieved for the tested taxonomic levels, confirming that group-specific thresholds significantly improve molecular identifications.
Collapse
Affiliation(s)
- Giulia Magoga
- Dipartimento di Scienze Agrarie e Ambientali - Università degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - Didem Coral Sahin
- Directorate of Plant Protection Central Research Institute, Yenimahalle, Ankara, Turkey
| | - Diego Fontaneto
- Consiglio Nazionale delle Ricerche-Istituto per lo Studio degli Ecosistemi, Largo Tonolli 50, 28922, Verbania, Italy
| | - Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali - Università degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy.
| |
Collapse
|
11
|
O'Neill EM, Beard KH, Fox CW. Body Size and Life History Traits in Native and Introduced Populations of Coqui Frogs. COPEIA 2018. [DOI: 10.1643/ce-17-642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
O’Neill EM, Hearn EJ, Cogbill JM, Kajita Y. Rapid evolution of a divergent ecogeographic cline in introduced lady beetles. Evol Ecol 2017. [DOI: 10.1007/s10682-017-9908-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Sun Y, Brönnimann O, Roderick GK, Poltavsky A, Lommen STE, Müller‐Schärer H. Climatic suitability ranking of biological control candidates: a biogeographic approach for ragweed management in Europe. Ecosphere 2017. [DOI: 10.1002/ecs2.1731] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Yan Sun
- Department of Environmental Science, Policy & Management University of California Berkeley California 94720 USA
| | - Olivier Brönnimann
- Department of Ecology & Evolution University of Lausanne Lausanne 1015 Switzerland
| | - George K. Roderick
- Department of Environmental Science, Policy & Management University of California Berkeley California 94720 USA
| | - Alexander Poltavsky
- Botanical Garden of the Southern Federal University Rostov‐on‐Don 344041 Russia
| | - Suzanne T. E. Lommen
- Department of Biology/Ecology & Evolution University of Fribourg Fribourg 1700 Switzerland
| | - Heinz Müller‐Schärer
- Department of Biology/Ecology & Evolution University of Fribourg Fribourg 1700 Switzerland
| |
Collapse
|
14
|
Roditakis E, Morin S, Baixeras J. Is Bactra bactrana (Kennel, 1901) a novel pest of sweet peppers? BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:161-167. [PMID: 26696371 DOI: 10.1017/s0007485315000917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This is the first report of Bactra bactrana (Kennel, 1901) (Lepidoptera: Tortricidae) attacking a major solanaceous crop, sweet pepper Capsicum annuum L. The infestation was detected in two greenhouses at the area of Tympaki (Southern Crete, Greece). The moth larvae caused typical symptoms of a fruit borer with numerous small holes on the surface of the peppers and extensive damage on the inside of the fruit as a result of the feeding activity. Unknown factors facilitated this major shift in host range since B. bactrana is typically a stem borer of sedges. In addition, the pest status of B. bactrana is currently under question, as in both cases the infestations by the moth were associated with significant yield losses. B. bactrana was moderately controlled with chemicals registered for Lepidoptera management in sweet pepper due to the boring nature of the infestation. Some comparative taxonomic notes are provided to facilitate accurate pest discrimination of related Bactra species. Finally, biological attributes of the species are summarized and are discussed from pest control and ecological perspectives. Because Bactra species have been used in augmentative releases for the control of sage, the implications of our findings on the release of biocontrol agents are placed in perspective.
Collapse
Affiliation(s)
- E Roditakis
- Laboratory of Entomology,Hellenic Agricultural Organisation 'Demeter', Plant Protection Institute of Heraklion,Heraklion,Greece
| | - S Morin
- The Robert H. Smith Faculty of Agriculture, Food and Environment,Department of Entomology,The Hebrew University of Jerusalem,Rehovot,Israel
| | - J Baixeras
- Universitat de València, Institut Cavanilles de Biodiversitat i Biologia Evolutiva,Paterna,Spain
| |
Collapse
|
15
|
Grevstad FS, Coop LB. The consequences of photoperiodism for organisms in new climates. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2015; 25:1506-1517. [PMID: 26552260 DOI: 10.1890/14-2071.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A change in climate is known to affect seasonal timing (phenology) of the life stages of poikilothermic organisms whose development depends on temperature. Less understood is the potential for even greater disruption to the life cycle when a phenology shift exposes photoperiod-sensitive life stages to new day lengths. We present a conceptual framework and model to investigate the ways that photoperiod-cued diapause can interact with a change in climate or latitude to influence voltinism in poikilothermic organisms. Our degree-day phenology model combines detailed spatial climate data, latitude- and date-specific photoperiods, and development and photoperiod response parameters. As an example, we model the biological control beetle Galerucella calmariensis and map the number of generations expected following its introduction into diverse climates throughout the continental United States. Incorporation of photoperiodism results in a complex geography of voltinism that differs markedly from predictions of traditional phenology models. Facultative multivoltine species will be prone to univoltism when transported to either warmer or southern climates due to exposure of the sensitive stage to shorter day lengths. When moved to more northern locations, they may attempt too many generations for the season duration thereby exposing vulnerable life stages to harsh weather in the fall. We further show that even small changes in temperature can result in large and unexpected shifts in voltinism. Analogous effects may be expected for organisms from wide variety of taxa that use photoperiod as a seasonal cue during some stage of their life cycle. Our approach is useful for understanding the performance and impacts of introduced pests and beneficial organisms as well as for predicting responses of resident species to climate change and climate variability.
Collapse
|
16
|
Temporal Genetic Dynamics of an Invasive Species, Frankliniella occidentalis (Pergande), in an Early Phase of Establishment. Sci Rep 2015; 5:11877. [PMID: 26138760 PMCID: PMC4490395 DOI: 10.1038/srep11877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/10/2015] [Indexed: 01/21/2023] Open
Abstract
Many species can successfully colonize new areas despite their propagules having low genetic variation. We assessed whether the decreased genetic diversity could result in temporal fluctuations of genetic parameters of the new populations of an invasive species, western flower thrips, Frankliniella occidentalis, using mitochondrial and microsatellite markers. This study was conducted in eight localities from four climate regions in China, where F. occidentalis was introduced in the year 2000 and had lower genetic diversity than its native populations. We also tested the level of genetic differentiation in these introduced populations. The genetic diversity of the samples at different years in the same locality was not significantly different from each other in most localities. FST and STRUCTURE analysis also showed that most temporal population comparisons from the same sites were not significantly differentiated. Our results showed that the invasive populations of F. occidentalis in China can maintain temporal stability in genetic composition at an early phase of establishment despite having lower genetic diversity than in their native range.
Collapse
|
17
|
McDonald G, Umina PA, Macfadyen S, Mangano P, Hoffmann AA. Predicting the timing of first generation egg hatch for the pest redlegged earth mite Halotydeus destructor (Acari: Penthaleidae). EXPERIMENTAL & APPLIED ACAROLOGY 2015; 65:259-76. [PMID: 25528452 DOI: 10.1007/s10493-014-9876-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 12/11/2014] [Indexed: 05/24/2023]
Abstract
Integrated pest management in Australian winter grain crops is challenging, partly because the timing and severity of pest outbreaks cannot currently be predicted, and this often results in prophylactic applications of broad spectrum pesticides. We developed a simple model to predict the median emergence in autumn of pest populations of the redlegged earth mite, Halotydeus destructor, a major field crop and pasture pest in southern Australia. Previous data and observations suggest that rainfall and temperature are critical for post-diapause egg hatch. We evaluated seven models that combined rainfall and temperature thresholds derived using three approaches against previously recorded hatch dates and 2013 field records. The performance of the models varied between Western Australia and south-eastern Australian States. In Western Australia, the key attributes of the best fitting model were more than 5 mm rain followed by mean day temperatures of below 20.5 °C for 10 days. In south-eastern Australia, the most effective model involved a temperature threshold reduced to 16 °C. These regional differences may reflect adaptation of H. destructor in south-eastern Australia to varied and uncertain temperature and rainfall regimes of late summer and autumn, relative to the hot and dry Mediterranean-type climate in Western Australia. Field sampling in 2013 revealed a spread of early hatch dates in isolated patches of habitat, ahead of predicted paddock scale hatchings. These regional models should assist in monitoring and subsequent management of H. destructor at the paddock scale.
Collapse
Affiliation(s)
- Garrick McDonald
- School of Biosciences, The University of Melbourne, 30 Flemington Rd, Parkville, VIC, 3052, Australia,
| | | | | | | | | |
Collapse
|
18
|
McEvoy PB, Higgs KM, Coombs EM, Karaçetin E, Ann Starcevich L. Evolving while invading: rapid adaptive evolution in juvenile development time for a biological control organism colonizing a high-elevation environment. Evol Appl 2012; 5:524-36. [PMID: 22949927 PMCID: PMC3407870 DOI: 10.1111/j.1752-4571.2012.00278.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 11/28/2022] Open
Abstract
We report evidence of adaptive evolution in juvenile development time on a decadal timescale for the cinnabar moth Tyria jacobaeae (Lepidoptera: Arctiidae) colonizing new habitats and hosts from the Willamette Valley to the Coast Range and Cascades Mountains in Oregon. Four lines of evidence reveal shorter egg to pupa juvenile development times evolved in the mountains, where cooler temperatures shorten the growing season: (i) field observations showed that the mountain populations have shorter phenological development; (ii) a common garden experiment revealed genetic determination of phenotypic differences in juvenile development time between Willamette Valley and mountain populations correlated with the growing season; (iii) a laboratory experiment rearing offspring from parental crosses within and between Willamette Valley and Cascades populations demonstrated polygenic inheritance, high heritability, and genetic determination of phenotypic differences in development times; and (iv) statistical tests that exclude random processes (founder effect, genetic drift) in favor of natural selection as explanations for observed differences in phenology. These results support the hypothesis that rapid adaptation to the cooler mountain climate occurred in populations established from populations in the warmer valley climate. Our findings should motivate regulators to require evaluation of evolutionary potential of candidate biological control organisms prior to release.
Collapse
|
19
|
Szűcs M, Eigenbrode SD, Schwarzländer M, Schaffner U. Hybrid vigor in the biological control agent, Longitarsus jacobaeae. Evol Appl 2012; 5:489-97. [PMID: 22949924 PMCID: PMC3407867 DOI: 10.1111/j.1752-4571.2012.00268.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/18/2012] [Indexed: 11/30/2022] Open
Abstract
Hybridization is an important evolutionary mechanism that can increase the fitness and adaptive potential of populations. A growing body of evidence supports its importance as a key factor contributing to rapid evolution in invasive species, but the effects of hybridization have rarely been assessed in intentionally introduced biological control agents. We investigated hybrids between a Swiss and an Italian population of the beetle, Longitarsus jacobaeae, a biological control agent of Jacobaea vulgaris, by reciprocally crossing individuals in the laboratory. Phenological traits of F1 and F2 hybrid lineages showed intermediate values relative to their parental populations, with some maternal influence. Fitness of the F2 generation, measured as lifetime fecundity, was higher than that of the Italian parent in one of the lineages and higher than that of either parent in the other hybrid lineage. The increased fecundity of hybrids may benefit tansy ragwort biological control by increasing the establishment success and facilitating a more rapid population buildup in the early generations. Even though the long-term consequences of hybridization in this and other systems are hard to predict, intentional hybridization may be a useful tool in biological control strategies as it would promote similar microevolutionary processes operating in numerous targeted invasive species.
Collapse
Affiliation(s)
- Marianna Szűcs
- Department of Plant, Soil, and Entomological Sciences, University of IdahoMoscow, ID, USA
- Department of Bioagricultural Sciences and Pest Management, Colorado State UniversityFort Collins, CO, USA
- *Correspondence Marianna Szűcs, Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523-1177, USA. Tel.: 1-970-491-6945; fax: 1-970-491-3862; e-mail:
| | - Sanford D Eigenbrode
- Department of Plant, Soil, and Entomological Sciences, University of IdahoMoscow, ID, USA
| | - Mark Schwarzländer
- Department of Plant, Soil, and Entomological Sciences, University of IdahoMoscow, ID, USA
| | | |
Collapse
|