1
|
A Review of the GSTM1 Null Genotype Modifies the Association between Air Pollutant Exposure and Health Problems. Int J Genomics 2023; 2023:4961487. [PMID: 36793931 PMCID: PMC9925255 DOI: 10.1155/2023/4961487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Air pollution is one of the significant environmental risks known as the cause of premature deaths. It has deleterious effects on human health, including deteriorating respiratory, cardiovascular, nervous, and endocrine functions. Exposure to air pollution stimulates reactive oxygen species (ROS) production in the body, which can further cause oxidative stress. Antioxidant enzymes, such as glutathione S-transferase mu 1 (GSTM1), are essential to prevent oxidative stress development by neutralizing excess oxidants. When the antioxidant enzyme function is lacking, ROS can accumulate and, thus, cause oxidative stress. Genetic variation studies from different countries show that GSTM1 null genotype dominates the GSTM1 genotype in the population. However, the impact of the GSTM1 null genotype in modifying the association between air pollution and health problem is not yet clear. This study will elaborate on GSTM1's null genotype role in modifying the relationship between air pollution and health problems.
Collapse
|
2
|
Zeng X, Tian G, Zhu J, Yang F, Zhang R, Li H, An Z, Li J, Song J, Jiang J, Liu D, Wu W. Air pollution associated acute respiratory inflammation and modification by GSTM1 and GSTT1 gene polymorphisms: a panel study of healthy undergraduates. Environ Health 2023; 22:14. [PMID: 36703205 PMCID: PMC9881318 DOI: 10.1186/s12940-022-00954-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Epidemiological evidence has linked air pollution with adverse respiratory outcomes, but the mechanisms underlying susceptibility to air pollution remain unclear. This study aimed to investigate the role of glutathione S-transferase (GST) polymorphism in the association between air pollution and lung function levels. A total of 75 healthy young volunteers aged 18-20 years old were recruited for six follow-up visits and examinations. Spirometry was conducted to obtain lung function parameters such as forced vital capacity (FVC), and forced expiratory volume in 1 s (FEV1). Nasal fluid concentrations of interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), and 8-epi-prostaglandin F2α (8-epi-PGF2a) were measured using ELISA kits. Linear mixed-effect models were used to evaluate the association of air pollutants with respiratory outcomes. Additionally, polymorphisms of glutathione S-transferase mu 1 (GSTM1) and glutathione S-transferase theta 1 (GSTT1) were estimated to explore its role in the association between air pollutants and lung function. We found that short-term exposure to atmospheric particulates such as PM2.5 and PM10 can cause an increase in nasal biomarkers of inflammation, oxidative stress, and lung function, while air gaseous pollutant exposure is linked with decreased lung function, except for CO. Stratification analyses showed that an increase in nasal inflammatory cytokines caused by exposure to atmospheric particulates is more obvious in subjects with GSTM1-sufficient (GSTM1+) than GSTM1-null (GSTM1-), while elevated lung function levels due to air particles are more significant in subjects with the genotype of GSTM1- when compared to GSTM1+. As for air gaseous pollutants, decreased lung function levels caused by O3, SO2, and NO2 exposure is more manifest in subjects with the genotype of GSTM1- compared to GSTM1+. Taken together, short-term exposure to air pollutants is associated with alterations in nasal biomarkers and lung function levels in young healthy adults, and susceptible genotypes play an important mediation role in the association between exposure to air pollutants and inflammation, oxidative stress, and lung function levels.
Collapse
Affiliation(s)
- Xiang Zeng
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
- School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang Province, China
| | - Ge Tian
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Jingfang Zhu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Fuyun Yang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Rui Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Huijun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Dongling Liu
- School of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang Province, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China.
| |
Collapse
|
3
|
Dai X, Dharmage SC, Lodge CJ. Interactions between glutathione S-transferase genes and household air pollution on asthma and lung function. Front Mol Biosci 2022; 9:955193. [PMID: 36250015 PMCID: PMC9557149 DOI: 10.3389/fmolb.2022.955193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Oxidative stress is one of the main pathophysiological mechanisms for chronic respiratory disease. Glutathione S-transferase (GST) genes play important roles in antioxidant defences and may influence respiratory health. Although there is not consistent evidence that the three commonly studied genes of GSTM1, GSTT1 and GSTP1 are associated directly with respiratory outcomes, they seem to be related to disease susceptibility if exposure interactions are taken into account. Exposure to household air pollution may be particularly important in increasing lung oxidative stress. This review summarizes the relationships between GST genes, household air pollution and asthma and impaired lung function. Our findings support a role for GST polymorphisms in susceptibility to asthma and impaired lung function via oxidative stress pathways. Future research should additionally consider the role of gene-gene interactions, multiple environmental exposures, and gender in these complex associations, that are involved in maintaining antioxidant defences and lung health.
Collapse
|
4
|
Dai X, Bui DS, Lodge C. Glutathione S-Transferase Gene Associations and Gene-Environment Interactions for Asthma. Curr Allergy Asthma Rep 2021; 21:31. [PMID: 33970355 DOI: 10.1007/s11882-021-01005-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW Asthma is one of the most common chronic inflammatory airway diseases. Airway oxidative stress is defined as an imbalance between oxidative and antioxidative processes in the airways. There is evidence that chronic damage caused by oxidative stress may be involved in asthmatic inflammation and reduced lung function. Given their biological antioxidant function, the antioxidant genes in the glutathione S-transferase (GST) family are believed to be associated with development and progression of asthma. This review aims to summarize evidence on the relationship between GST gene polymorphisms and asthma and interactions with environmental exposures. RECENT FINDINGS The current evidence on the association between GST genes and asthma is still weak or inconsistent. Failure to account for environmental exposures may explain the lack of consistency. It is highly likely that environmental exposures interact with GST genes involved in the antioxidant pathway. According to current knowledge, carriers of GSTM1(rs366631)/T1(rs17856199) null genotypes and GSTP1 Val105 (rs1695) genotypes are more susceptible to environmental oxidative exposures and have a higher risk of asthma. Some doubt remains regarding the presence or absence of interactions with different environmental exposures in different study scenarios. The GST-environment interaction may depend on exposure type, asthma phenotype or endotype, ethnics, and other complex gene-gene interaction. Future studies could be improved by defining precise asthma endotypes, involving multiple gene-gene interactions, and increasing sample size and power. Although there is evidence for an interaction between GST genes, and environmental exposures in relation to asthma, results are not concordant. Further investigations are needed to explore the reasons behind the inconsistency.
Collapse
Affiliation(s)
- Xin Dai
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3 207 Bouverie Street, Parkville, VIC, 3010, Australia
| | - Dinh S Bui
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3 207 Bouverie Street, Parkville, VIC, 3010, Australia
| | - Caroline Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3 207 Bouverie Street, Parkville, VIC, 3010, Australia.
| |
Collapse
|
5
|
Dai X, Bui DS, Perret JL, Lowe AJ, Frith PA, Bowatte G, Thomas PS, Giles GG, Hamilton GS, Tsimiklis H, Hui J, Burgess J, Win AK, Abramson MJ, Walters EH, Dharmage SC, Lodge CJ. Exposure to household air pollution over 10 years is related to asthma and lung function decline. Eur Respir J 2021; 57:13993003.00602-2020. [PMID: 32943407 DOI: 10.1183/13993003.00602-2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION We investigated if long-term household air pollution (HAP) is associated with asthma and lung function decline in middle-aged adults, and whether these associations were modified by glutathione S-transferase (GST) gene variants, ventilation and atopy. MATERIALS AND METHODS Prospective data on HAP (heating, cooking, mould and smoking) and asthma were collected in the Tasmanian Longitudinal Health Study (TAHS) at mean ages 43 and 53 years (n=3314). Subsamples had data on lung function (n=897) and GST gene polymorphisms (n=928). Latent class analysis was used to characterise longitudinal patterns of exposure. Regression models assessed associations and interactions. RESULTS We identified seven longitudinal HAP profiles. Of these, three were associated with persistent asthma, greater lung function decline and % reversibility by age 53 years compared with the "Least exposed" reference profile for those who used reverse-cycle air conditioning, electric cooking and no smoking. The "All gas" (OR 2.64, 95% CI 1.22-5.70), "Wood heating/smoking" (OR 2.71, 95% CI 1.21-6.05) and "Wood heating/gas cooking" (OR 2.60, 95% CI 1.11-6.11) profiles were associated with persistent asthma, as well as greater lung function decline and % reversibility. Participants with the GSTP1 Ile/Ile genotype were at a higher risk of asthma or greater lung function decline when exposed compared with other genotypes. Exhaust fan use and opening windows frequently may reduce the adverse effects of HAP produced by combustion heating and cooking on current asthma, presumably through increasing ventilation. CONCLUSIONS Exposures to wood heating, gas cooking and heating, and tobacco smoke over 10 years increased the risks of persistent asthma, lung function decline and % reversibility, with evidence of interaction by GST genes and ventilation.
Collapse
Affiliation(s)
- Xin Dai
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Dinh S Bui
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Jennifer L Perret
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Adrian J Lowe
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Peter A Frith
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Gayan Bowatte
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia.,National Institute of Fundamental Studies, Kandy, Sri Lanka.,Dept of Basic Sciences, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Paul S Thomas
- Inflammation and Infection Research, Faculty of Medicine, University of New South Wales, Randwick, Australia
| | - Graham G Giles
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
| | - Garun S Hamilton
- Dept of Lung and Sleep Medicine, Monash Health, Melbourne, Australia.,School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Helen Tsimiklis
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Jennie Hui
- The PathWest Laboratory Medicine of West Australia, Perth, Australia
| | - John Burgess
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Aung K Win
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia.,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Australia.,Genetic Medicine, Royal Melbourne Hospital, Parkville, Australia
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - E Haydn Walters
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia.,School of Medicine, University of Tasmania, Hobart, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia .,Equal senior authors
| | - Caroline J Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia.,Equal senior authors
| |
Collapse
|
6
|
Dai X, Bowatte G, Lowe AJ, Matheson MC, Gurrin LC, Burgess JA, Dharmage SC, Lodge CJ. Do Glutathione S-Transferase Genes Modify the Link between Indoor Air Pollution and Asthma, Allergies, and Lung Function? A Systematic Review. Curr Allergy Asthma Rep 2018; 18:20. [PMID: 29557517 DOI: 10.1007/s11882-018-0771-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Glutathione S-transferase (GST) genes are involved in oxidative stress management and may modify the impact of indoor air pollution. We aimed to assess the influence of GST genes on the relationship between indoor air pollution and allergy/lung function. RECENT FINDINGS Our systematic review identified 22 eligible studies, with 15 supporting a gene-environment interaction. Carriers of GSTM1/T1 null and GSTP1 val genotypes were more susceptible to indoor air pollution exposures, having a higher risk of asthma and lung function deficits. However, findings differed in terms of risk alleles and specific exposures. High-exposure heterogeneity precluded meta-analysis. We found evidence that respiratory effects of indoor air pollution depend on the individual's GST profile. This may help explain the inconsistent associations found when gene-environment interactions are not considered. Future studies should aim to improve the accuracy of pollution assessment and investigate this finding in different populations.
Collapse
Affiliation(s)
- Xin Dai
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia
| | - Gayan Bowatte
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia
| | - Adrian J Lowe
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia.,Murdoch Childrens Research Institute, Melbourne, Australia
| | - Melanie C Matheson
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia
| | - Lyle C Gurrin
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia
| | - John A Burgess
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia.,Murdoch Childrens Research Institute, Melbourne, Australia
| | - Caroline J Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia. .,Murdoch Childrens Research Institute, Melbourne, Australia.
| |
Collapse
|
7
|
Kreiner-Møller E, Strachan DP, Linneberg A, Husemoen LLN, Bisgaard H, Bønnelykke K. 17q21 gene variation is not associated with asthma in adulthood. Allergy 2015; 70:107-14. [PMID: 25331618 DOI: 10.1111/all.12537] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND 17q21 gene variants are the strongest known genetic determinants for childhood asthma and have been reported to interact with environmental tobacco smoke exposure in childhood. It remains unclear whether individuals with 17q21 risk variants have increased risk of asthma or reduced lung function in adulthood. The aim was to examine the association between the 17q21 region and current adult asthma and lung function, and interaction with active smoking. METHODS We investigated the single nucleotide polymorphism rs7216389 at the 17q21 locus in 3471 adults from the Health2006 cross-sectional study and in 7008 adults from The British 1958 Birth Cohort and examined the association with current asthma, spirometry measures, and related atopic traits. Analyses were performed for interaction with active smoking. RESULTS We found no association between rs7216389[T] and asthma when meta-analyzed (OR = 1.02 [0.92-1.13], P = 0.81). The risk variant was associated with reduced FEV1 as compared to normal FEV1 (OR = 1.10 [1.01-1.12], P = 0.033) and with allergic sensitization (OR = 1.10 [1.03-1.17], P = 0.003). Individuals with rs7216389 risk variants smoked as frequently as individuals without risk variants, and there was no evidence that smoking modified the association between rs7216389 and asthma. CONCLUSION Our study suggests that the 17q21 rs7216389 locus variant does not substantially influence asthma risk in adulthood or susceptibility to detrimental effects of active smoking. This contrasts the findings in children and suggests that this locus is associated with a childhood-specific asthma endotype.
Collapse
Affiliation(s)
- E. Kreiner-Møller
- COPSAC; The Copenhagen Prospective Studies on Asthma in Childhood; Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
- The Danish Pediatric Asthma Center; Copenhagen University Hospital; Gentofte Denmark
| | - D. P. Strachan
- Division of Population Health Sciences and Education; St George's University of London; London UK
| | - A. Linneberg
- Research Centre for Prevention and Health; Glostrup University Hospital; Glostrup Denmark
| | - L. L. N. Husemoen
- Research Centre for Prevention and Health; Glostrup University Hospital; Glostrup Denmark
| | - H. Bisgaard
- COPSAC; The Copenhagen Prospective Studies on Asthma in Childhood; Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
- The Danish Pediatric Asthma Center; Copenhagen University Hospital; Gentofte Denmark
| | - K. Bønnelykke
- COPSAC; The Copenhagen Prospective Studies on Asthma in Childhood; Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
- The Danish Pediatric Asthma Center; Copenhagen University Hospital; Gentofte Denmark
| |
Collapse
|
8
|
Iorio A, Polimanti R, Piacentini S, Liumbruno GM, Manfellotto D, Fuciarelli M. Deletion polymorphism ofGSTT1gene as protective marker for allergic rhinitis. CLINICAL RESPIRATORY JOURNAL 2014; 9:481-6. [DOI: 10.1111/crj.12170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 05/04/2014] [Accepted: 05/29/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Andrea Iorio
- Department of Biology; University of Rome ‘Tor Vergata’; Rome Italy
- Clinical Pathophysiology Center; AFaR - ‘San Giovanni Calibita’ Fatebenefratelli Hospital; Rome Italy
| | - Renato Polimanti
- Department of Biology; University of Rome ‘Tor Vergata’; Rome Italy
| | - Sara Piacentini
- Department of Biology; University of Rome ‘Tor Vergata’; Rome Italy
| | | | - Dario Manfellotto
- Clinical Pathophysiology Center; AFaR - ‘San Giovanni Calibita’ Fatebenefratelli Hospital; Rome Italy
| | - Maria Fuciarelli
- Department of Biology; University of Rome ‘Tor Vergata’; Rome Italy
| |
Collapse
|
9
|
Ross-Hansen K, Linneberg A, Johansen J, Hersoug LG, Brasch-Andersen C, Menné T, Thyssen J. The role of glutathione S-transferase and claudin-1 gene polymorphisms in contact sensitization: a cross-sectional study. Br J Dermatol 2013; 168:762-70. [DOI: 10.1111/bjd.12126] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Piacentini S, Polimanti R, Simonelli I, Donno S, Pasqualetti P, Manfellotto D, Fuciarelli M. Glutathione S-transferase polymorphisms, asthma susceptibility and confounding variables: a meta-analysis. Mol Biol Rep 2013; 40:3299-313. [PMID: 23307299 DOI: 10.1007/s11033-012-2405-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 12/18/2012] [Indexed: 11/28/2022]
Abstract
Oxidative stress is one of the main risk factors for asthma development. Glutathione S-transferases play an important role in antioxidant defences and may influence asthma susceptibility. In particular, GSTM1 and GSTT1 positive/null genotypes and the GSTP1 Ile105 Val polymorphism have been analyzed in a number of genetic association studies, with conflicting outcomes. Two previous meta-analyses have attempted to clarify the associations between GST genes and asthma, but these studies have also showed contrasting results. Our aim was to perform a meta-analysis that included independent genetic association studies on GSTM1, GSTP1, and GSTT1, evaluating also the effect of potential confounding variables (i.e. ethnicity, population age, and urbanization). Systematic review and meta-analysis of the effects of GST genes on asthma were conducted. The meta-analyses were performed using a fixed or, where appropriate, random effects model. The meta-analysis of the GSTM1 (n = 35), GSTT1 (n = 31) and GSTP1 (n = 28) studies suggests that no significant associations with asthma susceptibility were observed for GSTM1 and GSTP1 gene polymorphisms, whereas a significant outcome was detected for the GSTT1 positive/null genotype (pooled OR = 1.33, 95 %CI = 1.10-1.60). However, high between-study heterogeneity was identified in all the general analyses (p heterogenetity < 0.05). The stratification analysis seems to explain the heterogeneity only in few cases. This picture is probably due to the interactive process of genetics and environment that characterizes disease pathogenesis. Further studies on interactions of GST genes with the potential oxidative stress sources and with other antioxidant genes are needed to explain the role of GST enzymes in asthma.
Collapse
Affiliation(s)
- Sara Piacentini
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Gillespie P, Tajuba J, Lippmann M, Chen LC, Veronesi B. Particulate matter neurotoxicity in culture is size-dependent. Neurotoxicology 2011; 36:112-7. [PMID: 22057156 DOI: 10.1016/j.neuro.2011.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 12/19/2022]
Abstract
Exposure to particulate matter (PM) air pollution produces inflammatory damage to the cardiopulmonary system. This toxicity appears to be inversely related to the size of the PM particles, with the ultrafine particle being more inflammatory than larger sizes. Exposure to PM has more recently been associated with neurotoxicity. This study examines if the size-dependent toxicity reported in cardiopulmonary systems also occurs in neural targets. For this study, PM ambient air was collected over a 2 week period from Sterling Forest State Park (Tuxedo, New York) and its particulates sized as Accumulation Mode, Fine (AMF) (>0.18-1μm) or Ultrafine (UF) (<0.18μm) samples. Rat dopaminergic neurons (N27) were exposed to suspensions of each PM fraction (0, 12.5, 25, 50μm/ml) and cell loss (as measured by Hoechst nuclear stain) measured after 24h exposure. Neuronal loss occurred in response to all tested concentrations of UF (>12.5μg/ml) but was only significant at the highest concentration of AMF (50μg/ml). To examine if PM size-dependent neurotoxicity was retained in the presence of other cell types, dissociated brain cultures of embryonic rat striatum were exposed to AMF (80μg/ml) or UF (8.0μg/ml). After 24h exposure, a significant increase of reactive nitrogen species (nitrite) and morphology suggestive of apoptosis occurred in both treatment groups. However, morphometric analysis of neuron specific enolase staining indicated that only the UF exposure produced significant neuronal loss, relative to controls. Together, these data suggest that the inverse relationship between size and toxicity reported in cardiopulmonary systems occurs in cultures of isolated dopaminergic neurons and in primary cultures of the rat striatum.
Collapse
Affiliation(s)
- Patricia Gillespie
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States
| | | | | | | | | |
Collapse
|