1
|
Vitkina TI, Mineeva EE, Sidletskaya KA. Interaction Of Inflammatory Parameters And Thiol/Disulfide System Of Antioxidant Protection In Chronic Obstructive Pulmonary Disease. RUSSIAN OPEN MEDICAL JOURNAL 2022. [DOI: 10.15275/rusomj.2022.0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Introduction — Increased incidence and prevalence of chronic obstructive pulmonary disease (COPD) provides rationale for describing the disease progression mechanism, considering the interaction of key participants of this process. The objective of our study was to establish the dysfunction parameters of thiol/disulfide system components and adaptive immunity unit in patients with stable chronic obstructive pulmonary disease (COPD). Material and Methods — We examined patients with stable COPD of moderate (62 subjects) or severe (50 subjects) grades. The control group included 32 subjects. Prooxidant and antioxidant markers of oxidative stress were investigated with ELISA. We determined cytokine levels in blood plasma and the number of T helper cells expressing IL-6R with flow cytometry (BD FACSCanto II, USA). Correlation pleiads sensu Terentiev were employed to visualize the data. Results — Changes in both antioxidant and cytokine status of subjects with COPD of varying severity grades implied the progression of systemic inflammation in conditions of uncontrolled activation of adaptive immunity unit rather than just a shift in the peroxide balance and an increase in oxygen metabolites. Conclusion — Accumulation of biomolecule peroxidation products, imbalance in the prooxidant-antioxidant system, and a change in pathogenetic mechanism of inflammation could lead to an aggravated course of bronchopulmonary pathology.
Collapse
Affiliation(s)
- Tatyana I. Vitkina
- Vladivostok Branch of Far Eastern Scientific Center for Physiology and Pathology of Respiration – Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok Russia
| | - Elena E. Mineeva
- Vladivostok Branch of Far Eastern Scientific Center for Physiology and Pathology of Respiration – Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| | - Karolina A. Sidletskaya
- Vladivostok Branch of Far Eastern Scientific Center for Physiology and Pathology of Respiration – Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| |
Collapse
|
2
|
Tao F, Zhou Y, Wang M, Wang C, Zhu W, Han Z, Sun N, Wang D. Metformin alleviates chronic obstructive pulmonary disease and cigarette smoke extract-induced glucocorticoid resistance by activating the nuclear factor E2-related factor 2/heme oxygenase-1 signaling pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:95-111. [PMID: 35203060 PMCID: PMC8890943 DOI: 10.4196/kjpp.2022.26.2.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is an important healthcare problem worldwide. Often, glucocorticoid (GC) resistance develops during COPD treatment. As a classic hypoglycemic drug, metformin (MET) can be used as a treatment strategy for COPD due to its anti-inflammatory and antioxidant effects, but its specific mechanism of action is not known. We aimed to clarify the role of MET on COPD and cigarette smoke extract (CSE)-induced GC resistance. Through establishment of a COPD model in rats, we found that MET could improve lung function, reduce pathological injury, as well as reduce the level of inflammation and oxidative stress in COPD, and upregulate expression of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), multidrug resistance protein 1 (MRP1), and histone deacetylase 2 (HDAC2). By establishing a model of GC resistance in human bronchial epithelial cells stimulated by CSE, we found that MET reduced secretion of interleukin-8, and could upregulate expression of Nrf2, HO-1, MRP1, and HDAC2. MET could also increase the inhibition of MRP1 efflux by MK571 significantly, and increase expression of HDAC2 mRNA and protein. In conclusion, MET may upregulate MRP1 expression by activating the Nrf2/HO-1 signaling pathway, and then regulate expression of HDAC2 protein to reduce GC resistance.
Collapse
Affiliation(s)
- Fulin Tao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yuanyuan Zhou
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Mengwen Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Chongyang Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Wentao Zhu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Zhili Han
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Nianxia Sun
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Dianlei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| |
Collapse
|
3
|
Shen HF, Liu Y, Qu PP, Tang Y, Li BB, Cheng GL. MiR-361-5p/ abca1 and MiR-196-5p/ arhgef12 Axis Involved in γ-Sitosterol Inducing Dual Anti-Proliferative Effects on Bronchial Epithelial Cells of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2021; 16:2741-2753. [PMID: 34675500 PMCID: PMC8502110 DOI: 10.2147/copd.s326015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD), a progressive and irreversible respiratory disease, becomes the third leading cause of death and results in enormous economic burden on healthcare costs and productivity loss worldwide by 2020. Thus, it is urgent to develop effective anti-COPD drugs. Materials and Methods In the present study, two published GEO profiles were used to re-analyze and ascertain the relationships between circulating miRNAs and bronchial epithelial cells (BECs) mRNAs in COPD. The microRNA levels of miR-361-5p and miR-196-5p in plasma of COPD patients and healthy volunteers were detected by qRT-PCR. Next, the effects of γ-sitosterol (GS) on the expression of miR-361-5p and miR-196-5p and cell proliferation were investigated in BEC and H292 cell lines. Finally, whether specific miRNA-mRNA pathways involved in the effect of GS on BECs was assayed using Western Blot, real-time PCR and immunofluorescence. Results miR-196-5p and miR-361-5p were, respectively, up- and down-regulated in COPD patients compared with healthy controls. Luciferase assays demonstrated that miR-361-5p and miR-196-5p were, respectively, targeting abca1 and arhgef12 3ʹUTR in BEAS-2B cells. GS significantly suppressed miR-196-5p and promoted miR-361-5p levels in BEAS-2B cells and inhibited BECs proliferation in vitro. GS promoted miR-361-5p expression, which inhibited BCAT1 mRNA and protein levels and weaken mTOR-pS6K pathway, resulted in anti-proliferation in BEAS-2B cells. In addition, RhoA was activated by ARHGEF12 due to the inhibitory effect of miR-196-5p on arhgef12-3ʹUTR which was partially abolished by GS suppressing miR-196-5p expression. Activated RhoA further activated ROCK1-PTEN pathway and finally inhibited mTOR pathway, resulting in induced BECs proliferation. The anti-proliferation effect of GS was not observed in H292 cells. Conclusion These findings indicate that miR-361-5p/abca1 and miR-196-5p/arhgef12 axis mediated GS inducing dual anti-proliferation effects on BECs.
Collapse
Affiliation(s)
- Hui-Fen Shen
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, People's Republic of China
| | - Ying Liu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, People's Republic of China
| | - Ping-Ping Qu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, People's Republic of China
| | - Yu Tang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, People's Republic of China
| | - Bing-Bing Li
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276006, People's Republic of China
| | - Guo-Liang Cheng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276006, People's Republic of China
| |
Collapse
|
4
|
Predictors of Renal Function Worsening in Patients with Chronic Obstructive Pulmonary Disease (COPD): A Multicenter Observational Study. Nutrients 2021; 13:nu13082811. [PMID: 34444971 PMCID: PMC8400083 DOI: 10.3390/nu13082811] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/14/2021] [Accepted: 08/14/2021] [Indexed: 01/18/2023] Open
Abstract
Background. Chronic obstructive pulmonary disease (COPD) patients have multiple comorbidities which may affect renal function. Chronic kidney disease (CKD) is a risk factor for adverse outcomes in COPD patients. The predictors of CKD in COPD are not well investigated. Methods. A multicenter observational cohort study including patients affected by COPD (GOLD stages 1 and 2) was carried out. Principal endpoints were the incidence of CKD, as defined by an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2, and the rapid decline of eGFR >5 mL/min/1.73 m2/year. Results. We enrolled 707 outpatients. Overall, 157 (22.2%) patients had CKD at baseline. Patients with CKD were older, with higher serum uric acid (UA) levels, and lower FEV1. During a mean follow-up of 52.3 ± 30.2 months, 100 patients developed CKD, and 200 patients showed a rapid reduction of eGFR. Multivariable Cox regression analysis displayed that UA (hazard ratio (HR) 1.148, p < 0.0001) and diabetes (HR 1.050, p < 0.0001) were predictors of incident CKD. The independent predictors of rapidly declining renal function were represented by an increase of 1 mg/dL in UA (odds ratio (OR) 2.158, p < 0.0001)), an increase of 10 mL/min/1.73 m2 in baseline eGFR (OR 1.054, p < 0.0001) and the presence of diabetes (OR 1.100, p < 0.009). Conclusions. This study shows that COPD patients have a significant worsening of renal function over time and that UA and diabetes were the two strongest predictors. Optimal management of these risk factors may reduce the incidence of CKD in this population thus probably improving clinical outcome.
Collapse
|
5
|
Wang L, Pelgrim CE, Swart DH, Krenning G, van der Graaf AC, Kraneveld AD, Leusink-Muis T, van Ark I, Garssen J, Folkerts G, Braber S. SUL-151 Decreases Airway Neutrophilia as a Prophylactic and Therapeutic Treatment in Mice after Cigarette Smoke Exposure. Int J Mol Sci 2021; 22:4991. [PMID: 34066693 PMCID: PMC8125869 DOI: 10.3390/ijms22094991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) caused by cigarette smoke (CS) is featured by oxidative stress and chronic inflammation. Due to the poor efficacy of standard glucocorticoid therapy, new treatments are required. Here, we investigated whether the novel compound SUL-151 with mitoprotective properties can be used as a prophylactic and therapeutic treatment in a murine CS-induced inflammation model. SUL-151 (4 mg/kg), budesonide (500 μg/kg), or vehicle were administered via oropharyngeal instillation in this prophylactic and therapeutic treatment setting. The number of immune cells was determined in the bronchoalveolar lavage fluid (BALF). Oxidative stress response, mitochondrial adenosine triphosphate (ATP) production, and mitophagy-related proteins were measured in lung homogenates. SUL-151 significantly decreased more than 70% and 50% of CS-induced neutrophils in BALF after prophylactic and therapeutic administration, while budesonide showed no significant reduction in neutrophils. Moreover, SUL-151 prevented the CS-induced decrease in ATP and mitochondrial mtDNA and an increase in putative protein kinase 1 expression in the lung homogenates. The concentration of SUL-151 was significantly correlated with malondialdehyde level and radical scavenging activity in the lungs. SUL-151 inhibited the increased pulmonary inflammation and mitochondrial dysfunction in this CS-induced inflammation model, which implied that SUL-151 might be a promising candidate for COPD treatment.
Collapse
Affiliation(s)
- Lei Wang
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
| | - Charlotte E. Pelgrim
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
| | - Daniël H. Swart
- Sulfateq B.V., Admiraal de Ruyterlaan 5, 9726 GN Groningen, The Netherlands; (D.H.S.); (G.K.); (A.C.v.d.G.)
| | - Guido Krenning
- Sulfateq B.V., Admiraal de Ruyterlaan 5, 9726 GN Groningen, The Netherlands; (D.H.S.); (G.K.); (A.C.v.d.G.)
- Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Adrianus C. van der Graaf
- Sulfateq B.V., Admiraal de Ruyterlaan 5, 9726 GN Groningen, The Netherlands; (D.H.S.); (G.K.); (A.C.v.d.G.)
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Thea Leusink-Muis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
| | - Ingrid van Ark
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
- Nutricia Research, Department of Immunology, 3584 CT Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
| |
Collapse
|
6
|
Zhang H, Jin Y, Chi C, Han G, Jiang W, Wang Z, Cheng H, Zhang C, Wang G, Sun C, Chen Y, Xi Y, Liu M, Gao X, Lin X, Lv L, Zhou J, Ding Y. Sponge particulates for biomedical applications: Biofunctionalization, multi-drug shielding, and theranostic applications. Biomaterials 2021; 273:120824. [PMID: 33894401 DOI: 10.1016/j.biomaterials.2021.120824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/04/2021] [Accepted: 04/11/2021] [Indexed: 12/29/2022]
Abstract
Sponge particulates have attracted enormous attention in biomedical applications for superior properties, including large porosity, elastic deformation, capillary action, and three-dimensional (3D) reaction environment. Especially, the tiny porous structures make sponge particulates a promising platform for drug delivery, tissue engineering, anti-infection, and wound healing by providing abundant reservoirs of broad surface and internal network for cargo shielding and shuttling. To control the sponge-like morphology and improve the diversity of drug loading, some optimized preparation techniques of sponge particulates have been developed, contributing to the simplified preparation process and improved production reproducibility. Bio-functionalized strategies, including target modification, cell membrane camouflage, and hydrogel of sponge particulates have been applied to modulate the properties, improve the performance, and extend the applications. In this review, we highlight the unique physical properties and functions, current manufacturing techniques, and an overview of spongy particulates in biomedical applications, especially in inhibition of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity. Moreover, the current challenges and prospects of sponge particulates are discussed rationally, providing an insight into developing vibrant fields of sponge particulates-based biomedicine.
Collapse
Affiliation(s)
- Huaqing Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Jin
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Cheng Chi
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Guochen Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Wenxin Jiang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Zhen Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Hao Cheng
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Chenshuang Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Gang Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Chenhua Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Yun Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Yilong Xi
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Mengting Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Xie Gao
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Xiujun Lin
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Lingyu Lv
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Jianping Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| |
Collapse
|
7
|
Exhaled Breath Condensate and Dyspnea in COPD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1337:339-344. [DOI: 10.1007/978-3-030-78771-4_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Systematic Review and Meta-Analysis of the Blood Glutathione Redox State in Chronic Obstructive Pulmonary Disease. Antioxidants (Basel) 2020; 9:antiox9111146. [PMID: 33218130 PMCID: PMC7698942 DOI: 10.3390/antiox9111146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of this systematic review and meta-analysis was to assess the blood concentrations of the total and reduced forms of the low-molecular-weight antioxidant thiol glutathione (GSH) in chronic obstructive pulmonary disease (COPD) patients in comparison to healthy individuals. A literature search was conducted in the PubMed and Web of Science databases from inception until June 2020. In the 18 studies identified (involving a total of 974 COPD patients and 631 healthy controls), the pooled reduced GSH concentrations were significantly lower in patients with COPD than controls (SMD = -3.04, 95% CI = -4.42 to -1.67; p < 0.001). By contrast, the pooled total GSH concentrations were significantly higher in patients with COPD than controls (SMD = 0.42, 95% CI = 0.11 to 0.73; p = 0.009). Our meta-analysis showed that the blood concentrations of reduced GSH, even in the presence of higher total GSH concentrations, were significantly lower in patients with COPD when compared to healthy controls. This suggests that an impaired antioxidant defense system plays an important role in the pathogenesis of COPD.
Collapse
|
9
|
Palma Medina LM, Becker AK, Michalik S, Surmann K, Hildebrandt P, Gesell Salazar M, Mekonnen SA, Kaderali L, Völker U, van Dijl JM. Interaction of Staphylococcus aureus and Host Cells upon Infection of Bronchial Epithelium during Different Stages of Regeneration. ACS Infect Dis 2020; 6:2279-2290. [PMID: 32579327 PMCID: PMC7432605 DOI: 10.1021/acsinfecdis.0c00403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The
primary barrier that protects our lungs against infection by
pathogens is a tightly sealed layer of epithelial cells. When the
integrity of this barrier is disrupted as a consequence of chronic
pulmonary diseases or viral insults, bacterial pathogens will gain
access to underlying tissues. A major pathogen that can take advantage
of such conditions is Staphylococcus aureus, thereby
causing severe pneumonia. In this study, we investigated how S. aureus responds to different conditions of the human
epithelium, especially nonpolarization and fibrogenesis during regeneration
using an in vitro infection model. The infective
process was monitored by quantification of the epithelial cell and
bacterial populations, fluorescence microscopy, and mass spectrometry.
The results uncover differences in bacterial internalization and population
dynamics that correlate with the outcome of infection. Protein profiling
reveals that, irrespective of the polarization state of the epithelial
cells, the invading bacteria mount similar responses to adapt to the
intracellular milieu. Remarkably, a bacterial adaptation that was
associated with the regeneration state of the epithelial cells concerned
the early upregulation of proteins controlled by the redox-responsive
regulator Rex when bacteria were confronted with a polarized cell
layer. This is indicative of the modulation of the bacterial cytoplasmic
redox state to maintain homeostasis early during infection even before
internalization. Our present observations provide a deeper insight
into how S. aureus can take advantage of a breached
epithelial barrier and show that infected epithelial cells have limited
ability to respond adequately to staphylococcal insults.
Collapse
Affiliation(s)
- Laura M. Palma Medina
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, 9700 RB Groningen, The Netherlands
| | - Ann-Kristin Becker
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Kristin Surmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Petra Hildebrandt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Solomon A. Mekonnen
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, 9700 RB Groningen, The Netherlands
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, 9700 RB Groningen, The Netherlands
| |
Collapse
|
10
|
Brassington K, Selemidis S, Bozinovski S, Vlahos R. New frontiers in the treatment of comorbid cardiovascular disease in chronic obstructive pulmonary disease. Clin Sci (Lond) 2019; 133:885-904. [PMID: 30979844 PMCID: PMC6465303 DOI: 10.1042/cs20180316] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease characterised by persistent airflow limitation that is not fully reversible and is currently the fourth leading cause of death globally. It is now well established that cardiovascular-related comorbidities contribute to morbidity and mortality in COPD, with approximately 50% of deaths in COPD patients attributed to a cardiovascular event (e.g. myocardial infarction). Cardiovascular disease (CVD) and COPD share various risk factors including hypertension, sedentarism, smoking and poor diet but the underlying mechanisms have not been fully established. However, there is emerging and compelling experimental and clinical evidence to show that increased oxidative stress causes pulmonary inflammation and that the spill over of pro-inflammatory mediators from the lungs into the systemic circulation drives a persistent systemic inflammatory response that alters blood vessel structure, through vascular remodelling and arterial stiffness resulting in atherosclerosis. In addition, regulation of endothelial-derived vasoactive substances (e.g. nitric oxide (NO)), which control blood vessel tone are altered by oxidative damage of vascular endothelial cells, thus promoting vascular dysfunction, a key driver of CVD. In this review, the detrimental role of oxidative stress in COPD and comorbid CVD are discussed and we propose that targeting oxidant-dependent mechanisms represents a novel strategy in the treatment of COPD-associated CVD.
Collapse
Affiliation(s)
- Kurt Brassington
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
11
|
Sahiner UM, Birben E, Erzurum S, Sackesen C, Kalayci Ö. Oxidative stress in asthma: Part of the puzzle. Pediatr Allergy Immunol 2018; 29:789-800. [PMID: 30069955 DOI: 10.1111/pai.12965] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/08/2018] [Accepted: 07/23/2018] [Indexed: 01/17/2023]
Abstract
An imbalance between the production of reactive oxygen species and the capacity of antioxidant defense mechanisms favoring oxidants is called oxidative stress and is implicated in asthmatic inflammation and severity. Major reactive oxygen species that are formed endogenously include hydrogen peroxide, superoxide anion, hydroxyl radical, and hypohalite radical; and the major antioxidants that fight against the endogenous and environmental oxidants are superoxide dismutase, catalase, and glutathione. Despite the well-known presence of oxidative stress in asthma, studies that target oxidative burden using a variety of nutritional, pharmacological, and environmental approaches have generally been disappointing. In this review, we summarize the current knowledge on oxidative stress and antioxidant imbalance in asthma. In addition, we focus on possible biomarkers of oxidative stress in asthma and on current and future treatment strategies using the modulation of oxidative stress to treat asthma patients.
Collapse
Affiliation(s)
- Umit M Sahiner
- Department of Pediatric Allergy and Asthma, Hacettepe University School of Medicine, Ankara, Turkey
| | - Esra Birben
- Department of Pediatric Allergy and Asthma, Hacettepe University School of Medicine, Ankara, Turkey
| | - Serpil Erzurum
- Department of Pathobiology, Cleveland Clinic, Lerner Research Institute, and the Respiratory Institute, Cleveland, Ohio
| | - Cansin Sackesen
- Department of Pediatric Allergy, Koc University School of Medicine, Istanbul, Turkey
| | - Ömer Kalayci
- Department of Pediatric Allergy and Asthma, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
12
|
Wang T, Luo D, Chen Z, Qu Y, Ma X, Ye J, Chu Q, Huang D. Sensitive determination of aldehyde metabolites in exhaled breath condensate using capillary electrophoresis with laser-induced fluorescence detection. Anal Bioanal Chem 2018; 410:7203-7210. [PMID: 30215126 DOI: 10.1007/s00216-018-1327-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/07/2018] [Accepted: 08/15/2018] [Indexed: 11/30/2022]
Abstract
A novel capillary electrophoresis with laser-induced fluorescence detection method has been developed for the analysis of aldehyde metabolism biomarkers for oxidative stress in exhaled breath condensate (EBC), and fluorescein 5-thiosemicarbazide was used as a derivatization reagent. In a simple capillary zone electrophoresis mode, ten low molecular weight aldehydes (LMWAs) could be well separated within 30 min. The reaction efficiency was doubled by increasing sample solution pH and magnetic stirring, and the LODs of this method reached 0.16-3.4 nM (S/N = 3). Acceptable recoveries (82.1-115%) were obtained for EBC samples, and the RSD data were within 7.9%. This developed method has been applied for the analyses of EBC samples and evaluation of the correlation between smoking and the contents of aldehyde metabolites in EBC. Due to no need of buffer additives and sample preconcentration, this proposed method may provide an appealing alternative for the trace analyses of LMWAs in noninvasive biofluids. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Tingting Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Dan Luo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Zheyan Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yining Qu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiuhua Ma
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Jiannong Ye
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Qingcui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| | - Dongping Huang
- Shanghai Putuo District People's Hospital, Shanghai, 200060, China.
| |
Collapse
|
13
|
Regional heterogeneity in response of airway epithelial cells to cigarette smoke. BMC Pulm Med 2018; 18:148. [PMID: 30180847 PMCID: PMC6122713 DOI: 10.1186/s12890-018-0715-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 08/28/2018] [Indexed: 11/16/2022] Open
Abstract
Background Cigarette smoke (CS) exposure causes an abnormal inflammatory response, which can result in chronic obstructive pulmonary disease (COPD). Previous studies show that this disorder predominantly occurs in peripheral or small-airway areas, whereas the same condition has not been identified in the larger airways during the course of COPD. However, the different biochemical and genetic alterations occurring in response to CS exposure among airway epithelial cells from different sites in the lungs have not been fully investigated. Methods Human small airway epithelial cells (SAECs) and normal human bronchial epithelial cells (NHBEs) were exposed to CS extract (CSE), and microarray analysis was used to determine gene- and protein-expression profiles and identify alterations following CSE exposure in both cell types. An in vivo smoking experiment was also performed to confirm differential responses to CS between sites in the lung. Results Microarray analysis of SAECs and NHBEs following 24 h of CSE exposure showed that inflammatory related pathways and terms, including the tumor necrosis factor-signaling pathway, were overrepresented, especially in SAECs. Clustering analysis highlighted prostaglandin-endoperoxide synthase-2 [also known as cyclooxygenase (COX)-2] as a gene specifically upregulated in SAECs, with COX-2 mRNA and protein expression significantly elevated by CSE exposure in SAECs (3.1- and 3.1-fold, respectively), but not in NHBEs. Furthermore, time-course analysis of COX-2 expression revealed earlier increases in SAECs compared with NHBEs following CS exposure. Short-term exposure of mouse lungs to CS was found to predominantly induce COX-2 expression in the small airway. Conclusions The small airway is more susceptible to CSE than the large airway and could be the initial site of development of CS-related respiratory diseases, such as COPD. Electronic supplementary material The online version of this article (10.1186/s12890-018-0715-4) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Caram LMDO, Ferrari R, Nogueira DL, Oliveira M, Francisqueti FV, Tanni SE, Corrêa CR, Godoy I. Tumor necrosis factor receptor 2 as a possible marker of COPD in smokers and ex-smokers. Int J Chron Obstruct Pulmon Dis 2017; 12:2015-2021. [PMID: 28744116 PMCID: PMC5511022 DOI: 10.2147/copd.s138558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Introduction Oxidative stress and systemic inflammation are higher in smokers and patients with COPD; however, markers that may help differentiate between smokers and patients with COPD have not yet been identified. We hypothesized that tumor necrosis factor-alpha receptor (TNFR) and soluble form of the receptor for advanced glycation end products (sRAGE) can be indicators of COPD in asymptomatic patients. Patients and methods We evaluated 32 smokers (smoking history >10 pack-years), 32 patients with mild/moderate COPD (smokers and ex-smokers), and 32 never smokers. Concentrations of C-reactive protein (CRP), interleukin (IL)-6, TNFR1 and TNFR2, advanced glycation end products (AGEs), and the sRAGE were measured in serum. Results There were higher CRP and AGEs concentrations in smokers and in patients with COPD (P<0.001 and P=0.01, respectively) compared to controls, without statistical difference between smokers and patients with COPD. Concentrations of sRAGE, IL-6, and TNFR1 did not differ between study groups. TNFR2 was significantly higher in patients with COPD than in smokers (P=0.004) and controls (P=0.004), and the presence of COPD (P=0.02) and CRP (P=0.001) showed a positive association with TNFR2. Positive associations for smoking (P=0.04), CRP (P=0.03), and IL-6 (P=0.03) with AGEs were also found. The interaction variable (smoking × COPD) showed a positive association with IL-6. Conclusion Our data suggest that TNFR2 may be a possible marker of COPD in asymptomatic smokers and ex-smokers. Although smokers and patients with early COPD presented other increased systemic inflammation markers (eg, CRP) and oxidative stress (measured by AGEs), they did not differentiate smokers from COPD.
Collapse
Affiliation(s)
| | | | | | - Mrm Oliveira
- Department of Pathology, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu Campus, Botucatu-São Paulo, Brazil
| | - F V Francisqueti
- Department of Pathology, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu Campus, Botucatu-São Paulo, Brazil
| | | | - C R Corrêa
- Department of Pathology, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu Campus, Botucatu-São Paulo, Brazil
| | - I Godoy
- Department of Internal Medicine
| |
Collapse
|
15
|
Krawczyk A, Nowak D, Nowak PJ, Padula G, Kwiatkowska S. Elevated exhalation of hydrogen peroxide in patients with non-small cell lung cancer is not affected by chemotherapy. Redox Rep 2016; 22:308-314. [PMID: 27611345 DOI: 10.1080/13510002.2016.1229885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES Reactive oxygen species, which are implicated in the process of carcinogenesis, are also responsible for cell death during chemotherapy (CHT). Therefore, the aim of the study was to evaluate exhaled H2O2 levels in non-small cell lung cancer (NSCLC) patients before and after CHT. METHODS Thirty patients (age 61.3 ± 9.3 years) with advanced NSCLC (stage IIIB-IV) and 15 age-matched healthy cigarette smokers were enrolled into the study. Patients received four cycles of cisplatin or carboplatin with vinorelbine every three weeks. Before and after the first, second, and fourth cycle, the concentration of H2O2 in exhaled breath condensate was measured with respect to treatment response. RESULTS At the baseline, NSCLC patients exhaled 3.8 times more H2O2 than the control group (0.49 ± 0.14 vs. 0.13 ± 0.03 µmol/L, P < 0.05); this difference persisted throughout the study. CHT had no noticeable effect on exhaled H2O2 levels independent of the treatment response (partial remission vs. progressive disease). Pre- and post-CHT cycles of H2O2 levels generally correlated positively. DISCUSSION The study demonstrated the occurrence of oxidative stress in the airways of advanced NSCLC patients. Exhaled H2O2 level was not affected by CHT and independent of treatment results and changes in the number of circulating neutrophils.
Collapse
Affiliation(s)
| | - Dariusz Nowak
- b Department of Clinical Physiology , Medical University of Lodz , Lodz , Poland
| | - Piotr Jan Nowak
- c Department of Nephrology, Hypertension and Kidney Transplantation , Medical University of Lodz , Lodz , Poland
| | - Gianluca Padula
- d DynamoLab Academic Laboratory of Movement and Human Physical Performance , Medical University of Lodz , Lodz , Poland
| | | |
Collapse
|
16
|
Peters S, Kronseder A, Karrasch S, Neff PA, Haaks M, Koczulla AR, Reinhold P, Nowak D, Jörres RA. Hydrogen peroxide in exhaled air: a source of error, a paradox and its resolution. ERJ Open Res 2016; 2:00052-2015. [PMID: 27730191 PMCID: PMC5005174 DOI: 10.1183/23120541.00052-2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 04/15/2016] [Indexed: 11/05/2022] Open
Abstract
The concentration of hydrogen peroxide (H2O2) in exhaled air has been reported to be elevated in asthma and chronic obstructive pulmonary disease (COPD), but results are inconsistent and difficult to reproduce. As H2O2 occurs in ambient air, we examined its association with exhaled H2O2 in human subjects. Exhaled breath condensate (EBC) of 12 COPD patients and nine healthy control subjects was collected either with an inhalation filter (efficiency 81%) or without. Ambient air condensate (AAC) was collected in parallel and samples were analysed for H2O2. Additionally, ambient H2O2 was recorded by an atmospheric measuring device (online fluorometric measurement). H2O2 concentration in AAC was significantly higher (p<0.001) than in EBC. AAC variations were concordant with the data from the atmospheric measuring instrument. In both subjects' groups, the inhalation filter reduced H2O2 values (p<0.01). Despite generally low levels in exhaled air, analysis by a mathematical model revealed a contribution from endogenous H2O2 production. The low H2O2 levels in exhaled air are explained by the reconditioning of H2O2-containing inhaled air in the airways. Inhaled H2O2 may be one factor in the heterogeneity and limited reproducibility of study results. A valid determination of endogenous H2O2 production requires inhalation filters.
Collapse
Affiliation(s)
- Stefan Peters
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Angelika Kronseder
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Stefan Karrasch
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-University, Munich, Germany; Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Matz Haaks
- Aero-Laser GmbH, Garmisch-Partenkirchen, Germany
| | - Andreas R Koczulla
- Department of Internal Medicine, Division for Pulmonary Diseases, Philipps-University, Marburg, Germany
| | - Petra Reinhold
- Institute of Molecular Pathogenesis at the Friedrich-Loeffler-Institute, Jena, Germany
| | - Dennis Nowak
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Rudolf A Jörres
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
17
|
Aldakheel FM, Thomas PS, Bourke JE, Matheson MC, Dharmage SC, Lowe AJ. Relationships between adult asthma and oxidative stress markers and pH in exhaled breath condensate: a systematic review. Allergy 2016; 71:741-57. [PMID: 26896172 DOI: 10.1111/all.12865] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2016] [Indexed: 01/02/2023]
Abstract
Oxidative stress has a recognized role in the pathophysiology of asthma. Recently, interest has increased in the assessment of pH and airway oxidative stress markers. Collection of exhaled breath condensate (EBC) and quantification of biomarkers in breath samples can potentially indicate lung disease activity and help in the study of airway inflammation, and asthma severity. Levels of oxidative stress markers in the EBC have been systematically evaluated in children with asthma; however, there is no such systematic review conducted for adult asthma. A systematic review of oxidative stress markers measured in EBC of adult asthma was conducted, and studies were identified by searching MEDLINE and SCOPUS databases. Sixteen papers met the inclusion criteria. Concentrations of exhaled hydrogen ions, nitric oxide products, hydrogen peroxide and 8-isoprostanes were generally elevated and related to lower lung function tests in adults with asthma compared to healthy subjects. Assessment of EBC markers may be a noninvasive approach to evaluate airway inflammation, exacerbations, and disease severity of asthma, and to monitor the effectiveness of anti-inflammatory treatment regimens. Longitudinal studies, using standardized analytical techniques for EBC collection, are required to establish reference values for the interpretation of EBC markers in the context of asthma.
Collapse
Affiliation(s)
- F. M. Aldakheel
- Allergy and Lung Health Unit; The University of Melbourne; Melbourne Australia
- Department of Clinical Laboratory Sciences; College of Applied Medical Sciences; King Saud University; Riyadh Saudi Arabia
| | - P. S. Thomas
- Department of Respiratory Medicine and Prince of Wales Hospital Clinical School; University of New South Wales; Sydney Australia
| | - J. E. Bourke
- Biomedicine Discovery Institute; Department of Pharmacology; Monash University; Clayton Australia
| | - M. C. Matheson
- Allergy and Lung Health Unit; The University of Melbourne; Melbourne Australia
- Murdoch Childrens Research Institute; Melbourne Australia
| | - S. C. Dharmage
- Allergy and Lung Health Unit; The University of Melbourne; Melbourne Australia
- Murdoch Childrens Research Institute; Melbourne Australia
| | - A. J. Lowe
- Allergy and Lung Health Unit; The University of Melbourne; Melbourne Australia
- Murdoch Childrens Research Institute; Melbourne Australia
| |
Collapse
|
18
|
Nourani MR, Mahmoodzadeh Hosseini H, Imani Fooladi AA. Comparative transcriptional and translational analysis of heme oxygenase expression in response to sulfur mustard. J Recept Signal Transduct Res 2015; 35:479-84. [DOI: 10.3109/10799893.2015.1015735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Pirozzi C, Sturrock A, Weng HY, Greene T, Scholand MB, Kanner R, Paine R. Effect of naturally occurring ozone air pollution episodes on pulmonary oxidative stress and inflammation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:5061-75. [PMID: 25985308 PMCID: PMC4454954 DOI: 10.3390/ijerph120505061] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 11/29/2022]
Abstract
This study aimed to determine if naturally occurring episodes of ozone air pollution in the Salt Lake Valley in Utah, USA, during the summer are associated with increased pulmonary inflammation and oxidative stress, increased respiratory symptoms, and decreased lung function in individuals with chronic obstructive pulmonary disease (COPD) compared to controls. We measured biomarkers (nitrite/nitrate (NOx), 8-isoprostane) in exhaled breath condensate (EBC), spirometry, and respiratory symptoms in 11 former smokers with moderate-to-severe COPD and nine former smokers without airflow obstruction during periods of low and high ozone air pollution. High ozone levels were associated with increased NOx in EBC in both COPD (8.7 (±8.5) vs. 28.6 (±17.6) μmol/L on clean air vs. pollution days, respectively, p < 0.01) and control participants (7.6 (±16.5) vs. 28.5 (±15.6) μmol/L on clean air vs. pollution days, respectively, p = 0.02). There was no difference in pollution effect between COPD and control groups, and no difference in EBC 8-isoprostane, pulmonary function, or respiratory symptoms between clean air and pollution days in either group. Former smokers both with and without airflow obstruction developed airway oxidative stress and inflammation in association with ozone air pollution episodes.
Collapse
Affiliation(s)
- Cheryl Pirozzi
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Utah, 26 North 1900 East, Salt Lake City, UT 84132, USA.
| | - Anne Sturrock
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Utah, 26 North 1900 East, Salt Lake City, UT 84132, USA.
| | - Hsin-Yi Weng
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84132, USA.
| | - Tom Greene
- Department of Internal Medicine, Division of Epidemiology, University of Utah, Salt Lake City, UT 84132, USA.
| | - Mary Beth Scholand
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Utah, 26 North 1900 East, Salt Lake City, UT 84132, USA.
| | - Richard Kanner
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Utah, 26 North 1900 East, Salt Lake City, UT 84132, USA.
| | - Robert Paine
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Utah, 26 North 1900 East, Salt Lake City, UT 84132, USA.
| |
Collapse
|
20
|
Sauvain JJ, Hohl MSS, Wild P, Pralong JA, Riediker M. Exhaled Breath Condensate as a Matrix for Combustion-Based Nanoparticle Exposure and Health Effect Evaluation. J Aerosol Med Pulm Drug Deliv 2014; 27:449-58. [DOI: 10.1089/jamp.2013.1101] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
| | | | - Pascal Wild
- Institute for Work and Health (IST), CH-1066 Epalinges-Lausanne, Switzerland
- National Research and Safety Institute (INRS), FR-54519 Vandoeuvre, France
| | | | - Michael Riediker
- Institute for Work and Health (IST), CH-1066 Epalinges-Lausanne, Switzerland
| |
Collapse
|
21
|
Zhang Q, Lin JL, Thomas PS. Reactive Oxygen Species and Obstructive Lung Disease. SYSTEMS BIOLOGY OF FREE RADICALS AND ANTIOXIDANTS 2014:1643-1670. [DOI: 10.1007/978-3-642-30018-9_121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
22
|
Jiao Z, Zhang Q, Chang J, Nie D, Li M, Zhu Y, Wang C, Wang Y, Liu F. A protective role of sulforaphane on alveolar epithelial cells exposed to cigarette smoke extract. Exp Lung Res 2013; 39:379-86. [PMID: 24117145 DOI: 10.3109/01902148.2013.830162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Sulforaphane (SFN) is an excellent antioxidant agent, few of the studies focus on the possible protective role of SFN from cigarette smoke-induced injury on alveolar epithelial cells. OBJECTIVES the aim of the study is to observe the possible protective role of SFN, as well as the function of insulin-like growth factor binding protein-3 (IGFBP-3) in the process. METHODS MTT assay was used to evaluate cell viability after cigarette smoke extract (CSE) and/or SFN exposure, cell cycle was analyzed using flow cytometry, intracellular reactive oxygen species (ROS) level was detected by staining with fluorescent indicator 2', 7'-dichlorofluorescin diacetate (DCFH-DA), finally both real-time quantitative RT-PCR and western blot were employed to observe mRNA and protein levels of IGFBP-3. RESULTS SFN could restore the viability of A549 cells, attenuate G1 block of the cell cycle, and significantly reduce the proportion of sub-G1 cells; at the same time, CSE-induced accumulation of intracellular ROS was decreased by SFN. Interestingly, high expression of IGFBP-3 was found at both transcriptional and translational levels, however by pre-incubation with SFN, the expression of IGFBP-3 was not stimulated by CSE exposure. CONCLUSIONS SFN can antagonize CSE-induced growth arrest of alveolar epithelial cells and IGFBP-3 probably plays an important role in the process.
Collapse
Affiliation(s)
- Zongxian Jiao
- Research Institute of Pathology, School of Basic Medical Sciences, Lanzhou University , Lanzhou, Gansu , P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pleil JD, Stiegel MA. Evolution of Environmental Exposure Science: Using Breath-Borne Biomarkers for “Discovery” of the Human Exposome. Anal Chem 2013; 85:9984-90. [DOI: 10.1021/ac402306f] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Joachim D. Pleil
- National Exposure Research Laboratory,
Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Matthew A. Stiegel
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, 27599, United States
| |
Collapse
|
24
|
Wang H, Mattes WB, Richter P, Mendrick DL. An omics strategy for discovering pulmonary biomarkers potentially relevant to the evaluation of tobacco products. Biomark Med 2013; 6:849-60. [PMID: 23227851 DOI: 10.2217/bmm.12.78] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Smoking is known to cause serious lung diseases including chronic bronchitis, chronic obstructive lung disease, obstruction of small airways, emphysema and cancer. Tobacco smoke is a complex chemical aerosol containing at least 8000 chemical constituents, either tobacco derived or added by tobacco product manufacturers. Identification of all of the toxic agents in tobacco smoke is challenging, and efforts to understand the mechanisms by which tobacco use causes disease will be informed by new biomarkers of exposure and harm. In 2009, President Obama signed into law the Family Smoking Prevention and Tobacco Control Act granting the US FDA the authority to regulate tobacco products to protect public health. This perspective article presents the background, rationale and strategy for using omics technologies to develop new biomarkers, which may be of interest to the FDA when implementing the Family Smoking Prevention and Tobacco Control Act.
Collapse
Affiliation(s)
- Honggang Wang
- Food & Drug Administration, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA
| | | | | | | |
Collapse
|
25
|
Hardaker L, Bahra P, de Billy BC, Freeman M, Kupfer N, Wyss D, Trifilieff A. The ion channel transient receptor potential melastatin-2 does not play a role in inflammatory mouse models of chronic obstructive pulmonary diseases. Respir Res 2012; 13:30. [PMID: 22475739 PMCID: PMC3349593 DOI: 10.1186/1465-9921-13-30] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 04/04/2012] [Indexed: 12/11/2022] Open
Abstract
Background There is strong evidence that oxidative stress is associated with the pathogenesis of chronic obstructive pulmonary disease (COPD). The transient receptor potential melastatin-2 (TRPM2) is an oxidative stress sensing channel that is expressed in a number of inflammatory cells and therefore it has been suggested that inhibition of TRPM2 could lead to a beneficial effect in COPD patients. In this study, we have investigated the role of TRPM2 in a variety of mouse models of oxidative stress and COPD using TRPM2-deficent mice. Methods Mice were exposed to ozone (3 ppm for 4 h) or lipopolysaccharide (LPS, 0.3 mg/kg, intranasaly). In another model, mice were exposed to tobacco smoke (750 μg/l total wet particulate matter) for 30 min twice a day on three consecutive days. For the exacerbation model, the smoke exposure on the morning of day 3 animals was replaced with intranasal administration of LPS (0.3 mg/kg). Animals were killed 3 and 24 h after the challenge (ozone and LPS model) or 18 h after the last tobacco smoke exposure. In vitro neutrophil chemotaxis and monocyte activation were also studied using cells isolated from wild type and TRPM2-deficient animals. Statistical significance for the in vivo data (P < 0.05) was determined using analysis of variance with Kruskal-Wallis and Dunns multiple comparison test. Results In all models studied, no difference in the bronchoalveolar lavage inflammation could be evidenced when comparing wild type and TRPM2-deficient mice. In addition, no difference could be seen in the lung inflammation as assessed by the measurement of various cytokines/chemokines. Similarly in various in vitro cellular activation assays using isolated neutrophils and monocytes no significant differences could be observed when comparing wild type and TRPM2-deficient mice. Discussion We have shown, in all the models tested, no difference in the development of airway inflammation or cell activation between TRPM2-deficient mice and their wild type counterparts. These results would suggest that inhibiting TRPM2 activity in COPD would have no anti-inflammatory effect.
Collapse
Affiliation(s)
- Liz Hardaker
- Novartis Institutes for BioMedical Research, Respiratory Diseases Area, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
26
|
Antioxidant encapsulated porous poly(lactide-co-glycolide) microparticles for developing long acting inhalation system. Colloids Surf B Biointerfaces 2011; 88:419-24. [DOI: 10.1016/j.colsurfb.2011.07.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
|
27
|
Lakhdar R, Denden S, Kassab A, Leban N, Knani J, Lefranc G, Miled A, Chibani JB, Khelil AH. Update in chronic obstructive pulmonary disease: role of antioxidant and metabolizing gene polymorphisms. Exp Lung Res 2011; 37:364-75. [PMID: 21721950 DOI: 10.3109/01902148.2011.580416] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by systemic and local chronic inflammation and oxidative stress. The sources of the increased oxidative stress in COPD patients derive from the increased burden of inhaled oxidants such as cigarette smoke and other forms of particulate or gaseous air pollution and from the increase in reactive oxygen species (ROS) generated by several inflammatory, immune, and structural airways cells. There is increasing evidence that genetic factors may also contribute to the pathogenesis if COPD, particularly antioxidant genes, which may confer a susceptibility to environmental insults such as cigarette smoke and thereafter development of COPD. Consequently, heme oxygenase-1 (HO-1), superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), microsomal epoxide hydrolase (EPHX1), and cytochrome P450 (CYP) genetic polymorphisms may have an important role in COPD pathogenesis. In this review the authors summarized the most recent findings dealing with these antioxidant genes contributing to the free radical neutralization and xenobiotic enzymes playing a role in different phases of cell detoxification reactions related to the redox status imbalance in COPD, with an emphasis on their possible roles in disease progression.
Collapse
Affiliation(s)
- Ramzi Lakhdar
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, Monastir, Tunisia.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lin JL, Thomas PS. Current perspectives of oxidative stress and its measurement in chronic obstructive pulmonary disease. COPD 2010; 7:291-306. [PMID: 20673039 DOI: 10.3109/15412555.2010.496818] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cigarette smoking, the principal aetiology of chronic obstructive pulmonary disease (COPD) in the developed countries, delivers and generates oxidative stress within the lungs. This imbalance of oxidant burden and antioxidant capacity has been implicated as an important contributing factor in the pathogenesis of COPD. Oxidative processes and free radical generation orchestrate the inflammation, mucous gland hyperplasia, and apoptosis of the airway lining epithelium which characterises COPD. Pivotal oxidative stress/pro-inflammatory molecules include reactive oxygen species such as the superoxides and hydroxyl radicals, pro-inflammatory cytokines including leukotrienes, interleukins, tumour necrosis factor alpha, and activated transcriptional factors such as nuclear factor kappa-B and activator protein 1. The lung has a large reserve of antioxidant agents such as glutathione and superoxide dismutase to counter oxidants. However, smoking also causes the depletion of antioxidants, which further contributes to oxidative tissue damage. The downregulation of antioxidant pathways has also been associated with acute exacerbations of COPD. The delivery of redox-protective antioxidants may have preventative and therapeutic potential of COPD. Although these observations have yet to translate into common clinical practice, preliminary clinical trials and studies of animal models have shown that interventions to counter this oxidative imbalance may have potential to better manage COPD. There is, thus, a need for the ability to monitor such interventions and exhaled breath condensate is rapidly emerging as a novel and noninvasive approach in the sampling of airway epithelial lining fluid which could be used for repeated analysis of oxidative stress and inflammation in the lungs.
Collapse
Affiliation(s)
- Jiun-Lih Lin
- University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
29
|
Lin JL, Bonnichsen MH, Nogeh EU, Raftery MJ, Thomas PS. Proteomics in detection and monitoring of asthma and smoking-related lung diseases. Expert Rev Proteomics 2010; 7:361-72. [PMID: 20536308 DOI: 10.1586/epr.10.9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Asthma, chronic obstructive pulmonary disease (COPD) and lung cancer cause extensive mortality and morbidity worldwide. However, the current state-of-the-art diagnosis and management schemes of these diseases are suboptimal as the incidence of asthma has risen by 250% over the last two decades and the 5-year mortality rate of lung cancer remains at 88%. Proteomic analysis is at the frontier of medical research and demonstrates tremendous potential in the early detection, diagnosis and staging, as well as providing novel therapeutic targets for improved management of smoking-related lung diseases. Advances in analytical tools, such as 2D gel electrophoresis, mass spectrometry, protein arrays and improved bioinformatics, allow sensitive and specific biomarker/protein profile discoveries and the infusion of new knowledge towards the molecular basis of lung diseases and their progression. Significant hurdles still stand between these laboratory findings and their applications in clinical practice. One of the challenges is the difficulty in the selection of samples that provide scope into the specific disease entity. Induced sputum, bronchoalveolar lavage, exhaled breath and exhaled breath condensate are methods of sampling airway and lung fluids that can serve as a window to assess the microenvironment of the lungs. With better study design standardization and the implementation of novel technologies to reach the optimal research standard, there is enough reason be optimistic about the future of proteomic research and its clinical implications.
Collapse
Affiliation(s)
- Jiun-Lih Lin
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | | | | | | | | |
Collapse
|
30
|
Sustained Release of Anthocyanin from Porous Poly(lactic-co-glycolide) Microsparticles Developed for the Treatment of Chronic Obstructive Pulmonary Disease. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2010. [DOI: 10.4333/kps.2010.40.4.231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|