1
|
Edin ML, Gruzdev A, Bradbury JA, Graves JP, Lih FB, DeGraff LM, Fleming I, Zeldin DC. Disruption of Ephx2 in cardiomyocytes but not endothelial cells improves functional recovery after ischemia-reperfusion in isolated mouse hearts. J Biol Chem 2023; 299:103049. [PMID: 36822325 PMCID: PMC10040734 DOI: 10.1016/j.jbc.2023.103049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/25/2023] Open
Abstract
Cytochromes P450 metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs) which have numerous effects. After cardiac ischemia, EET-induced coronary vasodilation increases delivery of oxygen/nutrients to the myocardium, and EET-induced signaling protects cardiomyocytes against postischemic mitochondrial damage. Soluble epoxide hydrolase 2 (EPHX2) diminishes the benefits of EETs through hydrolysis to less active dihydroxyeicosatrienoic acids. EPHX2 inhibition or genetic disruption improves recovery of cardiac function after ischemia. Immunohistochemical staining revealed EPHX2 expression in cardiomyocytes and some endothelial cells but little expression in cardiac smooth muscle cells or fibroblasts. To determine specific roles of EPHX2 in cardiac cell types, we generated mice with cell-specific disruption of Ephx2 in endothelial cells (Ephx2fx/fx/Tek-cre) or cardiomyocytes (Ephx2fx/fx/Myh6-cre) to compare to global Ephx2-deficient mice (global Ephx2-/-) and WT (Ephx2fx/fx) mice in expression, EET hydrolase activity, and heart function studies. Most cardiac EPHX2 expression and activity is in cardiomyocytes with substantially less activity in endothelial cells. Ephx2fx/fx/Tek-cre hearts have similar EPHX2 expression, hydrolase activity, and postischemic cardiac function as control Ephx2fx/fx hearts. However, Ephx2fx/fx/Myh6-cre hearts were similar to global Ephx2-/- hearts with significantly diminished EPHX2 expression, decreased hydrolase activity, and enhanced postischemic cardiac function compared to Ephx2fx/fx hearts. During reperfusion, Ephx2fx/fx/Myh6-cre hearts displayed increased ERK activation compared to Ephx2fx/fx hearts, which could be reversed by EEZE treatment. EPHX2 did not regulate coronary vasodilation in this model. We conclude that EPHX2 is primarily expressed in cardiomyocytes where it regulates EET hydrolysis and postischemic cardiac function, whereas endothelial EPHX2 does not play a significant role in these processes.
Collapse
Affiliation(s)
- Matthew L Edin
- Division of Intramural Research, National Institute for Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Artiom Gruzdev
- Division of Intramural Research, National Institute for Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - J Alyce Bradbury
- Division of Intramural Research, National Institute for Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Joan P Graves
- Division of Intramural Research, National Institute for Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Fred B Lih
- Division of Intramural Research, National Institute for Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Laura M DeGraff
- Division of Intramural Research, National Institute for Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Ingrid Fleming
- Institute for Vascular Signaling, Centre of Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute for Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
| |
Collapse
|
2
|
Manson A, Winter T, Aukema HM. Phospholipase A 2 enzymes differently impact PUFA release and oxylipin formation ex vivo in rat hearts. Prostaglandins Leukot Essent Fatty Acids 2023; 191:102555. [PMID: 36878084 DOI: 10.1016/j.plefa.2023.102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
Phospholipase A2 (PLA2) enzymes cleave cell membrane phospholipids and release polyunsaturated fatty acids (PUFA), which can be converted into oxylipins. However, little is known about PLA2 preference for PUFA, and even less is known about how this further impacts oxylipin formation. Therefore, we investigated the role of different PLA2 groups in PUFA release and oxylipin formation in rat hearts. Sprague-Dawley rat heart homogenates were incubated without or with varespladib (VAR), methyl arachidonyl fluorophosphonate (MAFP) or EDTA. Free PUFA and oxylipins were determined by HPLC-MS/MS, and isoform expressions by RT-qPCR. Inhibition of sPLA2 IIA and/or V by VAR reduced the release of ARA and DHA, but only DHA oxylipins were inhibited. MAFP reduced the release of ARA, DHA, ALA, and EPA, and the formation of ARA, LA, DGLA, DHA, ALA, and EPA oxylipins. Interestingly, cyclooxygenase and 12-lipoxygenase oxylipins were not inhibited. mRNA expression levels of sPLA2 and iPLA2 isoforms were highest whereas levels of cPLA2 were low, consistent with activity. In conclusion, sPLA2 enzymes lead to the formation of DHA oxylipins, while iPLA2 is likely responsible for the formation of most other oxylipins in healthy rat hearts. Oxylipin formation cannot be implied from PUFA release, thus, both should be evaluated in PLA2 activity studies.
Collapse
Affiliation(s)
- Anne Manson
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg MB, Canada
| | - Tanja Winter
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg MB, Canada
| | - Harold M Aukema
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg MB, Canada.
| |
Collapse
|
3
|
Beccacece L, Abondio P, Bini C, Pelotti S, Luiselli D. The Link between Prostanoids and Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24044193. [PMID: 36835616 PMCID: PMC9962914 DOI: 10.3390/ijms24044193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Cardiovascular diseases are the leading cause of global deaths, and many risk factors contribute to their pathogenesis. In this context, prostanoids, which derive from arachidonic acid, have attracted attention for their involvement in cardiovascular homeostasis and inflammatory processes. Prostanoids are the target of several drugs, but it has been shown that some of them increase the risk of thrombosis. Overall, many studies have shown that prostanoids are tightly associated with cardiovascular diseases and that several polymorphisms in genes involved in their synthesis and function increase the risk of developing these pathologies. In this review, we focus on molecular mechanisms linking prostanoids to cardiovascular diseases and we provide an overview of genetic polymorphisms that increase the risk for cardiovascular disease.
Collapse
Affiliation(s)
- Livia Beccacece
- Computational Genomics Lab, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Correspondence: (L.B.); (P.A.)
| | - Paolo Abondio
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
- Correspondence: (L.B.); (P.A.)
| | - Carla Bini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Donata Luiselli
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
| |
Collapse
|
4
|
Halmetoja E, Nagy I, Szabo Z, Alakoski T, Yrjölä R, Vainio L, Viitavaara E, Lin R, Rahtu-Korpela L, Vainio S, Kerkelä R, Magga J. Wnt11 in regulation of physiological and pathological cardiac growth. FASEB J 2022; 36:e22544. [PMID: 36098469 DOI: 10.1096/fj.202101856rrrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/11/2022]
Abstract
Wnt11 regulates early cardiac development and left ventricular compaction in the heart, but it is not known how Wnt11 regulates postnatal cardiac maturation and response to cardiac stress in the adult heart. We studied cell proliferation/maturation in postnatal and adolescent Wnt11 deficient (Wnt11-/-) heart and subjected adult mice with partial (Wnt11+/-) and complete Wnt11 (Wnt11-/-) deficiency to cardiac pressure overload. In addition, we subjected primary cardiomyocytes to recombinant Wnt proteins to study their effect on cardiomyocyte growth. Wnt11 deficiency did not affect cardiomyocyte proliferation or maturation in the postnatal or adolescent heart. However, Wnt11 deficiency led to enlarged heart phenotype that was not accompanied by significant hypertrophy of individual cardiomyocytes. Analysis of stressed adult hearts from wild-type mice showed a progressive decrease in Wnt11 expression in response to pressure overload. When studied in experimental cardiac pressure overload, Wnt11 deficiency did not exacerbate cardiac hypertrophy or remodeling and cardiac function remained identical between the genotypes. When subjecting cardiomyocytes to hypertrophic stimulus, the presence of recombinant Wnt11 together with Wnt5a reduced protein synthesis. In conclusion, Wnt11 deficiency does not affect postnatal cardiomyocyte proliferation but leads to cardiac growth. Interestingly, Wnt11 deficiency alone does not substantially modulate hypertrophic response to pressure overload in vivo. Wnt11 may require cooperation with other noncanonical Wnt proteins to regulate hypertrophic response under stress.
Collapse
Affiliation(s)
| | - Irina Nagy
- Department of Clinical Chemistry, Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu and Northern Finland Laboratory Centre NordLab, Oulu University Hospital, Oulu, Finland
| | - Zoltan Szabo
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Tarja Alakoski
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Raisa Yrjölä
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Laura Vainio
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | | | - Ruizhu Lin
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | | | - Seppo Vainio
- Laboratory of Developmental Biology, Center for Cell Matrix Research, University of Oulu, Oulu, Finland.,Kvantum Institute, Infotech Oulu, University of Oulu, Oulu, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Johanna Magga
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
5
|
Toko H, Morita H, Katakura M, Hashimoto M, Ko T, Bujo S, Adachi Y, Ueda K, Murakami H, Ishizuka M, Guo J, Zhao C, Fujiwara T, Hara H, Takeda N, Takimoto E, Shido O, Harada M, Komuro I. Omega-3 fatty acid prevents the development of heart failure by changing fatty acid composition in the heart. Sci Rep 2020; 10:15553. [PMID: 32968201 PMCID: PMC7512019 DOI: 10.1038/s41598-020-72686-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022] Open
Abstract
Some clinical trials showed that omega-3 fatty acid (FA) reduced cardiovascular events, but it remains unknown whether omega-3 FA supplementation changes the composition of FAs and their metabolites in the heart and how the changes, if any, exert beneficial effects on cardiac structure and function. To clarify these issues, we supplied omega-3 FA to mice exposed to pressure overload, and examined cardiac structure and function by echocardiography and a proportion of FAs and their metabolites by gas chromatography and liquid chromatography-tandem mass spectrometry, respectively. Pressure overload induced cardiac hypertrophy and dysfunction, and reduced concentration of all FAs’ components and increased free form arachidonic acid and its metabolites, precursors of pro-inflammatory mediators in the heart. Omega-3 FA supplementation increased both total and free form of eicosapentaenoic acid, a precursor of pro-resolution mediators and reduced free form arachidonic acid in the heart. Omega-3 FA supplementation suppressed expressions of pro-inflammatory cytokines and the infiltration of inflammatory cells into the heart and ameliorated cardiac dysfunction and fibrosis. These results suggest that omega-3 FA-induced changes of FAs composition in the heart have beneficial effects on cardiac function via regulating inflammation.
Collapse
Affiliation(s)
- Haruhiro Toko
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan. .,Department of Advanced Translational Research and Medicine in Management of Pulmonary Hypertension, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masanori Katakura
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, 89-1 Enyacho, Izumo, Shimane, 693-8501, Japan.,Laboratory of Nutritional Physiology, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Michio Hashimoto
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, 89-1 Enyacho, Izumo, Shimane, 693-8501, Japan
| | - Toshiyuki Ko
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Satoshi Bujo
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yusuke Adachi
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazutaka Ueda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Haruka Murakami
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masato Ishizuka
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Jiaxi Guo
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Chunxia Zhao
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takayuki Fujiwara
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hironori Hara
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Norifumi Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Osamu Shido
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, 89-1 Enyacho, Izumo, Shimane, 693-8501, Japan
| | - Mutsuo Harada
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
6
|
Alimohamadi H, Rangamani P. Modeling Membrane Curvature Generation due to Membrane⁻Protein Interactions. Biomolecules 2018; 8:E120. [PMID: 30360496 PMCID: PMC6316661 DOI: 10.3390/biom8040120] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/03/2023] Open
Abstract
To alter and adjust the shape of the plasma membrane, cells harness various mechanisms of curvature generation. Many of these curvature generation mechanisms rely on the interactions between peripheral membrane proteins, integral membrane proteins, and lipids in the bilayer membrane. Mathematical and computational modeling of membrane curvature generation has provided great insights into the physics underlying these processes. However, one of the challenges in modeling these processes is identifying the suitable constitutive relationships that describe the membrane free energy including protein distribution and curvature generation capability. Here, we review some of the commonly used continuum elastic membrane models that have been developed for this purpose and discuss their applications. Finally, we address some fundamental challenges that future theoretical methods need to overcome to push the boundaries of current model applications.
Collapse
Affiliation(s)
- Haleh Alimohamadi
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA.
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
7
|
Míčová P, Klevstig M, Holzerová K, Vecka M, Žurmanová J, Neckář J, Kolář F, Nováková O, Novotný J, Hlaváčková M. Antioxidant tempol suppresses heart cytosolic phospholipase A2α stimulated by chronic intermittent hypoxia. Can J Physiol Pharmacol 2017; 95:920-927. [DOI: 10.1139/cjpp-2017-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adaptation to chronic intermittent hypoxia (CIH) is associated with reactive oxygen species (ROS) generation implicated in the improved cardiac tolerance against acute ischemia–reperfusion injury. Phospholipases A2(PLA2s) play an important role in cardiomyocyte phospholipid metabolism influencing membrane homeostasis. Here we aimed to determine the effect of CIH (7000 m, 8 h/day, 5 weeks) on the expression of cytosolic PLA2(cPLA2α), its phosphorylated form (p-cPLA2α), calcium-independent (iPLA2), and secretory (sPLA2IIA) at protein and mRNA levels, as well as fatty acids (FA) profile in left ventricular myocardium of adult male Wistar rats. Chronic administration of antioxidant tempol was used to verify the ROS involvement in CIH effect on PLA2s expression and phospholipid FA remodeling. While CIH did not affect PLA2s mRNA levels, it increased the total cPLA2α protein in cytosol and membranes (by 191% and 38%, respectively) and p-cPLA2α (by 23%) in membranes. On the contrary, both iPLA2and sPLA2IIA were downregulated by CIH. CIH further decreased phospholipid n-6 polyunsaturated FA (PUFA) and increased n-3 PUFA proportion. Tempol treatment prevented only CIH-induced cPLA2α up-regulation and its phosphorylation on Ser505. Our results show that CIH diversely affect myocardial PLA2s and suggest that ROS are responsible for the activation of cPLA2α under these conditions.
Collapse
Affiliation(s)
- Petra Míčová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martina Klevstig
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kristýna Holzerová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Vecka
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University and General Teaching Hospital in Prague, Czech Republic
| | - Jitka Žurmanová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Neckář
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - František Kolář
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Nováková
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Markéta Hlaváčková
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
8
|
Micova P, Hahnova K, Hlavackova M, Elsnicova B, Chytilova A, Holzerova K, Zurmanova J, Neckar J, Kolar F, Novakova O, Novotny J. Chronic intermittent hypoxia affects the cytosolic phospholipase A2α/cyclooxygenase 2 pathway via β2-adrenoceptor-mediated ERK/p38 stimulation. Mol Cell Biochem 2016; 423:151-163. [DOI: 10.1007/s11010-016-2833-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/23/2016] [Indexed: 11/30/2022]
|
9
|
Drug Signature-based Finding of Additional Clinical Use of LC28-0126 for Neutrophilic Bronchial Asthma. Sci Rep 2015; 5:17784. [PMID: 26626943 PMCID: PMC4667219 DOI: 10.1038/srep17784] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/03/2015] [Indexed: 12/20/2022] Open
Abstract
In recent decades, global pharmaceutical companies have suffered from an R&D innovation gap between the increased cost of a new drug’s development and the decreased number of approvals. Drug repositioning offers another opportunity to fill the gap because the approved drugs have a known safety profile for human use, allowing for a reduction of the overall cost of drug development by eliminating rigorous safety assessment. In this study, we compared the transcriptional profile of LC28-0126, an investigational drug for acute myocardial infarction (MI) at clinical trial, obtained from healthy male subjects with molecular activity profiles in the Connectivity Map. We identified dyphilline, an FDA-approved drug for bronchial asthma, as a top ranked connection with LC28-0126. Subsequently, we demonstrated that LC28-0126 effectively ameliorates the pathophysiology of neutrophilic bronchial asthma in OVALPS-OVA mice accompanied with a reduction of inflammatory cell counts in the bronchoalveolar lavage fluid (BALF), inhibition of the release of proinflammatory cytokines, relief of airway hyperactivity, and improvement of histopathological changes in the lung. Taken together, we suggest that LC28-0126 could be a potential therapeutic for bronchial asthma. In addition, this study demonstrated the potential general utility of computational drug repositioning using clinical profiles of the investigational drug.
Collapse
|
10
|
Nanhwan MK, Ling S, Kodakandla M, Nylander S, Ye Y, Birnbaum Y. Chronic Treatment With Ticagrelor Limits Myocardial Infarct Size. Arterioscler Thromb Vasc Biol 2014; 34:2078-85. [DOI: 10.1161/atvbaha.114.304002] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Objective—
In a phase III clinical trial (PLATelet inhibition and patient Outcomes, PLATO), ticagrelor provided better clinical outcomes than clopidogrel in patients with acute coronary syndromes. In addition to P2Y
12
-receptor antagonism, ticagrelor prevents cell uptake of adenosine and has proven able to augment adenosine effects. Adenosine protects the heart against ischemia–reperfusion injury. We compared the effects of clopidogrel and ticagrelor on myocardial infarct size (IS).
Approach and Results—
Rats received oral ticagrelor (0, 75, 150, or 300 mg/kg/d) or clopidogrel (30 or 90 mg/kg/d) for 7 days and underwent 30-minute coronary artery ligation and 24-hour reperfusion. Area at risk was assessed by blue dye and IS by 2,3,5-triphenyl-tetrazolium-chloride. Cyclooxygenase-2 (COX2) enzyme activity was assessed by ELISA and expression by real-time polymerase chain reaction. Mechanism responsible was explored using adenosine-receptor antagonist (CGS15943, an A
2A
/A
1
antagonist) or cyclooxygenase inhibition by either aspirin (5, 10, or 25 mg/kg) or specific cyclooxygenase-1 (SC560) or COX2 (SC5815) inhibitors. Ticagrelor, dose-dependently, reduced IS, whereas clopidogrel had no effect. Adenosine-receptor antagonism blocked the ticagrelor effect and COX2 inhibition by SC5815, or high-dose aspirin attenuated the IS-limiting effect of ticagrelor, whereas cyclooxygenase-1 inhibition or low-dose aspirin had no effect. Ticagrelor, but not clopidogrel, upregulated COX2 expression and activity. Also this effect was blocked by adenosine-receptor antagonism. Ticagrelor, but not clopidogrel, increased Akt and endothelial nitric oxide synthase phosphorylation.
Conclusions—
Ticagrelor, but not clopidogrel, reduces myocardial IS. The protective effect of ticagrelor was dependent on adenosine-receptor activation with downstream upregulation of endothelial nitric oxide synthase and COX2 activity.
Collapse
Affiliation(s)
- Manjyot K. Nanhwan
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (M.K.N., S.L., M.K., Y.Y., Y.B.); State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China (S.L.); AstraZeneca R&D, Mölndal, Sweden (S.N.); and Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (Y.B.)
| | - Shukuan Ling
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (M.K.N., S.L., M.K., Y.Y., Y.B.); State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China (S.L.); AstraZeneca R&D, Mölndal, Sweden (S.N.); and Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (Y.B.)
| | - Monica Kodakandla
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (M.K.N., S.L., M.K., Y.Y., Y.B.); State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China (S.L.); AstraZeneca R&D, Mölndal, Sweden (S.N.); and Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (Y.B.)
| | - Sven Nylander
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (M.K.N., S.L., M.K., Y.Y., Y.B.); State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China (S.L.); AstraZeneca R&D, Mölndal, Sweden (S.N.); and Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (Y.B.)
| | - Yumei Ye
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (M.K.N., S.L., M.K., Y.Y., Y.B.); State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China (S.L.); AstraZeneca R&D, Mölndal, Sweden (S.N.); and Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (Y.B.)
| | - Yochai Birnbaum
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (M.K.N., S.L., M.K., Y.Y., Y.B.); State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China (S.L.); AstraZeneca R&D, Mölndal, Sweden (S.N.); and Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (Y.B.)
| |
Collapse
|
11
|
Zhang Y. From gene variants to novel therapies. Is the prostaglandin e2 pathway in primary graft dysfunction ready for prime time? Am J Respir Crit Care Med 2014; 189:507-8. [PMID: 24579833 DOI: 10.1164/rccm.201401-0154ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Yingze Zhang
- 1 Division of Pulmonary, Allergy and Critical Care Medicine University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Yu J, Deliu E, Zhang XQ, Hoffman NE, Carter RL, Grisanti LA, Brailoiu GC, Madesh M, Cheung JY, Force T, Abood ME, Koch WJ, Tilley DG, Brailoiu E. Differential activation of cultured neonatal cardiomyocytes by plasmalemmal versus intracellular G protein-coupled receptor 55. J Biol Chem 2013; 288:22481-92. [PMID: 23814062 DOI: 10.1074/jbc.m113.456178] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The L-α-lysophosphatidylinositol (LPI)-sensitive receptor GPR55 is coupled to Ca(2+) signaling. Low levels of GPR55 expression in the heart have been reported. Similar to other G protein-coupled receptors involved in cardiac function, GPR55 may be expressed both at the sarcolemma and intracellularly. Thus, to explore the role of GPR55 in cardiomyocytes, we used calcium and voltage imaging and extracellular administration or intracellular microinjection of GPR55 ligands. We provide the first evidence that, in cultured neonatal ventricular myocytes, LPI triggers distinct signaling pathways via GPR55, depending on receptor localization. GPR55 activation at the sarcolemma elicits, on one hand, Ca(2+) entry via L-type Ca(2+) channels and, on the other, inositol 1,4,5-trisphosphate-dependent Ca(2+) release. The latter signal is further amplified by Ca(2+)-induced Ca(2+) release via ryanodine receptors. Conversely, activation of GPR55 at the membrane of intracellular organelles promotes Ca(2+) release from acidic-like Ca(2+) stores via the endolysosomal NAADP-sensitive two-pore channels. This response is similarly enhanced by Ca(2+)-induced Ca(2+) release via ryanodine receptors. Extracellularly applied LPI produces Ca(2+)-independent membrane depolarization, whereas the Ca(2+) signal induced by intracellular microinjection of LPI converges to hyperpolarization of the sarcolemma. Collectively, our findings point to GPR55 as a novel G protein-coupled receptor regulating cardiac function at two cellular sites. This work may serve as a platform for future studies exploring the potential of GPR55 as a therapeutic target in cardiac disorders.
Collapse
Affiliation(s)
- Justine Yu
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ward KE, Bhardwaj N, Vora M, Chalfant CE, Lu H, Stahelin RV. The molecular basis of ceramide-1-phosphate recognition by C2 domains. J Lipid Res 2013; 54:636-648. [PMID: 23277511 PMCID: PMC3617939 DOI: 10.1194/jlr.m031088] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 12/29/2012] [Indexed: 11/20/2022] Open
Abstract
Group IVA cytosolic phospholipase A₂ (cPLA₂α), which harbors an N-terminal lipid binding C2 domain and a C-terminal lipase domain, produces arachidonic acid from the sn-2 position of zwitterionic lipids such as phosphatidylcholine. The C2 domain has been shown to bind zwitterionic lipids, but more recently, the anionic phosphomonoester sphingolipid metabolite ceramide-1-phosphate (C1P) has emerged as a potent bioactive lipid with high affinity for a cationic patch in the C2 domain β-groove. To systematically analyze the role that C1P plays in promoting the binding of cPLA₂α-C2 to biological membranes, we employed biophysical measurements and cellular translocation studies along with mutagenesis. Biophysical and cellular translocation studies demonstrate that C1P specificity is mediated by Arg⁵⁹, Arg⁶¹, and His⁶² (an RxRH sequence) in the C2 domain. Computational studies using molecular dynamics simulations confirm the origin of C1P specificity, which results in a spatial shift of the C2 domain upon membrane docking to coordinate the small C1P headgroup. Additionally, the hydroxyl group on the sphingosine backbone plays an important role in the interaction with the C2 domain, further demonstrating the selectivity of the C2 domain for C1P over phosphatidic acid. Taken together, this is the first study demonstrating the molecular origin of C1P recognition.
Collapse
Affiliation(s)
- Katherine E Ward
- Department of Chemistry and Biochemistry and the Mike and Josie Harper Center for Cancer Research, University of Notre Dame, Notre Dame, IN
| | - Nitin Bhardwaj
- Bioinformatics Program, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Mohsin Vora
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN
| | - Charles E Chalfant
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, the Massey Cancer Center, and Research and Development, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA
| | - Hui Lu
- Bioinformatics Program, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Robert V Stahelin
- Department of Chemistry and Biochemistry and the Mike and Josie Harper Center for Cancer Research, University of Notre Dame, Notre Dame, IN; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN
| |
Collapse
|
14
|
The absence of myocardial calcium-independent phospholipase A2γ results in impaired prostaglandin E2 production and decreased survival in mice with acute Trypanosoma cruzi infection. Infect Immun 2013; 81:2278-87. [PMID: 23429536 DOI: 10.1128/iai.00497-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cardiomyopathy is a serious complication of Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi. The parasite often infects cardiac myocytes, causing the release of inflammatory mediators, including eicosanoids. A recent study from our laboratory demonstrated that calcium-independent phospholipase A2γ (iPLA2γ) accounts for the majority of PLA2 activity in rabbit ventricular myocytes and is responsible for arachidonic acid (AA) and prostaglandin E2 (PGE2) release. Thus, we hypothesized that cardiac iPLA2γ contributes to eicosanoid production in T. cruzi infection. Inhibition of the isoform iPLA2γ or iPLA2β, with the R or S enantiomer of bromoenol lactone (BEL), respectively, demonstrated that iPLA2γ is the predominant isoform in immortalized mouse cardiac myocytes (HL-1 cells). Stimulation of HL-1 cells with thrombin, a serine protease associated with microthrombus formation in Chagas' disease and a known activator of iPLA2, increased AA and PGE2 release, accompanied by platelet-activating factor (PAF) production. Similarly, T. cruzi infection resulted in increased AA and PGE2 release over time that was inhibited by pretreatment with (R)-BEL. Further, T. cruzi-infected iPLA2γ-knockout (KO) mice had lower survival rates and increased tissue parasitism compared to wild-type (WT) mice, suggesting that iPLA2γ-KO mice were more susceptible to infection than WT mice. A significant increase in iPLA2 activity was observed in WT mice following infection, whereas iPLA2γ-KO mice showed no alteration in cardiac iPLA2 activity and produced less PGE2. In summary, these studies demonstrate that T. cruzi infection activates cardiac myocyte iPLA2γ, resulting in increased AA and PGE2 release, mediators that may be essential for host survival during acute infection. Thus, these studies suggest that iPLA2γ plays a cardioprotective role during the acute stage of Chagas' disease.
Collapse
|
15
|
Gao E, Koch WJ. A novel and efficient model of coronary artery ligation in the mouse. Methods Mol Biol 2013; 1037:299-311. [PMID: 24029943 DOI: 10.1007/978-1-62703-505-7_17] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coronary artery ligation to induce myocardial infarction (MI) and ischemia/reperfusion (I/R) injury in mice is typically performed by an invasive and time-consuming approach that requires ventilation and a full thoracotomy (classical method), often resulting in extensive tissue damage and high mortality. Here, we describe a novel and rapid surgical method to induce MI that does not require ventilation. This method is much more efficient and safer than the classical method of MI and I/R injury.
Collapse
Affiliation(s)
- Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
16
|
Ward KE, Ropa JP, Adu-Gyamfi E, Stahelin RV. C2 domain membrane penetration by group IVA cytosolic phospholipase A₂ induces membrane curvature changes. J Lipid Res 2012; 53:2656-66. [PMID: 22991194 DOI: 10.1194/jlr.m030718] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group IVA cytosolic phospholipase A(2) (cPLA(2)α) is an 85 kDa enzyme that regulates the release of arachidonic acid (AA) from the sn-2 position of membrane phospholipids. It is well established that cPLA(2)α binds zwitterionic lipids such as phosphatidylcholine in a Ca(2+)-dependent manner through its N-terminal C2 domain, which regulates its translocation to cellular membranes. In addition to its role in AA synthesis, it has been shown that cPLA(2)α promotes tubulation and vesiculation of the Golgi and regulates trafficking of endosomes. Additionally, the isolated C2 domain of cPLA(2)α is able to reconstitute Fc receptor-mediated phagocytosis, suggesting that C2 domain membrane binding is sufficient for phagosome formation. These reported activities of cPLA(2)α and its C2 domain require changes in membrane structure, but the ability of the C2 domain to promote changes in membrane shape has not been reported. Here we demonstrate that the C2 domain of cPLA(2)α is able to induce membrane curvature changes to lipid vesicles, giant unilamellar vesicles, and membrane sheets. Biophysical assays combined with mutagenesis of C2 domain residues involved in membrane penetration demonstrate that membrane insertion by the C2 domain is required for membrane deformation, suggesting that C2 domain-induced membrane structural changes may be an important step in signaling pathways mediated by cPLA(2)α.
Collapse
Affiliation(s)
- Katherine E Ward
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN 46556, USA
| | | | | | | |
Collapse
|
17
|
David S, Greenhalgh AD, López-Vales R. Role of phospholipase A2s and lipid mediators in secondary damage after spinal cord injury. Cell Tissue Res 2012; 349:249-67. [PMID: 22581384 DOI: 10.1007/s00441-012-1430-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/05/2012] [Indexed: 11/26/2022]
Abstract
Inflammation is considered to be an important contributor to secondary damage after spinal cord injury (SCI). This secondary damage leads to further exacerbation of tissue loss and functional impairments. The immune responses that are triggered by injury are complex and are mediated by a variety of factors that have both detrimental and beneficial effects. In this review, we focus on the diverse effects of the phospholipase A(2) (PLA(2)) superfamily and the downstream pathways that generate a large number of bioactive lipid mediators, some of which have pro-inflammatory and demyelinating effects, whereas others have anti-inflammatory and pro-resolution properties. For each of these lipid mediators, we provide an overview followed by a discussion of their expression and role in SCI. Where appropriate, we have compared the latter with their role in other neurological conditions. The PLA(2) pathway provides a number of targets for therapeutic intervention for the treatment of SCI and other neurological conditions.
Collapse
Affiliation(s)
- Samuel David
- Center for Research in Neuroscience, The Research Institute of the McGill University Health Center, Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, Quebec, Canada, H3G 1A4,
| | | | | |
Collapse
|