1
|
Badiyal A, Dhiman S, Singh A, Rathour R, Pathania A, Katoch S, Padder BA, Sharma PN. Mapping of adult plant recessive resistance to anthracnose in Indian common bean landrace Baspa/KRC 8. Mol Biol Rep 2024; 51:254. [PMID: 38302755 DOI: 10.1007/s11033-023-09160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND The common bean (Phaseolus vulgaris) has become the food of choice owing to its wealthy nutritional profile, leading to a considerable increase in its cultivation worldwide. However, anthracnose has been a major impediment to production and productivity, as elite bean cultivars are vulnerable to this disease. To overcome barriers in crop production, scientists worldwide are working towards enhancing the genetic diversity of crops. One way to achieve this is by introducing novel genes from related crops, including landraces like KRC 8. This particular landrace, found in the North Western Himalayan region, has shown adult plant resistance against anthracnose and also possesses a recessive resistance gene. METHODS AND RESULTS In this study, a population of 179 F2:9 RIL individuals (Jawala × KRC 8) was evaluated at both phenotypic and genotypic levels using over 830 diverse molecular markers to map the resistance gene present in KRC 8. We have successfully mapped a resistance gene to chromosome Pv01 using four SSR markers, namely IAC 238, IAC 235, IAC 259, and BM 146. The marker IAC 238 is closely linked to the gene with a distance of 0.29 cM, while the other markers flank the recessive resistance gene at 10.87 cM (IAC 259), 17.80 cM (BM 146), and 25.22 cM (IAC 235). Previously, a single recessive anthracnose resistance gene (co-8) has been reported in the common bean accession AB 136. However, when we performed PCR amplification with our tightly linked marker IAC 238, we got different amplicons in AB 136 and KRC 8. Interestingly, the susceptible cultivar Jawala produced the same amplicon as AB 136. This observation indicated that the recessive gene present in KRC 8 is different from co-8. As the gene is located far away from the Co-1 locus, we suggest naming the recessive gene co-Indb/co-19. Fine mapping of co-Indb in KRC 8 may provide new insights into the cloning and characterization of this recessive gene so that it can be incorporated into future bean improvement programs. Further, the tightly linked marker IAC 238 can be utilized in marker assisted introgression in future bean breeding programs. CONCLUSION The novel co-Indb gene present in Himalayan landrace KRC 8, showing adult plant resistance against common bean anthracnose, is independent from all the resistance genes previously located on chromosome Pv01.
Collapse
Affiliation(s)
- Anila Badiyal
- Molecular Plant Pathology Laboratory, Department of Plant Pathology, CSK HP Agricultural University, Palampur, 176 062, Himachal Pradesh, India
| | - Shiwali Dhiman
- Molecular Plant Pathology Laboratory, Department of Plant Pathology, CSK HP Agricultural University, Palampur, 176 062, Himachal Pradesh, India
| | - Amar Singh
- Molecular Plant Pathology Laboratory, Department of Plant Pathology, CSK HP Agricultural University, Palampur, 176 062, Himachal Pradesh, India
| | - Rajeev Rathour
- Department of Agricultural Biotechnology, CSK HP Agricultural University, Palampur, 176 062, Himachal Pradesh, India
| | - Anju Pathania
- Faculty of Agriculture, DAV University, Jalandhar, 144001, Punjab, India
| | - Shabnam Katoch
- Molecular Plant Pathology Laboratory, Department of Plant Pathology, CSK HP Agricultural University, Palampur, 176 062, Himachal Pradesh, India
| | - Bilal A Padder
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-K Srinagar, Srinagar, 190025, J&K, India.
| | - Prem N Sharma
- Molecular Plant Pathology Laboratory, Department of Plant Pathology, CSK HP Agricultural University, Palampur, 176 062, Himachal Pradesh, India.
| |
Collapse
|
2
|
Leitão ST, Dinis M, Veloso MM, Šatović Z, Vaz Patto MC. Establishing the Bases for Introducing the Unexplored Portuguese Common Bean Germplasm into the Breeding World. FRONTIERS IN PLANT SCIENCE 2017; 8:1296. [PMID: 28798757 PMCID: PMC5526916 DOI: 10.3389/fpls.2017.01296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/10/2017] [Indexed: 05/28/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is among the most important grain legumes for human consumption worldwide. Portugal has a potentially promising common bean germplasm, resulting from more than five centuries of natural adaptation and farmers' selection. Nevertheless, limited characterization of this resource hampers its exploitation by breeding programs. To support a more efficient conservation of the national bean germplasm and promote its use in crop improvement, we performed, for the first time, a simultaneous molecular marker (21 microsatellites and a DNA marker for phaseolin-type diversity analysis) and seed and plant morphological characterization (14 traits) of 175 accessions from Portuguese mainland and islands traditional bean-growing regions. A total of 188 different alleles were identified and an average pairwise Cavalli-Sforza and Edwards' chord genetic distance of 0.193 was estimated among accessions. To relate the Portuguese germplasm with the global common bean diversity, 17 wild relatives and representative accessions from the Andean and Mesoamerican gene pools were evaluated at the molecular level. No correlation was detected between the variability found and the geographic origin of accessions. Structure analysis divided the collection into three main clusters. Most of the Portuguese accessions grouped with the race representatives and wild relatives from the Andean region. One third of the national germplasm had admixed genetic origin and might represent putative hybrids among gene pools from the two original centers of domestication in the Andes and Mesoamerica. The molecular marker-based classification was largely congruent with the three most frequent phaseolin haplotype patterns observed in the accessions analyzed. Seed and plant morphological characterization of 150 Portuguese common bean accessions revealed a clear separation among genetic structure and phaseolin haplotype groups of accessions, with seed size and shape and the number of locules per pod the most discriminant traits. Additionally, we used molecular and morphological data to develop a series of smaller core collections that, by maximizing the genetic and morphological diversity of the original collection, represents the Portuguese common bean germplasm with minimum repetitiveness. A core collection with 37 accessions contained 100% of the genetic variation found in the entire collection. This core collection is appropriate for a more detailed characterization and should be explored, as a priority, in national and international common bean breeding efforts. Furthermore, the identified intermediate accessions (with admixed genetic origin) may have novel genetic combinations useful in future bean breeding.
Collapse
Affiliation(s)
- Susana T. Leitão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de LisboaOeiras, Portugal
| | - Marco Dinis
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de LisboaOeiras, Portugal
| | - Maria M. Veloso
- Unidade de Investigação de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e VeterináriaOeiras, Portugal
| | - Zlatko Šatović
- Faculty of Agriculture, University of ZagrebZagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant BreedingZagreb, Croatia
| | - Maria C. Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de LisboaOeiras, Portugal
| |
Collapse
|
3
|
Song Q, Jia G, Hyten DL, Jenkins J, Hwang EY, Schroeder SG, Osorno JM, Schmutz J, Jackson SA, McClean PE, Cregan PB. SNP Assay Development for Linkage Map Construction, Anchoring Whole-Genome Sequence, and Other Genetic and Genomic Applications in Common Bean. G3 (BETHESDA, MD.) 2015; 5:2285-90. [PMID: 26318155 PMCID: PMC4632048 DOI: 10.1534/g3.115.020594] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/27/2015] [Indexed: 11/28/2022]
Abstract
A total of 992,682 single-nucleotide polymorphisms (SNPs) was identified as ideal for Illumina Infinium II BeadChip design after sequencing a diverse set of 17 common bean (Phaseolus vulgaris L) varieties with the aid of next-generation sequencing technology. From these, two BeadChips each with >5000 SNPs were designed. The BARCBean6K_1 BeadChip was selected for the purpose of optimizing polymorphism among market classes and, when possible, SNPs were targeted to sequence scaffolds in the Phaseolus vulgaris 14× genome assembly with sequence lengths >10 kb. The BARCBean6K_2 BeadChip was designed with the objective of anchoring additional scaffolds and to facilitate orientation of large scaffolds. Analysis of 267 F2 plants from a cross of varieties Stampede × Red Hawk with the two BeadChips resulted in linkage maps with a total of 7040 markers including 7015 SNPs. With the linkage map, a total of 432.3 Mb of sequence from 2766 scaffolds was anchored to create the Phaseolus vulgaris v1.0 assembly, which accounted for approximately 89% of the 487 Mb of available sequence scaffolds of the Phaseolus vulgaris v0.9 assembly. A core set of 6000 SNPs (BARCBean6K_3 BeadChip) with high genotyping quality and polymorphism was selected based on the genotyping of 365 dry bean and 134 snap bean accessions with the BARCBean6K_1 and BARCBean6K_2 BeadChips. The BARCBean6K_3 BeadChip is a useful tool for genetics and genomics research and it is widely used by breeders and geneticists in the United States and abroad.
Collapse
Affiliation(s)
- Qijian Song
- USDA-ARS, Soybean Genomics and Improvement Lab, Beltsville, Maryland 20705
| | - Gaofeng Jia
- USDA-ARS, Soybean Genomics and Improvement Lab, Beltsville, Maryland 20705
| | - David L Hyten
- USDA-ARS, Soybean Genomics and Improvement Lab, Beltsville, Maryland 20705
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806
| | - Eun-Young Hwang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742
| | - Steven G Schroeder
- USDA-ARS, Bovine Functional Genomics Laboratory, Animal and Natural Resources Institute, Beltsville, Maryland 20705
| | - Juan M Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602
| | - Phillip E McClean
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102
| | - Perry B Cregan
- USDA-ARS, Soybean Genomics and Improvement Lab, Beltsville, Maryland 20705
| |
Collapse
|
4
|
Bosamia TC, Mishra GP, Thankappan R, Dobaria JR. Novel and Stress Relevant EST Derived SSR Markers Developed and Validated in Peanut. PLoS One 2015; 10:e0129127. [PMID: 26046991 PMCID: PMC4457858 DOI: 10.1371/journal.pone.0129127] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/04/2015] [Indexed: 11/18/2022] Open
Abstract
With the aim to increase the number of functional markers in resource poor crop like cultivated peanut (Arachis hypogaea), large numbers of available expressed sequence tags (ESTs) in the public databases, were employed for the development of novel EST derived simple sequence repeat (SSR) markers. From 16424 unigenes, 2784 (16.95%) SSRs containing unigenes having 3373 SSR motifs were identified. Of these, 2027 (72.81%) sequences were annotated and 4124 gene ontology terms were assigned. Among different SSR motif-classes, tri-nucleotide repeats (33.86%) were the most abundant followed by di-nucleotide repeats (27.51%) while AG/CT (20.7%) and AAG/CTT (13.25%) were the most abundant repeat-motifs. A total of 2456 EST-SSR novel primer pairs were designed, of which 366 unigenes having relevance to various stresses and other functions, were PCR validated using a set of 11 diverse peanut genotypes. Of these, 340 (92.62%) primer pairs yielded clear and scorable PCR products and 39 (10.66%) primer pairs exhibited polymorphisms. Overall, the number of alleles per marker ranged from 1-12 with an average of 3.77 and the PIC ranged from 0.028 to 0.375 with an average of 0.325. The identified EST-SSRs not only enriched the existing molecular markers kitty, but would also facilitate the targeted research in marker-trait association for various stresses, inter-specific studies and genetic diversity analysis in peanut.
Collapse
Affiliation(s)
- Tejas C. Bosamia
- Crop Improvement Division, ICAR- Directorate of Groundnut Research, Junagadh, Gujarat, 362001, India
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, 362001,India
| | - Gyan P. Mishra
- Crop Improvement Division, ICAR- Directorate of Groundnut Research, Junagadh, Gujarat, 362001, India
| | - Radhakrishnan Thankappan
- Crop Improvement Division, ICAR- Directorate of Groundnut Research, Junagadh, Gujarat, 362001, India
| | - Jentilal R. Dobaria
- Crop Improvement Division, ICAR- Directorate of Groundnut Research, Junagadh, Gujarat, 362001, India
| |
Collapse
|
5
|
Müller BSDF, Sakamoto T, de Menezes IPP, Prado GS, Martins WS, Brondani C, de Barros EG, Vianello RP. Analysis of BAC-end sequences in common bean (Phaseolus vulgaris L.) towards the development and characterization of long motifs SSRs. PLANT MOLECULAR BIOLOGY 2014; 86:455-470. [PMID: 25164100 DOI: 10.1007/s11103-014-0240-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
The increasing volume of genomic data on the Phaseolus vulgaris species have contributed to its importance as a model genetic species and positively affected the investigation of other legumes of scientific and economic value. To expand and gain a more in-depth knowledge of the common bean genome, the ends of a number of bacterial artificial chromosome (BAC) were sequenced, annotated and the presence of repetitive sequences was determined. In total, 52,270 BESs (BAC-end sequences), equivalent to 32 Mbp (~6 %) of the genome, were processed. In total, 3,789 BES-SSRs were identified, with a distribution of one SSR (simple sequence repeat) per 8.36 kbp and 2,000 were suitable for the development of SSRs, of which 194 were evaluated in low-resolution screening. From 40 BES-SSRs based on long motifs SSRs (≥ trinucleotides) analyzed in high-resolution genotyping, 34 showed an equally good amplification for the Andean and for the Mesoamerican genepools, exhibiting an average gene diversity (H E) of 0.490 and 5.59 alleles/locus, of which six classified as Class I showed a H E ≥ 0.7. The PCoA and structure analysis allowed to discriminate the gene pools (K = 2, FST = 0.733). From the 52,270 BESs, 2 % corresponded to transcription factors and 3 % to transposable elements. Putative functions for 24,321 BESs were identified and for 19,363 were assigned functional categories (gene ontology). This study identified highly polymorphic BES-SSRs containing tri- to hexanucleotides motifs and bringing together relevant genetic characteristics useful for breeding programs. Additionally, the BESs were incorporated into the international genome-sequencing project for the common bean.
Collapse
Affiliation(s)
- Bárbara Salomão de Faria Müller
- Laboratório de Genética Molecular de Plantas, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Blair MW, Córdoba JM, Muñóz C, Yuyó DK. BAC-end microsatellites from intra and inter-genic regions of the common bean genome and their correlation with cytogenetic features. PLoS One 2014; 9:e101873. [PMID: 25254501 PMCID: PMC4177843 DOI: 10.1371/journal.pone.0101873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 06/12/2014] [Indexed: 11/19/2022] Open
Abstract
Highly polymorphic markers such as simple sequence repeats (SSRs) or microsatellites are very useful for genetic mapping. In this study novel SSRs were identified in BAC-end sequences (BES) from non-contigged, non-overlapping bacterial artificial clones (BACs) in common bean (Phaseolus vulgaris L.). These so called "singleton" BACs were from the G19833 Andean gene pool physical map and the new BES-SSR markers were used for the saturation of the inter-gene pool, DOR364×G19833 genetic map. A total of 899 SSR loci were found among the singleton BES, but only 346 loci corresponded to the single di- or tri-nucleotide motifs that were likely to be polymorphic (ATT or AG motifs, principally) and useful for primer design and individual marker mapping. When these novel SSR markers were evaluated in the DOR364×G19833 population parents, 136 markers revealed polymorphism and 106 were mapped. Genetic mapping resulted in a map length of 2291 cM with an average distance between markers of 5.2 cM. The new genetic map was compared to the most recent cytogenetic analysis of common bean chromosomes. We found that the new singleton BES-SSR were helpful in filling peri-centromeric spaces on the cytogenetic map. Short genetic distances between some new singleton-derived BES-SSR markers was common showing suppressed recombination in these regions compared to other parts of the genome. The correlation of singleton-derived SSR marker distribution with other cytogenetic features of the bean genome is discussed.
Collapse
Affiliation(s)
- Matthew Wohlgemuth Blair
- Departamento de Agronomía y Ciencias Agricolas, Universidad Nacional de Colombia, Km 12 via Chapinero, Palmira, Colombia
- Department of Agriculture and Natural Sciences, Tennessee State University, Nashville, Tennessee, United States of America
| | | | - Claritza Muñóz
- Generation Challenge Program, Tropical Legumes I, c/o CIAT, Cali, Colombia
| | - Deissy K. Yuyó
- Departamento de Agronomía Universidad Nacional de Colombia, Facultad de Agronomía, Bogotá, Colombia
| |
Collapse
|
7
|
Blair MW, Hurtado N. EST
‐
SSR
markers from five sequenced
cDNA
libraries of common bean (
P
haseolus vulgaris
L.) comparing three bioinformatic algorithms. Mol Ecol Resour 2013; 13:688-95. [DOI: 10.1111/1755-0998.12099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/05/2013] [Accepted: 02/12/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Matthew W. Blair
- Departamento de Ciencias Agricolas Universidad Nacional de Colombia – sede Palmira km 12 via Chapinero Palmira Colombia
- Department of Plant Breeding and Genetics Cornell University 242 Emerson Hall Ithaca NY 14853 USA
| | - Natalia Hurtado
- Departamento de Ciencias Agricolas Universidad Nacional de Colombia – sede Palmira km 12 via Chapinero Palmira Colombia
| |
Collapse
|