1
|
Huang Z, Jiang C, Gu J, Uvizl M, Power S, Douglas D, Kacprzyk J. Duplications of Human Longevity-Associated Genes Across Placental Mammals. Genome Biol Evol 2023; 15:evad186. [PMID: 37831410 PMCID: PMC10588791 DOI: 10.1093/gbe/evad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/31/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023] Open
Abstract
Natural selection has shaped a wide range of lifespans across mammals, with a few long-lived species showing negligible signs of ageing. Approaches used to elucidate the genetic mechanisms underlying mammalian longevity usually involve phylogenetic selection tests on candidate genes, detections of convergent amino acid changes in long-lived lineages, analyses of differential gene expression between age cohorts or species, and measurements of age-related epigenetic changes. However, the link between gene duplication and evolution of mammalian longevity has not been widely investigated. Here, we explored the association between gene duplication and mammalian lifespan by analyzing 287 human longevity-associated genes across 37 placental mammals. We estimated that the expansion rate of these genes is eight times higher than their contraction rate across these 37 species. Using phylogenetic approaches, we identified 43 genes whose duplication levels are significantly correlated with longevity quotients (False Discovery Rate (FDR) < 0.05). In particular, the strong correlation observed for four genes (CREBBP, PIK3R1, HELLS, FOXM1) appears to be driven mainly by their high duplication levels in two ageing extremists, the naked mole rat (Heterocephalus glaber) and the greater mouse-eared bat (Myotis myotis). Further sequence and expression analyses suggest that the gene PIK3R1 may have undergone a convergent duplication event, whereby the similar region of its coding sequence was independently duplicated multiple times in both of these long-lived species. Collectively, this study identified several candidate genes whose duplications may underlie the extreme longevity in mammals, and highlighted the potential role of gene duplication in the evolution of mammalian long lifespans.
Collapse
Affiliation(s)
- Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Chongyi Jiang
- Institute of Ecology and Evolution, Friedrich Schiller University, Jena, Germany
| | - Jiayun Gu
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Marek Uvizl
- Department of Zoology, National Museum, Prague, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Sarahjane Power
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Declan Douglas
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Liang X, Li L, Fan Y. Diagnostic, Prognostic, and Immunological Roles of HELLS in Pan-Cancer: A Bioinformatics Analysis. Front Immunol 2022; 13:870726. [PMID: 35774795 PMCID: PMC9237247 DOI: 10.3389/fimmu.2022.870726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Background Inappropriate repair of DNA damage drives carcinogenesis. Lymphoid-specific helicase (HELLS) is an important component of the chromatin remodeling complex that helps repair DNA through various mechanisms such as DNA methylation, histone posttranslational modification, and nucleosome remodeling. Its role in human cancer initiation and progression has garnered recent attention. Our study aims to provide a more systematic and comprehensive understanding of the role of HELLS in the development and progression of multiple malignancies through analysis of HELLS in cancers. Methods We explored the role of HELLS in cancers using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database. Multiple web platforms and software were used for data analysis, including R, Cytoscape, HPA, Archs4, TISIDB, cBioPortal, STRING, GSCALite, and CancerSEA. Results High HELLS expression was found in a variety of cancers and differentially expressed across molecular and immune subtypes. HELLS was involved in many cancer pathways. Its expression positively correlated with Th2 and Tcm cells in most cancers. It also correlated with genetic markers of immunomodulators in various cancers. Conclusions Our study elucidates the role HELLS plays in promotion, inhibition, and treatment of different cancers. HELLS is a potential cancer diagnostic and prognostic biomarker with immune, targeted, or cytotoxic therapeutic value. This work is a prerequisite to clinical validation and treatment of HELLS in cancers.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Linji Li
- Department of Anesthesiology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Yuchao Fan
- Department of Anesthesiology, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Yuchao Fan,
| |
Collapse
|
3
|
Interaction of Deubiquitinase 2A-DUB/MYSM1 with DNA Repair and Replication Factors. Int J Mol Sci 2020; 21:ijms21113762. [PMID: 32466590 PMCID: PMC7312997 DOI: 10.3390/ijms21113762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 01/09/2023] Open
Abstract
The deubiquitination of histone H2A on lysine 119 by 2A-DUB/MYSM1, BAP1, USP16, and other enzymes is required for key cellular processes, including transcriptional activation, apoptosis, and cell cycle control, during normal hematopoiesis and tissue development, and in tumor cells. Based on our finding that MYSM1 colocalizes with γH2AX foci in human peripheral blood mononuclear cells, leukemia cells, and melanoma cells upon induction of DNA double-strand breaks with topoisomerase inhibitor etoposide, we applied a mass spectrometry-based proteomics approach to identify novel 2A-DUB/MYSM1 interaction partners in DNA-damage responses. Differential display of MYSM1 binding proteins significantly enriched after exposure of 293T cells to etoposide revealed an interacting network of proteins involved in DNA damage and replication, including factors associated with poor melanoma outcome. In the context of increased DNA-damage in a variety of cell types in Mysm1-deficient mice, in bone marrow cells upon aging and in UV-exposed Mysm1-deficient skin, our current mass spectrometry data provide additional evidence for an interaction between MYSM1 and key DNA replication and repair factors, and indicate a potential function of 2A-DUB/MYSM1 in DNA repair processes.
Collapse
|
4
|
Yang HJ, Xue JM, Li J, Wan LH, Zhu YX. Identification of key genes and pathways of diagnosis and prognosis in cervical cancer by bioinformatics analysis. Mol Genet Genomic Med 2020; 8:e1200. [PMID: 32181600 PMCID: PMC7284022 DOI: 10.1002/mgg3.1200] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/09/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Background Cervical cancer as one of the most common malignant tumors lead to bad prognosis among women. Some researches already focus on the carcinogenesis and pathogenesis of cervical cancer, but it is still necessary to identify more key genes and pathways. Methods Differentially expressed genes were identified by GEO2R from the gene expression omnibus (GEO) website, then gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyzed by DAVID. Meanwhile, protein–protein interaction network was constructed by STRING, and both key genes and modules were found in visualizing network through Cytoscape. Besides, GEPIA did the differential expression of key genes and survival analysis. Finally, the expression of genes related to prognosis was further explored by UNLCAN, oncomine, and the human protein atlas. Results Totally 57 differentially expressed genes were founded, not only enriched in G1/S transition of mitotic cell cycle, mitotic nuclear division, and cell division but also participated in cytokine–cytokine receptor interaction, toll‐like receptor signaling pathway, and amoebiasis. Additionally, 12 hub genes and 3 key modules were screened in the Cytoscape visualization network. Further survival analysis showed that TYMS (OMIM accession number 188350), MCM2 (OMIM accession number 116945), HELLS (OMIM accession number 603946), TOP2A (OMIM accession number 126430), and CXCL8 (OMIM accession number 146930) were associated with the prognosis of cervical cancer. Conclusion This study aim to better understand the characteristics of some genes and signaling pathways about cervical cancer by bioinformatics, and could provide further research ideas to find new mechanism, more prognostic factors, and potential therapeutic targets for cervical cancer.
Collapse
Affiliation(s)
- Hua-Ju Yang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, Chongqing, China
| | - Jin-Min Xue
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, Chongqing, China
| | - Jie Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, Chongqing, China
| | - Ling-Hong Wan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, Chongqing, China
| | - Yu-Xi Zhu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, Chongqing, China
| |
Collapse
|
5
|
Kollárovič G, Topping CE, Shaw EP, Chambers AL. The human HELLS chromatin remodelling protein promotes end resection to facilitate homologous recombination and contributes to DSB repair within heterochromatin. Nucleic Acids Res 2020; 48:1872-1885. [PMID: 31802118 PMCID: PMC7038987 DOI: 10.1093/nar/gkz1146] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 11/23/2022] Open
Abstract
Efficient double-strand break repair in eukaryotes requires manipulation of chromatin structure. ATP-dependent chromatin remodelling enzymes facilitate different DNA repair pathways, during different stages of the cell cycle and in varied chromatin environments. The contribution of remodelling factors to double-strand break repair within heterochromatin during G2 is unclear. The human HELLS protein is a Snf2-like chromatin remodeller family member and is mutated or misregulated in several cancers and some cases of ICF syndrome. HELLS has been implicated in the DNA damage response, but its mechanistic function in repair is not well understood. We discover that HELLS facilitates homologous recombination at two-ended breaks and contributes to repair within heterochromatic regions during G2. HELLS promotes initiation of HR by facilitating end-resection and accumulation of CtIP at IR-induced foci. We identify an interaction between HELLS and CtIP and establish that the ATPase domain of HELLS is required to promote DSB repair. This function of HELLS in maintenance of genome stability is likely to contribute to its role in cancer biology and demonstrates that different chromatin remodelling activities are required for efficient repair in specific genomic contexts.
Collapse
Affiliation(s)
- Gabriel Kollárovič
- DNA-protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Caitríona E Topping
- DNA-protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Edward P Shaw
- DNA-protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Anna L Chambers
- DNA-protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
6
|
Gupta H, Srivastava S, Chaudhari S, Vasudevan TG, Hande MH, D’souza SC, Umakanth S, Satyamoorthy K. New molecular detection methods of malaria parasites with multiple genes from genomes. Acta Trop 2016; 160:15-22. [PMID: 27130076 DOI: 10.1016/j.actatropica.2016.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 04/03/2016] [Accepted: 04/25/2016] [Indexed: 11/25/2022]
Abstract
For the effective control of malaria, development of sensitive, accurate and rapid tool to diagnose and manage the disease is essential. In humans subjects, the severe form of malaria is caused by Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) and there is need to identify these parasites in acute, chronic and latent (during and post-infection) stages of the disease. In this study, we report a species specific and sensitive diagnostic method for the detection of Pf and Pv in humans. First, we identified intra and intergenic multiloci short stretch of 152 (PfMLS152) and 110 (PvMLS110) nucleotides which is present up to 44 and 34 times in the genomes of Pf and Pv respectively. We developed the single-step amplification-based method using isolated DNA or from lysed red blood cells for the detection of the two malaria parasites. The limit of detection of real-time polymerase chain reaction based assays were 0.1copyof parasite/μl for PfMLS152 and PvMLS110 target sequences. Next, we have tested 250 clinically suspected cases of malaria to validate the method. Sensitivity and specificity for both targets were 100% compared to the quantitative buffy coat microscopy analysis and real-time PCR (Pf-chloroquine resistance transporter (PfCRT) and Pv-lactate dehydrogenase (PvLDH)) based assays. The sensitivity of microscopy and real-time PCR (PfCRT and PvLDH primers) assays were 80.63%; 95%CI 75.22%-85.31%; p<0.05 and 97.61%; 95%CI 94.50%-99.21%; p<0.05 in detecting malaria infection respectively when compared to PfMLS152 and PvMLS110 targets to identify malaria infection in patients. These improved assays may have potential applications in evaluating malaria in asymptomatic patients, treatment, blood donors and in vaccine studies.
Collapse
|
7
|
Basenko EY, Kamei M, Ji L, Schmitz RJ, Lewis ZA. The LSH/DDM1 Homolog MUS-30 Is Required for Genome Stability, but Not for DNA Methylation in Neurospora crassa. PLoS Genet 2016; 12:e1005790. [PMID: 26771905 PMCID: PMC4714748 DOI: 10.1371/journal.pgen.1005790] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 12/16/2015] [Indexed: 01/04/2023] Open
Abstract
LSH/DDM1 enzymes are required for DNA methylation in higher eukaryotes and have poorly defined roles in genome maintenance in yeast, plants, and animals. The filamentous fungus Neurospora crassa is a tractable system that encodes a single LSH/DDM1 homolog (NCU06306). We report that the Neurospora LSH/DDM1 enzyme is encoded by mutagen sensitive-30 (mus-30), a locus identified in a genetic screen over 25 years ago. We show that MUS-30-deficient cells have normal DNA methylation, but are hypersensitive to DNA damaging agents. MUS-30 is a nuclear protein, consistent with its predicted role as a chromatin remodeling enzyme, and levels of MUS-30 are increased following DNA damage. MUS-30 co-purifies with Neurospora WDR76, a homolog of yeast Changed Mutation Rate-1 and mammalian WD40 repeat domain 76. Deletion of wdr76 rescued DNA damage-hypersensitivity of Δmus-30 strains, demonstrating that the MUS-30-WDR76 interaction is functionally important. DNA damage-sensitivity of Δmus-30 is partially suppressed by deletion of methyl adenine glycosylase-1, a component of the base excision repair machinery (BER); however, the rate of BER is not affected in Δmus-30 strains. We found that MUS-30-deficient cells are not defective for DSB repair, and we observed a negative genetic interaction between Δmus-30 and Δmei-3, the Neurospora RAD51 homolog required for homologous recombination. Together, our findings suggest that MUS-30, an LSH/DDM1 homolog, is required to prevent DNA damage arising from toxic base excision repair intermediates. Overall, our study provides important new information about the functions of the LSH/DDM1 family of enzymes.
Collapse
Affiliation(s)
- Evelina Y. Basenko
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Masayuki Kamei
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Zachary A. Lewis
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
8
|
Wang Y, Alla V, Goody D, Gupta SK, Spitschak A, Wolkenhauer O, Pützer BM, Engelmann D. Epigenetic factor EPC1 is a master regulator of DNA damage response by interacting with E2F1 to silence death and activate metastasis-related gene signatures. Nucleic Acids Res 2015; 44:117-33. [PMID: 26350215 PMCID: PMC4705687 DOI: 10.1093/nar/gkv885] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
Transcription factor E2F1 is a key regulator of cell proliferation and apoptosis. Recently, it has been shown that aberrant E2F1 expression often detectable in advanced cancers contributes essentially to cancer cell propagation and characterizes the aggressive potential of a tumor. Conceptually, this requires a subset of malignant cells capable of evading apoptotic death through anticancer drugs. The molecular mechanism by which the pro-apoptotic activity of E2F1 is antagonized is widely unclear. Here we report a novel function for EPC1 (enhancer of polycomb homolog 1) in DNA damage protection. Depletion of EPC1 potentiates E2F1-mediated apoptosis in response to genotoxic treatment and abolishes tumor cell motility. We found that E2F1 directly binds to the EPC1 promoter and EPC1 vice versa physically interacts with bifunctional E2F1 to modulate its transcriptional activity in a target gene-specific manner. Remarkably, nuclear-colocalized EPC1 activates E2F1 to upregulate the expression of anti-apoptotic survival genes such as BCL-2 or Survivin/BIRC5 and inhibits death-inducing targets. The uncovered cooperativity between EPC1 and E2F1 triggers a metastasis-related gene signature in advanced cancers that predicts poor patient survival. These findings unveil a novel oncogenic function of EPC1 for inducing the switch into tumor progression-relevant gene expression that may help to set novel therapies.
Collapse
Affiliation(s)
- Yajie Wang
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Vijay Alla
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Deborah Goody
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Shailendra K Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Alf Spitschak
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - David Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
9
|
Karakoula K, Jacques TS, Phipps KP, Harkness W, Thompson D, Harding BN, Darling JL, Warr TJ. Epigenetic genome-wide analysis identifies BEX1 as a candidate tumour suppressor gene in paediatric intracranial ependymoma. Cancer Lett 2013; 346:34-44. [PMID: 24333734 DOI: 10.1016/j.canlet.2013.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/02/2013] [Accepted: 12/04/2013] [Indexed: 12/13/2022]
Abstract
Promoter hypermethylation and transcriptional silencing is a common epigenetic mechanism of gene inactivation in cancer. To identify targets of epigenetic silencing in paediatric intracranial ependymoma, we used a pharmacological unmasking approach through treatment of 3 ependymoma short-term cell cultures with the demethylating agent 5-Aza-2'-deoxycytidine followed by global expression microarray analysis. We identified 55 candidate epigenetically silenced genes, which are involved in the regulation of apoptosis, Wnt signalling, p53 and cell differentiation. The methylation status of 26 of these genes was further determined by combined bisulfite restriction analysis (COBRA) and genomic sequencing in a cohort of 40 ependymoma samples. The most frequently methylated genes were BEX1 (27/40 cases), BAI2 (20/40), CCND2 (18/40), and CDKN2A (14/40). A high correlation between promoter hypermethylation and decreased gene expression levels was established by real-time quantitative PCR, suggesting the involvement of these genes in ependymoma tumourigenesis. Furthermore, ectopic expression of brain-expressed X-linked 1 (BEX1) in paediatric ependymoma short-term cell cultures significantly suppressed cell proliferation and colony formation. These data suggest that promoter hypermethylation contributes to silencing of target genes in paediatric intracranial ependymoma. Epigenetic inactivation of BEX1 supports its role as a candidate tumour suppressor gene in intracranial ependymoma, and a potential target for novel therapies for ependymoma in children.
Collapse
Affiliation(s)
- Katherine Karakoula
- Brain Tumour Research Centre, School of Applied Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, UK.
| | - Thomas S Jacques
- Neural Development Unit, Birth Defects Research Centre, UCL Institute of Child Health, University College London, London WC1E 6BT, UK; Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Kim P Phipps
- Department of Neurosurgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - William Harkness
- Department of Neurosurgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Dominic Thompson
- Department of Neurosurgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Brian N Harding
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104-4399, USA
| | - John L Darling
- Brain Tumour Research Centre, School of Applied Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Tracy J Warr
- Brain Tumour Research Centre, School of Applied Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| |
Collapse
|
10
|
Protein and non-protein biomarkers in melanoma: a critical update. Amino Acids 2012; 43:2203-30. [DOI: 10.1007/s00726-012-1409-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/24/2012] [Indexed: 12/16/2022]
|