1
|
Castellani G, Buccarelli M, Arasi MB, Rossi S, Pisanu ME, Bellenghi M, Lintas C, Tabolacci C. BRAF Mutations in Melanoma: Biological Aspects, Therapeutic Implications, and Circulating Biomarkers. Cancers (Basel) 2023; 15:4026. [PMID: 37627054 PMCID: PMC10452867 DOI: 10.3390/cancers15164026] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is an aggressive form of skin cancer resulting from the malignant transformation of melanocytes. Recent therapeutic approaches, including targeted therapy and immunotherapy, have improved the prognosis and outcome of melanoma patients. BRAF is one of the most frequently mutated oncogenes recognised in melanoma. The most frequent oncogenic BRAF mutations consist of a single point mutation at codon 600 (mostly V600E) that leads to constitutive activation of the BRAF/MEK/ERK (MAPK) signalling pathway. Therefore, mutated BRAF has become a useful target for molecular therapy and the use of BRAF kinase inhibitors has shown promising results. However, several resistance mechanisms invariably develop leading to therapeutic failure. The aim of this manuscript is to review the role of BRAF mutational status in the pathogenesis of melanoma and its impact on differentiation and inflammation. Moreover, this review focuses on the mechanisms responsible for resistance to targeted therapies in BRAF-mutated melanoma and provides an overview of circulating biomarkers including circulating tumour cells, circulating tumour DNA, and non-coding RNAs.
Collapse
Affiliation(s)
- Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Beatrice Arasi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Elena Pisanu
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Bellenghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| |
Collapse
|
2
|
Horgan D, Ciliberto G, Conte P, Baldwin D, Seijo L, Montuenga LM, Paz-Ares L, Garassino M, Penault-Llorca F, Galli F, Ray-Coquard I, Querleu D, Capoluongo E, Banerjee S, Riegman P, Kerr K, Horbach B, Büttner R, Van Poppel H, Bjartell A, Codacci-Pisanelli G, Westphalen B, Calvo F, Koeva-Balabanova J, Hall S, Paradiso A, Kalra D, Cobbaert C, Varea Menendez R, Maravic Z, Fotaki V, Bennouna J, Cauchin E, Malats N, Gutiérrez-Ibarluzea I, Gannon B, Mastris K, Bernini C, Gallagher W, Buglioni S, Kent A, Munzone E, Belina I, Van Meerbeeck J, Duffy M, Sarnowska E, Jagielska B, Mee S, Curigliano G. Bringing Greater Accuracy to Europe's Healthcare Systems: The Unexploited Potential of Biomarker Testing in Oncology. Biomed Hub 2020; 5:182-223. [PMID: 33564664 DOI: 10.1159/000511209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Rapid and continuing advances in biomarker testing are not being matched by take-up in health systems, and this is hampering both patient care and innovation. It also risks costing health systems the opportunity to make their services more efficient and, over time, more economical. This paper sets out the potential of biomarker testing, the unfolding precision and range of possible diagnosis and prediction, and the many obstacles to adoption. It offers case studies of biomarker testing in breast, ovarian, prostate, lung, thyroid and colon cancers, and derives specific lessons as to the potential and actual use of each of them. It also draws lessons about how to improve access and alignment, and to remedy the data deficiencies that impede development. And it suggests solutions to outstanding issues - notably including funding and the tangled web of obtaining reimbursement or equivalent coverage that Europe's fragmented health system implies. It urges a European evolution towards an initial minimum testing scenario, which would guarantee universal access to a suite of biomarker tests for the currently most common conditions, and, further into the future, to an optimum testing scenario in which a much wider range of biomarker tests would be introduced and become part of a more sophisticated health system articulated around personalised medicine. For exploiting genomics to the full, it argues the need for a new policy framework for Europe. Biomarker testing is not an issue that can be treated in isolation, since the purpose of testing is to improve health. Its use is therefore always closely linked to specific health challenges and needs to be viewed in the broader policy context in the EU and more widely. The paper is the result of extensive engagement with experts and decision makers to develop the framework, and consequently represents a wide consensus of views on how healthcare systems should respond from push and pull factors at local, national and cross-border and EU level. It contains strong views and clear recommendations springing from the convictions of patients, clinicians, academics, medicines authorities, HTA bodies, payers, the diagnostic, pharmaceutical and ICT industries, and national policy makers.
Collapse
Affiliation(s)
- Denis Horgan
- European Alliance for Personalised Medicine, Brussels, Belgium
| | | | | | - David Baldwin
- University of Nottingham, Nottingham, United Kingdom
| | - Luis Seijo
- Clinica Universidad de Navarra, CIBERES, Madrid, Spain
| | - Luis M Montuenga
- Center for Applied Medical Research (CIMA), University of Navarra and CIBERONC and IdisNa, Pamplona, Spain
| | - Luis Paz-Ares
- Hospital Doce de Octubre and CIBERONC, Madrid, Spain
| | | | | | | | | | | | | | - Susana Banerjee
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Keith Kerr
- Aberdeen University, Aberdeen, United Kingdom
| | | | | | | | | | | | - Benedikt Westphalen
- Grosshadern University Hospital, Ludwig-Maximilians University, Munich, Germany
| | | | | | | | | | - Dipak Kalra
- The European Institute for Innovation through Health Data (i∼HD), Gent, Belgium
| | - Christa Cobbaert
- European Federation of Clinical Chemistry and Laboratory Diagnostics, Milan, Italy
| | | | | | | | | | | | - Nuria Malats
- Spanish National Cancer Research Centre (CNIO) and CIBERONC, Madrid, Spain
| | - Iñaki Gutiérrez-Ibarluzea
- EuroScan International Network, Cologne, Germany.,BIOEF, Basque Foundation for Health Innovation and Research, Barakaldo, Spain
| | | | | | - Chiara Bernini
- European Alliance for Personalised Medicine, Brussels, Belgium
| | | | | | - Alastair Kent
- Independent Patient Advocate, London, United Kingdom
| | | | - Ivica Belina
- Coalition of Healthcare Association, Zagreb, Croatia
| | - Jan Van Meerbeeck
- Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | | | | | - Beata Jagielska
- Maria Skłodowska-Curie Institute of Oncology, Warsaw, Poland
| | - Sarah Mee
- AstraZeneca, Cambridge, United Kingdom
| | | |
Collapse
|
3
|
Torres-Collado AX, Knott J, Jazirehi AR. Reversal of Resistance in Targeted Therapy of Metastatic Melanoma: Lessons Learned from Vemurafenib (BRAF V600E-Specific Inhibitor). Cancers (Basel) 2018; 10:cancers10060157. [PMID: 29795041 PMCID: PMC6025215 DOI: 10.3390/cancers10060157] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
Malignant melanoma is the most aggressive form of skin cancer and has a very low survival rate. Over 50% of melanomas harbor various BRAF mutations with the most common being the V600E. BRAFV600E mutation that causes constitutive activation of the MAPK pathway leading to drug-, immune-resistance, apoptosis evasion, proliferation, survival, and metastasis of melanomas. The ATP competitive BRAFV600E selective inhibitor, vemurafenib, has shown dramatic success in clinical trials; promoting tumor regression and an increase in overall survival of patients with metastatic melanoma. Regrettably, vemurafenib-resistance develops over an average of six months, which renders melanomas resistant to other therapeutic strategies. Elucidation of the underlying mechanism(s) of acquisition of vemurafenib-resistance and design of novel approaches to override resistance is the subject of intense clinical and basic research. In this review, we summarize recent developments in therapeutic approaches and clinical investigations on melanomas with BRAFV600E mutation to establish a new platform for the treatment of melanoma.
Collapse
Affiliation(s)
- Antoni Xavier Torres-Collado
- Department of Surgery, Division of Surgical Oncology, and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Jeffrey Knott
- Department of Surgery, Division of Surgical Oncology, and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Ali R Jazirehi
- Department of Surgery, Division of Surgical Oncology, and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Oliveira CS, de Bock CE, Molloy TJ, Sadeqzadeh E, Geng XY, Hersey P, Zhang XD, Thorne RF. Macrophage migration inhibitory factor engages PI3K/Akt signalling and is a prognostic factor in metastatic melanoma. BMC Cancer 2014; 14:630. [PMID: 25168062 PMCID: PMC4155090 DOI: 10.1186/1471-2407-14-630] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/20/2014] [Indexed: 02/08/2023] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) is a widely expressed cytokine involved in a variety of cellular processes including cell cycle regulation and the control of proliferation. Overexpression of MIF has been reported in a number of cancer types and it has previously been shown that MIF is upregulated in melanocytic tumours with the highest expression levels occurring in malignant melanoma. However, the clinical significance of high MIF expression in melanoma has not been reported. Methods MIF expression was depleted in human melanoma cell lines using siRNA-mediated gene knockdown and effects monitored using in vitro assays of proliferation, cell cycle, apoptosis, clonogenicity and Akt signalling. In silico analyses of expression microarray data were used to correlate MIF expression levels in melanoma tumours with overall patient survival using a univariate Cox regression model. Results Knockdown of MIF significantly decreased proliferation, increased apoptosis and decreased anchorage-independent growth. Effects were associated with reduced numbers of cells entering S phase concomitant with decreased cyclin D1 and CDK4 expression, increased p27 expression and decreased Akt phosphorylation. Analysis of clinical outcome data showed that MIF expression levels in primary melanoma were not associated with outcome (HR = 1.091, p = 0.892) whereas higher levels of MIF in metastatic lesions were significantly associated with faster disease progression (HR = 2.946, p = 0.003 and HR = 4.600, p = 0.004, respectively in two independent studies). Conclusions Our in vitro analyses show that MIF functions upstream of the PI3K/Akt pathway in human melanoma cell lines. Moreover, depletion of MIF inhibited melanoma proliferation, viability and clonogenic capacity. Clinically, high MIF levels in metastatic melanoma were found to be associated with faster disease recurrence. These findings support the clinical significance of MIF signalling in melanoma and provide a strong rationale for both targeting and monitoring MIF expression in clinical melanoma. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-630) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rick F Thorne
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
8
|
Intra- and inter-tumor heterogeneity of BRAF(V600E))mutations in primary and metastatic melanoma. PLoS One 2012; 7:e29336. [PMID: 22235286 PMCID: PMC3250426 DOI: 10.1371/journal.pone.0029336] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/25/2011] [Indexed: 12/22/2022] Open
Abstract
The rationale for using small molecule inhibitors of oncogenic proteins as cancer therapies depends, at least in part, on the assumption that metastatic tumors are primarily clonal with respect to mutant oncogene. With the emergence of BRAF(V600E) as a therapeutic target, we investigated intra- and inter-tumor heterogeneity in melanoma using detection of the BRAF(V600E) mutation as a marker of clonality. BRAF mutant-specific PCR (MS-PCR) and conventional sequencing were performed on 112 tumors from 73 patients, including patients with matched primary and metastatic specimens (n = 18). Nineteen patients had tissues available from multiple metastatic sites. Mutations were detected in 36/112 (32%) melanomas using conventional sequencing, and 85/112 (76%) using MS-PCR. The better sensitivity of the MS-PCR to detect the mutant BRAF(V600E) allele was not due to the presence of contaminating normal tissue, suggesting that the tumor was comprised of subclones of differing BRAF genotypes. To determine if tumor subclones were present in individual primary melanomas, we performed laser microdissection and mutation detection via sequencing and BRAF(V600E)-specific SNaPshot analysis in 9 cases. Six of these cases demonstrated differing proportions of BRAF(V600E)and BRAF(wild-type) cells in distinct microdissected regions within individual tumors. Additional analyses of multiple metastatic samples from individual patients using the highly sensitive MS-PCR without microdissection revealed that 5/19 (26%) patients had metastases that were discordant for the BRAF(V600E) mutation. In conclusion, we used highly sensitive BRAF mutation detection methods and observed substantial evidence for heterogeneity of the BRAF(V600E) mutation within individual melanoma tumor specimens, and among multiple specimens from individual patients. Given the varied clinical responses of patients to BRAF inhibitor therapy, these data suggest that additional studies to determine possible associations between clinical outcomes and intra- and inter-tumor heterogeneity could prove fruitful.
Collapse
|
9
|
Feng Y, Barile E, De SK, Stebbins JL, Cortez A, Aza-Blanc P, Villanueva J, Heryln M, Krajewski S, Pellecchia M, Ronai ZA, Chiang GG. Effective inhibition of melanoma by BI-69A11 is mediated by dual targeting of the AKT and NF-κB pathways. Pigment Cell Melanoma Res 2011; 24:703-13. [PMID: 21592316 DOI: 10.1111/j.1755-148x.2011.00867.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In melanoma, the activation of pro-survival signaling pathways, such as the AKT and NF-κB pathways, is critical for tumor growth. We have recently reported that the AKT inhibitor BI-69A11 causes efficient inhibition of melanoma growth. Here, we show that in addition to its AKT inhibitory activity, BI-69A11 also targets the NF-κB pathway. In melanoma cell lines, BI-69A11 inhibited TNF-α-stimulated IKKα/β and IκB phosphorylation as well as NF-κB reporter gene expression. Furthermore, the effective inhibition of melanoma growth by BI-69A11 was attenuated upon NF-κB activation. Mechanistically, reduced NF-κB signaling by BI-69-A11 is mediated by the inhibition of sphingosine kinase 1, identified in a screen of 315 kinases. Significantly, we demonstrate that BI-69A11 is well tolerated and orally active against UACC 903 and SW1 melanoma xenografts. Our results demonstrate that BI-69A11 inhibits both the AKT and the NF-κB pathways and that the dual targeting of these pathways may be efficacious as a therapeutic strategy in melanoma.
Collapse
Affiliation(s)
- Yongmei Feng
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|