1
|
Feng YL, Yang Y, Chen H. Small molecules as a source for acute kidney injury therapy. Pharmacol Ther 2022; 237:108169. [DOI: 10.1016/j.pharmthera.2022.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
2
|
Isaka Y, Hayashi H, Aonuma K, Horio M, Terada Y, Doi K, Fujigaki Y, Yasuda H, Sato T, Fujikura T, Kuwatsuru R, Toei H, Murakami R, Saito Y, Hirayama A, Murohara T, Sato A, Ishii H, Takayama T, Watanabe M, Awai K, Oda S, Murakami T, Yagyu Y, Joki N, Komatsu Y, Miyauchi T, Ito Y, Miyazawa R, Kanno Y, Ogawa T, Hayashi H, Koshi E, Kosugi T, Yasuda Y. Guideline on the use of iodinated contrast media in patients with kidney disease 2018. Clin Exp Nephrol 2020; 24:1-44. [PMID: 31709463 PMCID: PMC6949208 DOI: 10.1007/s10157-019-01750-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Hiromitsu Hayashi
- Department of Clinical Radiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kazutaka Aonuma
- Cardiology Department, Institute of Clinical Medicine, University of Tsukuba, Ibaraki, Japan
| | | | - Yoshio Terada
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Kent Doi
- Department of Acute Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihide Fujigaki
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Hideo Yasuda
- First Department of Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Taichi Sato
- First Department of Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tomoyuki Fujikura
- First Department of Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Ryohei Kuwatsuru
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hiroshi Toei
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Ryusuke Murakami
- Department of Clinical Radiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Medical University, Nara, Japan
| | | | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Akira Sato
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hideki Ishii
- Department of Cardiology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Tadateru Takayama
- Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Makoto Watanabe
- Department of Cardiovascular Medicine, Nara Medical University, Nara, Japan
| | - Kazuo Awai
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takamichi Murakami
- Department of Radiology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Yukinobu Yagyu
- Department of Radiology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Nobuhiko Joki
- Division of Nephrology, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Yasuhiro Komatsu
- Department of Healthcare Quality and Safety, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | - Yugo Ito
- Department of Nephrology, St. Luke's International Hospital, Tokyo, Japan
| | - Ryo Miyazawa
- Department of Radiology, St. Luke's International Hospital, Tokyo, Japan
| | - Yoshihiko Kanno
- Department of Nephrology, Tokyo Medical University, Tokyo, Japan
| | - Tomonari Ogawa
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama, Japan
| | - Hiroki Hayashi
- Department of Nephrology, Fujita Health University School of Medicine, Aichi, Japan
| | - Eri Koshi
- Department of Nephrology, Komaki City Hospital, Aichi, Japan
| | - Tomoki Kosugi
- Nephrology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Yoshinari Yasuda
- Department of CKD Initiatives/Nephrology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | | |
Collapse
|
3
|
Moheet A, Kumar A, Zhang Y, Eberly L, Coles LD, Seaquist ER. Infusion of N-acetyl cysteine during hypoglycaemia in humans does not preserve the counterregulatory response to subsequent hypoglycaemia. Endocrinol Diabetes Metab 2020; 3:e00144. [PMID: 32704565 PMCID: PMC7375074 DOI: 10.1002/edm2.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 12/05/2022] Open
Abstract
AIM Administration of N-acetyl cysteine (NAC) during hypoglycaemia will preserve the counterregulatory response to subsequent hypoglycaemia in healthy humans. METHODS This was a randomized double-blind cross over study where humans were given either a 60-minute infusion of NAC (150 mg/kg) followed by a 4-hour infusion of NAC (50 mg/kg) or saline starting 30 minutes before the initiation of a 2-hour hypoglycaemic (HG) clamp at 8 am. After rest at euglycaemia for ~2 hours, subjects were exposed to a 2nd HG clamp at 2 pm and discharged home in euglycaemia. They returned the following day for a 3rd HG clamp at 8 am. RESULTS Twenty-two subjects were enrolled. Eighteen subjects completed the entire protocol. The epinephrine response during clamp 3 (171 ± 247 pg/mL) following clamp 1 NAC infusion was lower than the response during the clamp 1 NAC infusion (538 ± 392 pg/mL) (clamp 3 to clamp 1 NAC: P = .0013). The symptom response during clamp 3 (7 ± 5) following clamp 1 NAC infusion was lower than the response during the clamp 1 NAC infusion (16 ± 10) (clamp 3 to clamp 1 NAC: P = .0003). Nine subjects experienced rash, pruritus or nausea during NAC infusion. CONCLUSION We found no difference in the hormone and symptom response to experimental hypoglycaemia measured in subjects who were administered NAC as opposed to saline the day before. This observation suggests that further development of NAC as a therapy for impaired awareness of hypoglycaemia in patients with diabetes may be unwarranted.
Collapse
Affiliation(s)
- Amir Moheet
- Division of Diabetes, Endocrinology and MetabolismDepartment of MedicineUniversity of MinnesotaMinneapolisMNUSA
| | - Anjali Kumar
- Division of Diabetes, Endocrinology and MetabolismDepartment of MedicineUniversity of MinnesotaMinneapolisMNUSA
| | - Yuan Zhang
- Division of BiostatisticsSchool of Public HealthUniversity of MinnesotaMinneapolisMNUSA
| | - Lynn Eberly
- Division of BiostatisticsSchool of Public HealthUniversity of MinnesotaMinneapolisMNUSA
| | - Lisa D. Coles
- Department of Experimental and Clinical PharmacologyCollege of PharmacyUniversity of MinnesotaMinneapolisMNUSA
| | - Elizabeth R. Seaquist
- Division of Diabetes, Endocrinology and MetabolismDepartment of MedicineUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
4
|
Isaka Y, Hayashi H, Aonuma K, Horio M, Terada Y, Doi K, Fujigaki Y, Yasuda H, Sato T, Fujikura T, Kuwatsuru R, Toei H, Murakami R, Saito Y, Hirayama A, Murohara T, Sato A, Ishii H, Takayama T, Watanabe M, Awai K, Oda S, Murakami T, Yagyu Y, Joki N, Komatsu Y, Miyauchi T, Ito Y, Miyazawa R, Kanno Y, Ogawa T, Hayashi H, Koshi E, Kosugi T, Yasuda Y. Guideline on the Use of Iodinated Contrast Media in Patients With Kidney Disease 2018. Circ J 2019; 83:2572-2607. [PMID: 31708511 DOI: 10.1253/circj.cj-19-0783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yoshitaka Isaka
- Japanese Society of Nephrology.,Department of Nephrology, Osaka University Graduate School of Medicine
| | - Hiromitsu Hayashi
- Japan Radiological Society.,Department of Clinical Radiology, Graduate School of Medicine, Nippon Medical School
| | - Kazutaka Aonuma
- the Japanese Circulation Society.,Cardiology Department, Institute of Clinical Medicine, University of Tsukuba
| | - Masaru Horio
- Japanese Society of Nephrology.,Kansai Medical Hospital
| | - Yoshio Terada
- Japanese Society of Nephrology.,Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University
| | - Kent Doi
- Japanese Society of Nephrology.,Department of Acute Medicine, The University of Tokyo
| | - Yoshihide Fujigaki
- Japanese Society of Nephrology.,Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine
| | - Hideo Yasuda
- Japanese Society of Nephrology.,First Department of Medicine, Hamamatsu University School of Medicine
| | - Taichi Sato
- Japanese Society of Nephrology.,First Department of Medicine, Hamamatsu University School of Medicine
| | - Tomoyuki Fujikura
- Japanese Society of Nephrology.,First Department of Medicine, Hamamatsu University School of Medicine
| | - Ryohei Kuwatsuru
- Japan Radiological Society.,Department of Radiology, Graduate School of Medicine, Juntendo University
| | - Hiroshi Toei
- Japan Radiological Society.,Department of Radiology, Graduate School of Medicine, Juntendo University
| | - Ryusuke Murakami
- Japan Radiological Society.,Department of Clinical Radiology, Graduate School of Medicine, Nippon Medical School
| | - Yoshihiko Saito
- the Japanese Circulation Society.,Department of Cardiovascular Medicine, Nara Medical University
| | - Atsushi Hirayama
- the Japanese Circulation Society.,Department of Cardiology, Osaka Police Hospital
| | - Toyoaki Murohara
- the Japanese Circulation Society.,Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Akira Sato
- the Japanese Circulation Society.,Department of Cardiology, Faculty of Medicine, University of Tsukuba
| | - Hideki Ishii
- the Japanese Circulation Society.,Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Tadateru Takayama
- the Japanese Circulation Society.,Division of General Medicine, Department of Medicine, Nihon University School of Medicine
| | - Makoto Watanabe
- the Japanese Circulation Society.,Department of Cardiovascular Medicine, Nara Medical University
| | - Kazuo Awai
- Japan Radiological Society.,Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Seitaro Oda
- Japan Radiological Society.,Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University
| | - Takamichi Murakami
- Japan Radiological Society.,Department of Radiology, Kobe University Graduate School of Medicine
| | - Yukinobu Yagyu
- Japan Radiological Society.,Department of Radiology, Kindai University, Faculty of Medicine
| | - Nobuhiko Joki
- Japanese Society of Nephrology.,Division of Nephrology, Toho University Ohashi Medical Center
| | - Yasuhiro Komatsu
- Japanese Society of Nephrology.,Department of Healthcare Quality and Safety, Gunma University Graduate School of Medicine
| | | | - Yugo Ito
- Japanese Society of Nephrology.,Department of Nephrology, St. Luke's International Hospital
| | - Ryo Miyazawa
- Japan Radiological Society.,Department of Radiology, St. Luke's International Hospital
| | - Yoshihiko Kanno
- Japanese Society of Nephrology.,Department of Nephrology, Tokyo Medical University
| | - Tomonari Ogawa
- Japanese Society of Nephrology.,Department of Nephrology & Hypertension, Saitama Medical Center
| | - Hiroki Hayashi
- Japanese Society of Nephrology.,Department of Nephrology, Fujita Health University School of Medicine
| | - Eri Koshi
- Japanese Society of Nephrology.,Department of Nephrology, Komaki City Hospital
| | - Tomoki Kosugi
- Japanese Society of Nephrology.,Nephrology, Nagoya University Graduate School of Medicine
| | - Yoshinari Yasuda
- Japanese Society of Nephrology.,Department of CKD Initiatives/Nephrology, Nagoya University Graduate School of Medicine
| | | | | | | |
Collapse
|
5
|
Isaka Y, Hayashi H, Aonuma K, Horio M, Terada Y, Doi K, Fujigaki Y, Yasuda H, Sato T, Fujikura T, Kuwatsuru R, Toei H, Murakami R, Saito Y, Hirayama A, Murohara T, Sato A, Ishii H, Takayama T, Watanabe M, Awai K, Oda S, Murakami T, Yagyu Y, Joki N, Komatsu Y, Miyauchi T, Ito Y, Miyazawa R, Kanno Y, Ogawa T, Hayashi H, Koshi E, Kosugi T, Yasuda Y. Guideline on the use of iodinated contrast media in patients with kidney disease 2018. Jpn J Radiol 2019; 38:3-46. [PMID: 31709498 DOI: 10.1007/s11604-019-00850-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Hiromitsu Hayashi
- Department of Clinical Radiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kazutaka Aonuma
- Cardiology Department, Institute of Clinical Medicine, University of Tsukuba, Ibaraki, Japan
| | | | - Yoshio Terada
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Kent Doi
- Department of Acute Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihide Fujigaki
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Hideo Yasuda
- First Department of Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Taichi Sato
- First Department of Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tomoyuki Fujikura
- First Department of Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Ryohei Kuwatsuru
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hiroshi Toei
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Ryusuke Murakami
- Department of Clinical Radiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Medical University, Nara, Japan
| | | | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Akira Sato
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hideki Ishii
- Department of Cardiology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Tadateru Takayama
- Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Makoto Watanabe
- Department of Cardiovascular Medicine, Nara Medical University, Nara, Japan
| | - Kazuo Awai
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takamichi Murakami
- Department of Radiology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Yukinobu Yagyu
- Department of Radiology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Nobuhiko Joki
- Division of Nephrology, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Yasuhiro Komatsu
- Department of Healthcare Quality and Safety, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | - Yugo Ito
- Department of Nephrology, St. Luke's International Hospital, Tokyo, Japan
| | - Ryo Miyazawa
- Department of Radiology, St. Luke's International Hospital, Tokyo, Japan
| | - Yoshihiko Kanno
- Department of Nephrology, Tokyo Medical University, Tokyo, Japan
| | - Tomonari Ogawa
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama, Japan
| | - Hiroki Hayashi
- Department of Nephrology, Fujita Health University School of Medicine, Aichi, Japan
| | - Eri Koshi
- Department of Nephrology, Komaki City Hospital, Aichi, Japan
| | - Tomoki Kosugi
- Nephrology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Yoshinari Yasuda
- Department of CKD Initiatives/Nephrology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | | |
Collapse
|
6
|
Palli E, Makris D, Papanikolaou J, Garoufalis G, Tsilioni I, Zygoulis P, Zakynthinos E. The impact of N-acetylcysteine and ascorbic acid in contrast-induced nephropathy in critical care patients: an open-label randomized controlled study. Crit Care 2017; 21:269. [PMID: 29089038 PMCID: PMC5664844 DOI: 10.1186/s13054-017-1862-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/12/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The aim was to investigate whether the use of N-acetylcysteine and ascorbic acid reduce contrast-induced nephropathy incidence in critical care patients. METHODS This was a one-center, two-arm, prospective, randomized, open-label, controlled trial in the Intensive Care Unit of the University Hospital of Larissa, Greece. Patients with stable renal function, who underwent non urgent contrast-enhanced computed tomography for diagnostic purposes, were included in the study. Patients in the treatment group (NacA, n = 60) received intravenously N-acetylcysteine (1200 mg) and ascorbic acid (2 g) dissolved separately in 100 ml of normal saline 2 hours before, and at 10 hours and 18 hours following the infusion of contrast agent, while control group patients (CG, n = 64) received only normal saline. All patients received additional hydration. Contrast-induced nephropathy was defined as relative increase by 25% of the baseline values of serum creatinine. RESULTS Contrast-induced nephropathy in NacA and CG were 18.33% and 15.6%, respectively (p = 0.81). The percentage change median (interquartile range (IR)) of serum cystatin-C (mg/L) from baseline in patients who underwent contrast-induced tomography, were 37.23% (28.53) and 93.20% (46.90) in NacA and in CG, respectively (p = 0.03). The 8-isoprostane serum levels in NacA were significantly lower compared to CG at 2 hours (p = 0.012) and 24 hours (p = 0.006) following radiocontrast infusion. Multivariate analysis revealed that contrast-induced nephropathy was independently associated with a higher baseline ratio of serum urea/creatinine (odds ratio, 1.02; 95 CI%, 1.00-1.05) and with the use of nephrotoxic medications (odds ratio, 0.24; 95 CI%, 0.06-0.94). CONCLUSION Intravenous administration of N-acetylcysteine and ascorbic acid failed to reduce contrast-induced nephropathy in critically ill patients who underwent contrast-enhanced computed tomography, despite a significant reduction of 8-isoprostane levels in treated patients. TRIAL REGISTRATION ClinicalTrials.gov, NCT01017796 . Registered on 20 November 2009.
Collapse
Affiliation(s)
- Eleni Palli
- Department of Critical Care, University Hospital of Larissa, Thessaly, Greece
| | - Demosthenes Makris
- Department of Critical Care, University Hospital of Larissa, Thessaly, Greece
| | - John Papanikolaou
- Department of Critical Care, University Hospital of Larissa, Thessaly, Greece
| | | | - Irini Tsilioni
- Department of Critical Care, University Hospital of Larissa, Thessaly, Greece
| | - Paris Zygoulis
- Department of Critical Care, University Hospital of Larissa, Thessaly, Greece
| | | |
Collapse
|
7
|
Andreucci M, Faga T, Serra R, De Sarro G, Michael A. Update on the renal toxicity of iodinated contrast drugs used in clinical medicine. Drug Healthc Patient Saf 2017; 9:25-37. [PMID: 28579836 PMCID: PMC5447694 DOI: 10.2147/dhps.s122207] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An important side effect of diagnostic contrast drugs is contrast-induced acute kidney injury (CI-AKI; a sudden decrease in renal function) occurring 48-72 hours after injection of a contrast drug that cannot be attributed to other causes. Its existence has recently been challenged, because of some retrospective studies in which the incidence of AKI was not different between subjects who received a contrast drug and those who did not, even using propensity score matching to prevent selection bias. For some authors, only patients with estimated glomerular filtration rate <30 mL/min/1.73 m2 are at significant risk of CI-AKI. Most agree that when renal function is normal, there is no CI-AKI risk. Many experimental studies, however, are in favor of the existence of CI-AKI. Contrast drugs have been shown to cause the following changes: renal vasoconstriction, resulting in a rise in intrarenal resistance (decrease in renal blood flow and glomerular filtration rate and medullary hypoxia); epithelial vacuolization and dilatation and necrosis of proximal tubules; potentiation of angiotensin II effects, reducing nitric oxide (NO) and causing direct constriction of descending vasa recta, leading to formation of reactive oxygen species in isolated descending vasa recta of rats microperfused with a solution of iodixanol; increasing active sodium reabsorption in the thick ascending limbs of Henle's loop (increasing O2 demand and consequently medullary hypoxia); direct cytotoxic effects on endothelial and tubular epithelial cells (decrease in release of NO in vasa recta); and reducing cell survival, due to decreased activation of Akt and ERK1/2, kinases involved in cell survival/proliferation. Prevention is mainly based on extracellular volume expansion, statins, and N-acetylcysteine; conflicting results have been obtained with nebivolol, furosemide, calcium-channel blockers, theophylline, and hemodialysis.
Collapse
Affiliation(s)
| | | | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Department of Medical and Surgical Sciences
| | - Giovambattista De Sarro
- Pharmacology Unit, Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | | |
Collapse
|
8
|
Ibrahim ES, Sharawy A. Effectiveness of intravenous infusion of N-acetylcysteine in cirrhotic patients undergoing major abdominal surgeries. Saudi J Anaesth 2015; 9:272-8. [PMID: 26240545 PMCID: PMC4478819 DOI: 10.4103/1658-354x.154706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Postoperative acute kidney injury (AKI) is common in patients with chronic liver disease. We prospectively evaluated effectiveness of the N-acetylcysteine (NAC) in preserving postoperative renal functions in cirrhotic patients undergoing major abdominal surgeries. MATERIALS AND METHODS A total of 60 cirrhotic patients child A to B were randomized into two groups of 30 each. NAC groupwas received intravenous infusion of NAC (1200 mg/12h starting immediately before surgery and continued for 72h h postoperative) and controls group received a similar volume of glucose 5% solution as a a placebo. Systemic hemodynamics, hepatic and renal functions, serum cystatin C and cystatin C glomerular filtration rate (GFR) (GFR) were compared between both groups. RESULTS Serum level of cystatin C was raised significantly above the basal value at postoperative day 1 and day 3 associated with significantly decreased in cystatin C GFR below the basal value in the control group (P = 0.001). 6 (20%) (PP = 0.03) in control group developed AKI based on cystatin C GFR criteria (GFR <55 ml/min/1.73m(2)). Mean values of alanine aminotransferase and aspartate aminotransferase were increased significantly above the basal values in both groups, but the increases were significantly lower in NAC group (P = 0.00). Chest infection was significantly lower associated with shorter hospital stay in the NAC group than the control group. CONCLUSION Intravenous administration of NAC NAC in cirrhotic patients undergoing major abdominal surgeries reduces the incidence of cystatin C GFR-based AKI, postoperative renal and liver functions were well-preserved and improved outcome.
Collapse
Affiliation(s)
- Eman Sayed Ibrahim
- Department of Anesthesia, National Liver Institute, Menofeya University, Menofeya, Egypt
| | - Ahmed Sharawy
- Department of Clinical Pathology, National Liver Institute, Menofeya University, Menofeya, Egypt
| |
Collapse
|
9
|
Özbek K, Ceyhan K, Koç F, Söğüt E, Altunkaş F, Karayakalı M, Çelik A, Kadı H, Köseoğlu RD, Önalan O. The protective effect of single dose tadalafil in contrast-induced nephropathy: an experimental study. Anatol J Cardiol 2014; 15:306-10. [PMID: 25880289 PMCID: PMC5336839 DOI: 10.5152/akd.2014.5380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective: Contrast-induced nephropathy (CIN) is one of the most common causes of acute renal failure in hospitalized patients. The direct toxic effect of contrast media; ischemic damage caused by reactive oxygen species; increased perivascular hydrostatic pressure; high viscosity and changes in the activity of vasoactive substances play important roles in the pathogenesis. Tadalafil inhibits the phosphodiesterase enzyme which destroys nitric oxide. Nitric oxide causes renal vasodilatation, increases renal medullar blood flow and mediates the removal of free oxygen radicals. Drugs that increase levels of nitric oxide are expected to reduce the development of contrast nephropathy due to contrast media. We aimed to test the hypothesis that tadalafil reduces the development of contrast nephropathy due to contrast toxicity. Methods: A total of 24 female Wistar albino rats, three groups of eight, were included in the study. After 48 hours of dehydration, contrast media (meglumine diatrozoate, 6 mL/kg) was administered to the first group, and contrast media with tadalafil (10 mg/kg) was administered to the second group. The third group served as the control group. Blood and tissue samples were taken 48 hours after this procedure. Results: Serum cystatin C, serum creatinine and blood urea nitrogen (BUN) values were significantly lower in the contrast with tadalafil group compared to the group given only contrast. Serum and tissue malondialdehyde (MDA) levels were significantly lower in the contrast with tadalafil group than in the contrast only group. Conclusion: These results demonstrate the protective effect of tadalafil in the prevention of CIN in rats.
Collapse
Affiliation(s)
- Kerem Özbek
- Department of Cardiology, Faculty of Medicine, Gaziosmanpaşa University; Tokat-Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|