1
|
Arafuka S, Fujishiro H, Torii Y, Sekiguchi H, Habuchi C, Miwa A, Yoshida M, Iritani S, Iwasaki Y, Ikeda M, Ozaki N. Neuropathological substrate of incident dementia in older patients with schizophrenia: A clinicopathological study. Psychiatry Clin Neurosci 2024; 78:29-40. [PMID: 37706608 DOI: 10.1111/pcn.13597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/08/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
AIM Clinical studies reported that patients with schizophrenia are at a higher risk of developing dementia than people without schizophrenia. However, early neuropathological studies have shown that the incidence of Alzheimer's disease (AD) in schizophrenia patients does not differ from that in controls. These inconsistent results may be attributable to the inclusion of non-AD dementia, but there have been few clinicopathological studies in older patients with schizophrenia based on the current neuropathological classification. This study aimed to investigate the neuropathological basis of incident dementia in older patients with schizophrenia. METHODS We systematically examined 32 brains of old patients with schizophrenia using standardized pathological methods. The severity of dementia-related neuropathologies was analyzed using standardized semiquantitative assessments. After excluding patients who fulfilled the neuropathological criteria, clinicopathological variables were compared between patients with and without incident dementia to identify potential differences. RESULTS Seven patients fulfilled the pathological criteria for AD (n = 3), argyrophilic grain disease (AGD) (n = 2), dementia with Lewy bodies (n = 1), and AGD/progressive supranuclear palsy (n = 1). Among 25 patients for whom a neuropathological diagnosis was not obtained, 10 had dementia, but the clinicopathological findings did not differ from the remaining 15 patients without dementia. CONCLUSION Two types of older schizophrenia patient present dementia: patients with co-existing neurodegenerative disease and patients who do not meet pathological criteria based on the current classification. To understand the neurobiological aspects of incident dementia in older patients with schizophrenia, further clinicopathological studies are needed that do not simply analyze incident dementia as a comorbidity of conventional dementia-related neuropathologies.
Collapse
Affiliation(s)
- Shusei Arafuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
- Moriyama General Mental Hospital, Nagoya, Japan
| | - Hiroshige Fujishiro
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Moriyama General Mental Hospital, Nagoya, Japan
| | - Youta Torii
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Moriyama General Mental Hospital, Nagoya, Japan
| | - Hirotaka Sekiguchi
- Department of Psychiatry, Okehazama Hospital Fujita Mental Care Center, Toyoake, Japan
| | | | - Ayako Miwa
- Moriyama General Mental Hospital, Nagoya, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Shuji Iritani
- Moriyama General Mental Hospital, Nagoya, Japan
- Department of Psychiatry, Okehazama Hospital Fujita Mental Care Center, Toyoake, Japan
- Aichi Psychiatric Medical Center, Nagoya, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Dornelles E, Correia DT. The Neurobiology of Formal Thought Disorder. Curr Top Med Chem 2024; 24:1773-1783. [PMID: 38243933 DOI: 10.2174/0115680266272521240108102354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 01/22/2024]
Abstract
The concept of Formal Thought Disorder (FTD) is an ambiguous and disputed one, even though it has endured as a core psychopathological construct in clinical Psychiatry. FTD can be summarized as a multidimensional construct, reflecting difficulties or idiosyncrasies in thinking, language, and communication in general and is usually subdivided into positive versus negative. In this article, we aim to explore the putative neurobiology of FTD, ranging from changes in neurotransmitter systems to alterations in the functional anatomy of the brain. We also discuss recent critiques of the operationalist view of FTD and how they might fit in its biological underpinnings. We conclude that FTD might be the observable phenotype of many distinct underlying alterations in different proportions.
Collapse
Affiliation(s)
- Erik Dornelles
- Clínica Universitária de Psicologia e Psiquiatria, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Psiquiatria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| | - Diogo Telles Correia
- Clínica Universitária de Psicologia e Psiquiatria, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Psiquiatria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| |
Collapse
|
3
|
Schmitt A, Tatsch L, Vollhardt A, Schneider-Axmann T, Raabe FJ, Roell L, Heinsen H, Hof PR, Falkai P, Schmitz C. Decreased Oligodendrocyte Number in Hippocampal Subfield CA4 in Schizophrenia: A Replication Study. Cells 2022; 11:cells11203242. [PMID: 36291109 PMCID: PMC9600243 DOI: 10.3390/cells11203242] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022] Open
Abstract
Hippocampus-related cognitive deficits in working and verbal memory are frequent in schizophrenia, and hippocampal volume loss, particularly in the cornu ammonis (CA) subregions, was shown by magnetic resonance imaging studies. However, the underlying cellular alterations remain elusive. By using unbiased design-based stereology, we reported a reduction in oligodendrocyte number in CA4 in schizophrenia and of granular neurons in the dentate gyrus (DG). Here, we aimed to replicate these findings in an independent sample. We used a stereological approach to investigate the numbers and densities of neurons, oligodendrocytes, and astrocytes in CA4 and of granular neurons in the DG of left and right hemispheres in 11 brains from men with schizophrenia and 11 brains from age- and sex-matched healthy controls. In schizophrenia, a decreased number and density of oligodendrocytes was detected in the left and right CA4, whereas mean volumes of CA4 and the DG and the numbers and density of neurons, astrocytes, and granular neurons were not different in patients and controls, even after adjustment of variables because of positive correlations with postmortem interval and age. Our results replicate the previously described decrease in oligodendrocytes bilaterally in CA4 in schizophrenia and point to a deficit in oligodendrocyte maturation or a loss of mature oligodendrocytes. These changes result in impaired myelination and neuronal decoupling, both of which are linked to altered functional connectivity and subsequent cognitive dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University (LMU) Munich, 80336 Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of São Paulo, São Paulo 05403-903, Brazil
- Correspondence:
| | - Laura Tatsch
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University (LMU) Munich, 80336 Munich, Germany
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, 80336 Munich, Germany
| | - Alisa Vollhardt
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, 80336 Munich, Germany
| | - Thomas Schneider-Axmann
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University (LMU) Munich, 80336 Munich, Germany
| | - Florian J. Raabe
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University (LMU) Munich, 80336 Munich, Germany
| | - Lukas Roell
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University (LMU) Munich, 80336 Munich, Germany
| | - Helmut Heinsen
- Morphological Brain Research Unit, Department of Psychiatry, University of Würzburg, 97080 Würzburg, Germany
- Institute of Forensic Pathology, University of Würzburg, 97078 Würzburg, Germany
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University (LMU) Munich, 80336 Munich, Germany
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Christoph Schmitz
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, 80336 Munich, Germany
| |
Collapse
|
4
|
Zlomuzica A, Plank L, Dere E. A new path to mental disorders: Through gap junction channels and hemichannels. Neurosci Biobehav Rev 2022; 142:104877. [PMID: 36116574 DOI: 10.1016/j.neubiorev.2022.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/20/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
Abstract
Behavioral disturbances related to emotional regulation, reward processing, cognition, sleep-wake regulation and activity/movement represent core symptoms of most common mental disorders. Increasing empirical and theoretical evidence suggests that normal functioning of these behavioral domains relies on fine graded coordination of neural and glial networks which are maintained and modulated by intercellular gap junction channels and unapposed pannexin or connexin hemichannels. Dysfunctions in these networks might contribute to the development and maintenance of psychopathological and neurobiological features associated with mental disorders. Here we review and discuss the evidence indicating a prominent role of gap junction channel and hemichannel dysfunction in core symptoms of mental disorders. We further discuss how the increasing knowledge on intercellular gap junction channels and unapposed pannexin or connexin hemichannels in the brain might lead to deeper mechanistic insight in common mental disorders and to the development of novel treatment approaches. We further attempt to exemplify what type of future research on this topic could be integrated into multidimensional approaches to understand and cure mental disorders.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany.
| | - Laurin Plank
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany
| | - Ekrem Dere
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany; Sorbonne Université. Institut de Biologie Paris-Seine, (IBPS), Département UMR 8256: Adaptation Biologique et Vieillissement, UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris, France.
| |
Collapse
|
5
|
Disruption of the astrocyte-neuron interaction is responsible for the impairments in learning and memory in 5XFAD mice: an Alzheimer's disease animal model. Mol Brain 2021; 14:111. [PMID: 34246283 PMCID: PMC8272251 DOI: 10.1186/s13041-021-00823-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/05/2021] [Indexed: 12/02/2022] Open
Abstract
The morphological dynamics of astrocytes are altered in the hippocampus during memory induction. Astrocyte–neuron interactions on synapses are called tripartite synapses. These control the synaptic function in the central nervous system. Astrocytes are activated in a reactive state by STAT3 phosphorylation in 5XFAD mice, an Alzheimer’s disease (AD) animal model. However, changes in astrocyte–neuron interactions in reactive or resting-state astrocytes during memory induction remain to be defined. Here, we investigated the time-dependent changes in astrocyte morphology and the number of astrocyte–neuron interactions in the hippocampus over the course of long-term memory formation in 5XFAD mice. Hippocampal-dependent long-term memory was induced using a contextual fear conditioning test in 5XFAD mice. The number of astrocytic processes increased in both wild-type and 5XFAD mice during memory formation. To assess astrocyte–neuron interactions in the hippocampal dentate gyrus, we counted the colocalization of glial fibrillary acidic protein and postsynaptic density protein 95 via immunofluorescence. Both groups revealed an increase in astrocyte–neuron interactions after memory induction. At 24 h after memory formation, the number of tripartite synapses returned to baseline levels in both groups. However, the total number of astrocyte–neuron interactions was significantly decreased in 5XFAD mice. Administration of Stattic, a STAT3 phosphorylation inhibitor, rescued the number of astrocyte–neuron interactions in 5XFAD mice. In conclusion, we suggest that a decreased number of astrocyte–neuron interactions may underlie memory impairment in the early stages of AD.
Collapse
|
6
|
Tarasov VV, Svistunov AA, Chubarev VN, Sologova SS, Mukhortova P, Levushkin D, Somasundaram SG, Kirkland CE, Bachurin SO, Aliev G. Alterations of Astrocytes in the Context of Schizophrenic Dementia. Front Pharmacol 2020; 10:1612. [PMID: 32116664 PMCID: PMC7020441 DOI: 10.3389/fphar.2019.01612] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
The levels of the astrocyte markers (GFAP, S100B) were increased unevenly in patients with schizophrenia. Reactive astrogliosis was found in approximately 70% of patients with schizophrenia. The astrocytes play a major role in etiology and pathogenesis of schizophrenia. Astrocytes produce the components that altered in schizophrenia extracellular matrix system which are involved in inflammation, functioning of interneurons, glio-, and neurotransmitter system, especially glutamate system. Astrocytes activate the interneurons through glutamate release and ATP. Decreased expression of astrocyte glutamate transporters was observed in patients with schizophrenia. Astrocytes influence on N-methyl-d-aspartate (NMDA) receptors via D-serine, an agonist of the glycine-binding site of NMDA receptors, and kynurenic acid, an endogenous antagonist. NMDA receptors, on its turn, control the impulses of dopamine neurons. Therefore following theories of schizophrenia are proposed. They are a) activation of astrocytes for neuroinflammation, b) glutamate and dopamine theory, as astrocyte products control the activity of NMDA receptors, which influence on the dopamine neurons.
Collapse
Affiliation(s)
- Vadim V Tarasov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrey A Svistunov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Vladimir N Chubarev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Susanna S Sologova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Polina Mukhortova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Dmitrii Levushkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV, United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, United States
| | - Sergey O Bachurin
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Russia
| | - Gjumrakch Aliev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Russia.,Federal State Budgetary Institution, Research Institute of Human Morphology, Russian Federation, Moscow, Russia.,GALLY International Research Institute, San Antonio, TX, United States
| |
Collapse
|
7
|
Falkai P, Malchow B, Wetzestein K, Nowastowski V, Bernstein HG, Steiner J, Schneider-Axmann T, Kraus T, Hasan A, Bogerts B, Schmitz C, Schmitt A. Decreased Oligodendrocyte and Neuron Number in Anterior Hippocampal Areas and the Entire Hippocampus in Schizophrenia: A Stereological Postmortem Study. Schizophr Bull 2016; 42 Suppl 1:S4-S12. [PMID: 27460617 PMCID: PMC4960426 DOI: 10.1093/schbul/sbv157] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hippocampus is involved in cognition as well as emotion, with deficits in both domains consistently described in schizophrenia. Moreover, the whole volumes of both the anterior and posterior region have been reported to be decreased in schizophrenia patients. While fewer oligodendrocyte numbers in the left and right cornu ammonis CA4 subregion of the posterior part of the hippocampus have been reported, the aim of this stereological study was to investigate cell numbers in either the dentate gyrus (DG) or subregions of the anterior hippocampus. In this design-based stereological study of the anterior part of the hippocampus comparing 10 patients with schizophrenia to 10 age- and gender-matched healthy controls were examined. Patients showed a decreased number of oligodendrocytes in the left CA4, fewer neurons in the left DG and smaller volumes in both the left CA4 and DG, which correlated with oligodendrocyte and neuron numbers, respectively. When exploring the total hippocampus, keeping previously published own results from the posterior part of the same brains in mind, both decreased oligodendrocyte numbers in the left CA4 and reduced volume remained significant. The decreased oligodendrocyte number speaks for a deficit in myelination and connectivity in schizophrenia which may originate from disturbed maturational processes. The reduced neuron number of the DG in the anterior hippocampus may well point to a reduced capacity of this region to produce new neurons up to adulthood. Both mechanisms may be involved in cognitive dysfunction in schizophrenia patients.
Collapse
Affiliation(s)
- Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany; These authors contributed equally to the article
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany; These authors contributed equally to the article
| | - Katharina Wetzestein
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany
| | - Verena Nowastowski
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany
| | - Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
| | - Thomas Schneider-Axmann
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Theo Kraus
- Center for Neuropathology and Prion Research (ZNP), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
| | - Christoph Schmitz
- Department of Neuroanatomy, Ludwig Maximilian University, Munich, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany; Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Falkai P, Steiner J, Malchow B, Shariati J, Knaus A, Bernstein HG, Schneider-Axmann T, Kraus T, Hasan A, Bogerts B, Schmitt A. Oligodendrocyte and Interneuron Density in Hippocampal Subfields in Schizophrenia and Association of Oligodendrocyte Number with Cognitive Deficits. Front Cell Neurosci 2016; 10:78. [PMID: 27065804 PMCID: PMC4811909 DOI: 10.3389/fncel.2016.00078] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/14/2016] [Indexed: 12/11/2022] Open
Abstract
In schizophrenia, previous stereological post-mortem investigations of anterior, posterior, and total hippocampal subfields showed no alterations in total neuron number but did show decreased oligodendrocyte numbers in CA4, an area that corresponds to the polymorph layer of the dentate gyrus (DG). However, these investigations identified oligodendrocytes only on the basis of morphological criteria in Nissl staining and did not assess alterations of interneurons with immunohistochemical markers. Moreover, the association of findings in the posterior hippocampus with cognitive deficits remains unknown. On the basis of the available clinical records, we compared patients with definite and possible cognitive dysfunction; nine patients had evidence in their records of either definite (n = 4) or possible (n = 5) cognitive dysfunction. Additionally, we assessed the density of two oligodendrocyte subpopulations immunostained by the oligodendrocyte transcription factors Olig1 and Olig2 and of interneurons immunolabeled by parvalbumin. We investigated posterior hippocampal subregions in the post-mortem brains of the same schizophrenia patients (SZ; n = 10) and healthy controls (n = 10) we examined in our previously published stereological studies. Our stereological studies found that patients with definite cognitive deficits had decreased total/Nissl-stained oligodendrocyte numbers in the left (p = 0.014) and right (p = 0.050) CA4, left CA2/3 (p = 0.050), left CA1 (p = 0.027), and left (p = 0.050) and right (p = 0.014) subiculum of the anterior part of the hippocampus compared to patients with possible cognitive deficits. In the present study, we found no significant influence of definite cognitive deficits in the posterior part of the hippocampus, whereas in the entire hippocampus SZ with definite cognitive deficits showed decreased oligodendrocyte numbers in the left (p = 0.050) and right (p = 0.050) DG and left CA2/3 (p = 0.050). We did not find significant differences in Olig1-, Olig2-, or parvalbumin-positive cell density between SZ and controls in any of the subregions of the posterior hippocampus. Based on the results from our stereological study we hypothesize that a decreased number of oligodendrocytes in the anterior and entire hippocampus may be involved in cognitive deficits by impairing the connectivity of this structure in schizophrenia. In the posterior hippocampus, we could not replicate previously reported findings of decreased interneurons from the entire hippocampus.
Collapse
Affiliation(s)
- Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians-University Munich Munich, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, University of Magdeburg Magdeburg, Germany
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians-University Munich Munich, Germany
| | - Jawid Shariati
- Department of Psychiatry and Psychotherapy, University of Göttingen Göttingen, Germany
| | - Andreas Knaus
- Department of Psychiatry and Psychotherapy, University of Göttingen Göttingen, Germany
| | - Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, University of Magdeburg Magdeburg, Germany
| | - Thomas Schneider-Axmann
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians-University Munich Munich, Germany
| | - Theo Kraus
- Center for Neuropathology and Prion Research (ZNP), Ludwig Maximilians-University Munich Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians-University Munich Munich, Germany
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, University of Magdeburg Magdeburg, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians-University MunichMunich, Germany; Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of São PauloSão Paulo, Brazil
| |
Collapse
|
9
|
Williams MR, Galvin K, O'Sullivan B, MacDonald CD, Ching EWK, Turkheimer F, Howes OD, Pearce RKB, Hirsch SR, Maier M. Neuropathological changes in the substantia nigra in schizophrenia but not depression. Eur Arch Psychiatry Clin Neurosci 2014; 264:285-96. [PMID: 24374935 DOI: 10.1007/s00406-013-0479-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 12/18/2013] [Indexed: 01/02/2023]
Abstract
Schizophrenia is a chronic, disabling neuropsychiatric disorder characterised by positive, negative and cognitive symptoms. The aetiology is not known, although genetic, imaging and pathological studies have implicated both neurodevelopmental and neurodegenerative processes. The substantia nigra is a basal ganglia nucleus responsible for the production of dopamine and projection of dopaminergic neurons to the striatum. The substantia nigra is implicated in schizophrenia as dopamine has been heavily implicated in the dopamine hypothesis of schizophrenia and the prevalent psychotic symptoms and the monoamine theory of depression, and is a target for the development of new therapies. Studies into the major dopamine delivery pathways in the brain will therefore provide a strong base in improving knowledge of these psychiatric disorders. This post-mortem study examines the cytoarchitecture of dopaminergic neurons of the substantia nigra in schizophrenia (n = 12) and depression (n = 13) compared to matched controls (n = 13). Measures of nucleolar volume, nuclear length and nuclear area were taken in patients with chronic schizophrenia and major depressive disorder against matched controls. Astrocyte density was decreased in schizophrenia compared to controls (p = 0.030), with no change in oligodendrocyte density observed. Significantly increased nuclear cross-sectional area (p = 0.017) and length (p = 0.021), and increased nucleolar volume (p = 0.037) in dopaminergic neurons were observed in schizophrenia patients compared with controls, suggesting nuclear pleomorphic changes. No changes were observed in depression cases compared to control group. These changes may reflect pathological alterations in gene expression, neuronal structure and function in schizophrenia.
Collapse
Affiliation(s)
- M R Williams
- Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Steiner J, Schmitt A, Schroeter ML, Bogerts B, Falkai P, Turck CW, Martins-de-Souza D. S100B is downregulated in the nuclear proteome of schizophrenia corpus callosum. Eur Arch Psychiatry Clin Neurosci 2014; 264:311-6. [PMID: 24504531 DOI: 10.1007/s00406-014-0490-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/24/2014] [Indexed: 01/06/2023]
Abstract
Here we report the downregulation of S100B in the nuclear proteome of the corpus callosum from nine schizophrenia patients compared to seven mentally healthy controls. Our data have been obtained primarily by mass spectrometry and later confirmed by Western blot. This is an intriguing finding coming from a brain region which is essentially composed by white matter, considering the potential role of S100B in the control of oligodendrocyte maturation. This data reinforce the importance of oligodendrocytes in schizophrenia, shedding more light to its pathobiology.
Collapse
Affiliation(s)
- Johann Steiner
- Department of Psychiatry, University of Magdeburg, Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Gebicke-Haerter PJ. Engram formation in psychiatric disorders. Front Neurosci 2014; 8:118. [PMID: 24904262 PMCID: PMC4036307 DOI: 10.3389/fnins.2014.00118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 05/02/2014] [Indexed: 01/17/2023] Open
Abstract
Environmental factors substantially influence beginning and progression of mental illness, reinforcing or reducing the consequences of genetic vulnerability. Often initiated by early traumatic events, “engrams” or memories are formed that may give rise to a slow and subtle progression of psychiatric disorders. The large delay between beginning and time of onset (diagnosis) may be explained by efficient compensatory mechanisms observed in brain metabolism that use optional pathways in highly redundant molecular interactions. To this end, research has to deal with mechanisms of learning and long-term memory formation, which involves (a) epigenetic changes, (b) altered neuronal activities, and (c) changes in neuron-glia communication. On the epigenetic level, apparently DNA-methylations are more stable than histone modifications, although both closely interact. Neuronal activities basically deliver digital information, which clearly can serve as basis for memory formation (LTP). However, research in this respect has long time neglected the importance of glia. They are more actively involved in the control of neuronal activities than thought before. They can both reinforce and inhibit neuronal activities by transducing neuronal information from frequency-encoded to amplitude and frequency-modulated calcium wave patterns spreading in the glial syncytium by use of gap junctions. In this way, they serve integrative functions. In conclusion, we are dealing with two concepts of encoding information that mutually control each other and synergize: a digital (neuronal) and a wave-like (glial) computing, forming neuron-glia functional units with inbuilt feedback loops to maintain balance of excitation and inhibition. To better understand mental illness, we have to gain more insight into the dynamics of adverse environmental impact on those cellular and molecular systems. This report summarizes existing knowledge and draws some outline about further research in molecular psychiatry.
Collapse
Affiliation(s)
- Peter J Gebicke-Haerter
- Medical Faculty Mannheim, Central Institute of Mental Health, Institute of Psychopharmacology, Heidelberg University Mannheim, Germany ; Progrs. de Farmacología y Inmunología, Facultad de Medicina, Universidad de Chile Santiago, Chile
| |
Collapse
|
12
|
Palmitoylethanolamide in CNS health and disease. Pharmacol Res 2014; 86:32-41. [PMID: 24844438 DOI: 10.1016/j.phrs.2014.05.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 01/08/2023]
Abstract
The existence of acylethanolamides (AEs) in the mammalian brain has been known for decades. Among AEs, palmitoylethanolamide (PEA) is abundant in the central nervous system (CNS) and conspicuously produced by neurons and glial cells. Antihyperalgesic and neuroprotective properties of PEA have been mainly related to the reduction of neuronal firing and to control of inflammation. Growing evidence suggest that PEA may be neuroprotective during CNS neurodegenerative diseases. Advances in the understanding of the physiology and pharmacology of PEA have potentiated its interest as useful biological tool for disease management. Several rapid non-genomic and delayed genomic mechanisms of action have been identified for PEA as peroxisome proliferator-activated receptor (PPAR)-α dependent. First, an early molecular control, through Ca(+2)-activated intermediate- and/or big-conductance K(+) channels opening, drives to rapid neuronal hyperpolarization. This is reinforced by the increase of the inward Cl(-) currents due to the modulation of the gamma aminobutyric acid A receptor and by the desensitization of the transient receptor potential channel type V1. Moreover, the gene transcription-mediated mechanism sustains the long-term anti-inflammatory effects, by reducing pro-inflammatory enzyme expression and increasing neurosteroid synthesis. Overall, the integration of these different modes of action allows PEA to exert an immediate and prolonged efficacious control in neuron signaling either on inflammatory process or neuronal excitability, maintaining cellular homeostasis. In this review, we will discuss the effect of PEA on metabolism, behavior, inflammation and pain perception, related to the control of central functions and the emerging evidence demonstrating its therapeutic efficacy in several neurodegenerative diseases.
Collapse
|
13
|
Schmitt A, Malchow B, Hasan A, Falkai P. The impact of environmental factors in severe psychiatric disorders. Front Neurosci 2014; 8:19. [PMID: 24574956 PMCID: PMC3920481 DOI: 10.3389/fnins.2014.00019] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/23/2014] [Indexed: 01/08/2023] Open
Abstract
During the last decades, schizophrenia has been regarded as a developmental disorder. The neurodevelopmental hypothesis proposes schizophrenia to be related to genetic and environmental factors leading to abnormal brain development during the pre- or postnatal period. First disease symptoms appear in early adulthood during the synaptic pruning and myelination process. Meta-analyses of structural MRI studies revealing hippocampal volume deficits in first-episode patients and in the longitudinal disease course confirm this hypothesis. Apart from the influence of risk genes in severe psychiatric disorders, environmental factors may also impact brain development during the perinatal period. Several environmental factors such as antenatal maternal virus infections, obstetric complications entailing hypoxia as common factor or stress during neurodevelopment have been identified to play a role in schizophrenia and bipolar disorder, possibly contributing to smaller hippocampal volumes. In major depression, psychosocial stress during the perinatal period or in adulthood is an important trigger. In animal studies, chronic stress or repeated administration of glucocorticoids have been shown to induce degeneration of glucocorticoid-sensitive hippocampal neurons and may contribute to the pathophysiology of affective disorders. Epigenetic mechanisms altering the chromatin structure such as histone acetylation and DNA methylation may mediate effects of environmental factors to transcriptional regulation of specific genes and be a prominent factor in gene-environmental interaction. In animal models, gene-environmental interaction should be investigated more intensely to unravel pathophysiological mechanisms. These findings may lead to new therapeutic strategies influencing epigenetic targets in severe psychiatric disorders.
Collapse
Affiliation(s)
- Andrea Schmitt
- Department of Psychiatry and Psychotherapy, LMU Munich Munich, Germany ; Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo São Paulo, Brazil
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, LMU Munich Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, LMU Munich Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, LMU Munich Munich, Germany
| |
Collapse
|
14
|
Papa M, De Luca C, Petta F, Alberghina L, Cirillo G. Astrocyte-neuron interplay in maladaptive plasticity. Neurosci Biobehav Rev 2014; 42:35-54. [PMID: 24509064 DOI: 10.1016/j.neubiorev.2014.01.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/03/2014] [Accepted: 01/28/2014] [Indexed: 12/21/2022]
Abstract
The complexity of neuronal networks cannot only be explained by neuronal activity so neurobiological research in the last decade has focused on different components of the central nervous system: the glia. Glial cells are fundamental elements for development and maintenance of physiological brain work. New data confirm that glia significantly influences neuronal communication through specific molecules, named "gliotransmitters", and their related receptors. This new approach to the traditional model of the way synapses work is also supported by changes occurring in pathological conditions, such as neurodegenerative diseases or toxic/traumatic injury to nervous system. Experimental models have revealed that glial cells are the starting point of damage progression that subsequently involves neurons. The "bedside to bench" approach has demonstrated that clinical phenotypes are strictly related to neuronal death, however it is conceivable that the disease begins earlier, years before clinical onset. This temporal gap is necessary to determine complex changes in the neuro-glial network organization and produce a "maladaptive plasticity". We review the function of glial cells in health and disease, pointing the putative mechanisms of maladaptive plasticity, suggesting that glial cells may represent a fascinating therapeutic target to prevent irreversible neuronal cell death.
Collapse
Affiliation(s)
- Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, 80138 Naples, Italy; SYSBIO, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy.
| | - Ciro De Luca
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, 80138 Naples, Italy
| | - Federica Petta
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, 80138 Naples, Italy
| | - Lilia Alberghina
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy; SYSBIO, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy
| | - Giovanni Cirillo
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, 80138 Naples, Italy
| |
Collapse
|
15
|
Matteucci A, Gaddini L, Macchia G, Varano M, Petrucci TC, Macioce P, Malchiodi-Albedi F, Ceccarini M. Developmental expression of dysbindin in Muller cells of rat retina. Exp Eye Res 2013; 116:1-8. [PMID: 23954924 DOI: 10.1016/j.exer.2013.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/30/2013] [Accepted: 08/06/2013] [Indexed: 01/09/2023]
Abstract
Dysbindin, the product of the DTNBP1 gene, was identified by yeast two hybrid assay as a binding partner of dystrobrevin, a cytosolic component of the dystrophin protein complex. Although its functional role has not yet been completely elucidated, the finding that dysbindin assembles into the biogenesis of lysosome related organelles complex 1 (BLOC-1) suggests that it participates in intracellular trafficking and biogenesis of organelles and vesicles. Dysbindin is ubiquitous and in brain is expressed primarily in neurons. Variations at the dysbindin gene have been associated with increased risk for schizophrenia. As anomalies in retinal function have been reported in patients suffering from neuropsychiatric disorders, we investigated the expression of dysbindin in the retina. Our results show that differentially regulated dysbindin isoforms are expressed in rat retina during postnatal maturation. Interestingly, we found that dysbindin is mainly localized in Müller cells. The identification of dysbindin in glial cells may open new perspectives for a better understanding of the functional involvement of this protein in visual alterations associated to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Andrea Matteucci
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Skaper SD, Facci L, Giusti P. Glia and mast cells as targets for palmitoylethanolamide, an anti-inflammatory and neuroprotective lipid mediator. Mol Neurobiol 2013; 48:340-52. [PMID: 23813098 DOI: 10.1007/s12035-013-8487-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 06/13/2013] [Indexed: 11/29/2022]
Abstract
Glia are key players in a number of nervous system disorders. Besides releasing glial and neuronal signaling molecules directed to cellular homeostasis, glia respond also to pro-inflammatory signals released from immune-related cells, with the mast cell being of particular interest. A proposed mast cell-glia communication may open new perspectives for designing therapies to target neuroinflammation by differentially modulating activation of non-neuronal cells normally controlling neuronal sensitization-both peripherally and centrally. Mast cells and glia possess endogenous homeostatic mechanisms/molecules that can be upregulated as a result of tissue damage or stimulation of inflammatory responses. Such molecules include the N-acylethanolamines, whose principal family members are the endocannabinoid N-arachidonoylethanolamine (anandamide), and its congeners N-stearoylethanolamine, N-oleoylethanolamine, and N-palmitoylethanolamine (PEA). A key role of PEA may be to maintain cellular homeostasis when faced with external stressors provoking, for example, inflammation: PEA is produced and hydrolyzed by microglia, it downmodulates mast cell activation, it increases in glutamate-treated neocortical neurons ex vivo and in injured cortex, and PEA levels increase in the spinal cord of mice with chronic relapsing experimental allergic encephalomyelitis. Applied exogenously, PEA has proven efficacious in mast cell-mediated experimental models of acute and neurogenic inflammation. This fatty acid amide possesses also neuroprotective effects, for example, in a model of spinal cord trauma, in a delayed post-glutamate paradigm of excitotoxic death, and against amyloid β-peptide-induced learning and memory impairment in mice. These actions may be mediated by PEA acting through "receptor pleiotropism," i.e., both direct and indirect interactions of PEA with different receptor targets, e.g., cannabinoid CB2 and peroxisome proliferator-activated receptor-alpha.
Collapse
Affiliation(s)
- Stephen D Skaper
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Largo "Egidio Meneghetti" 2, 35131, Padova, Italy,
| | | | | |
Collapse
|
17
|
Intracellular ion channel CLIC1: involvement in microglia-mediated β-amyloid peptide(1-42) neurotoxicity. Neurochem Res 2013; 38:1801-8. [PMID: 23743620 DOI: 10.1007/s11064-013-1084-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/10/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
Microglia can exacerbate central nervous system disorders, including stroke and chronic progressive neurodegenerative diseases such as Alzheimer disease. Mounting evidence points to ion channels expressed by microglia as contributing to these neuropathologies. The Chloride Intracellular Channel (CLIC) family represents a class of chloride intracellular channel proteins, most of which are localized to intracellular membranes. CLICs are unusual in that they possess both soluble and integral membrane forms. Amyloid β-peptide (Aβ) accumulation in plaques is a hallmark of familial Alzheimer disease. The truncated Aβ25-35 species was shown previously to increase the expression of CLIC1 chloride conductance in cortical microglia and to provoke microglial neurotoxicity. However, the highly pathogenic and fibrillogenic full-length Aβ1-42 species was not examined, nor was the potential role of CLIC1 in mediating microglial activation and neurotoxicity by other stimuli (e.g. ligands for the Toll-like receptors). In the present study, we utilized a two chamber Transwell™ cell culture system to allow separate treatment of microglia and neurons while examining the effect of pharmacological blockade of CLIC1 in protecting cortical neurons from toxicity caused by Aβ1-42- and lipopolysaccaride-stimulated microglia. Presentation of Aβ1-42 to the upper, microglia-containing chamber resulted in a progressive loss of neurons over 3 days. Neuronal cell injury was prevented by the CLIC1 ion channel blockers IAA-94 [(R(+)-[(6,7-dichloro-2-cyclopentyl-2,3-dihydro-2-methyl-1-oxo-1H-inden-5yl)-oxy] acetic acid)] and niflumic acid (2-{[3-(trifluoromethyl)phenyl]amino}nicotinic acid) when presented to the upper chamber only. Incubation of microglia with lipopolysaccharide plus interferon-γ led to neuronal cell injury which, however, was insensitive to inhibition by the CLIC1 channel blockers, suggesting a degree of selectivity in agents leading to CLIC1 activation.
Collapse
|
18
|
The effects of prenatal and postnatal environmental interaction: prenatal environmental adaptation hypothesis. ACTA ACUST UNITED AC 2013; 107:483-92. [PMID: 23624396 DOI: 10.1016/j.jphysparis.2013.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/13/2013] [Accepted: 04/15/2013] [Indexed: 01/23/2023]
Abstract
Adverse antenatal maternal environments during pregnancy influence fetal development that consequently increases risks of mental health problems including psychiatric disorders in offspring. Therefore, behavioral and brain alterations caused by adverse prenatal environmental conditions are generally considered as deficits. In this article, we propose a novel hypothesis, along with summarizing a body of literatures supporting it, that fetal neurodevelopmental alterations, particularly synaptic network changes occurring in the prefrontal cortex, associated with adverse prenatal environmental conditions may be adaptation to cope with expected severe postnatal environments, and therefore, psychiatric disorders may be able to be understood as adaptive strategies against severe environmental conditions through evolution. It is hoped that the hypothesis presented in this article stimulates and opens a new venue on research toward understanding of biological mechanisms and therapeutic treatments of psychiatric disorders.
Collapse
|
19
|
Skaper SD, Facci L. Mast cell-glia axis in neuroinflammation and therapeutic potential of the anandamide congener palmitoylethanolamide. Philos Trans R Soc Lond B Biol Sci 2013; 367:3312-25. [PMID: 23108549 DOI: 10.1098/rstb.2011.0391] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Communication between the immune and nervous systems depends a great deal on pro-inflammatory cytokines. Both astroglia and microglia, in particular, constitute an important source of inflammatory mediators and may have fundamental roles in central nervous system (CNS) disorders from neuropathic pain and epilepsy to neurodegenerative diseases. Glial cells respond also to pro-inflammatory signals released from cells of immune origin. In this context, mast cells are of particular relevance. These immune-related cells, while resident in the CNS, are able to cross a compromised blood-spinal cord and blood-brain barrier in cases of CNS pathology. Emerging evidence suggests the possibility of mast cell-glia communication, and opens exciting new perspectives for designing therapies to target neuroinflammation by differentially modulating the activation of non-neuronal cells normally controlling neuronal sensitization-both peripherally and centrally. This review aims to provide an overview of recent progress relating to the pathobiology of neuroinflammation, the role of glia, neuro-immune interactions involving mast cells and the possibility that glia-mast cell interactions contribute to exacerbation of acute symptoms of chronic neurodegenerative disease and accelerated disease progression, as well as promotion of pain transmission pathways. Using this background as a starting point for discussion, we will consider the therapeutic potential of naturally occurring fatty acid ethanolamides, such as palmitoylethanolamide in treating systemic inflammation or blockade of signalling pathways from the periphery to the brain in such settings.
Collapse
Affiliation(s)
- Stephen D Skaper
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Largo 'Egidio Meneghetti' 2, 35131 Padova, Italy.
| | | |
Collapse
|
20
|
Skaper SD, Giusti P, Facci L. Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB J 2012; 26:3103-17. [PMID: 22516295 DOI: 10.1096/fj.11-197194] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the more important recent advances in neuroscience research is the understanding that there is extensive communication between the immune system and the central nervous system (CNS). Proinflammatory cytokines play a key role in this communication. The emerging realization is that glia and microglia, in particular, (which are the brain's resident macrophages), constitute an important source of inflammatory mediators and may have fundamental roles in CNS disorders from neuropathic pain and epilepsy to neurodegenerative diseases. Microglia respond also to proinflammatory signals released from other non-neuronal cells, principally those of immune origin. Mast cells are of particular relevance in this context. These immunity-related cells, while resident in the CNS, are capable of migrating across the blood-spinal cord and blood-brain barriers in situations where the barrier is compromised as a result of CNS pathology. Emerging evidence suggests the possibility of mast cell-glia communications and opens exciting new perspectives for designing therapies to target neuroinflammation by differentially modulating the activation of non-neuronal cells normally controlling neuronal sensitization, both peripherally and centrally. This review aims to provide an overview of recent progress relating to the pathobiology of neuroinflammation, the role of microglia, neuroimmune interactions involving mast cells, in particular, and the possibility that mast cell-microglia crosstalk may contribute to the exacerbation of acute symptoms of chronic neurodegenerative disease and accelerate disease progression, as well as promote pain transmission pathways. We conclude by considering the therapeutic potential of treating systemic inflammation or blockade of signaling pathways from the periphery to the brain in such settings.
Collapse
Affiliation(s)
- Stephen D Skaper
- Dipartimento di Scienze del Farmaco, University of Padova, Largo E. Meneghetti 2, 35131 Padova, Italy.
| | | | | |
Collapse
|