1
|
Love RW. Aniracetam: An Evidence-Based Model for Preventing the Accumulation of Amyloid-β Plaques in Alzheimer's Disease. J Alzheimers Dis 2024; 98:1235-1241. [PMID: 38552113 PMCID: PMC11091568 DOI: 10.3233/jad-231247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2024] [Indexed: 04/20/2024]
Abstract
Alzheimer's disease is the leading cause of dementia in the world. It affects 6 million people in the United States and 50 million people worldwide. Alzheimer's disease is characterized by the accumulation of amyloid-β plaques (Aβ), an increase in tau protein neurofibrillary tangles, and a loss of synapses. Since the 1990s, removing and reducing Aβ has been the focus of Alzheimer's treatment and prevention research. The accumulation of Aβ can lead to oxidative stress, inflammation, neurotoxicity, and eventually apoptosis. These insults impair signaling systems in the brain, potentially leading to memory loss and cognitive decline. Aniracetam is a safe, effective, cognitive-enhancing drug that improves memory in both human and animal studies. Aniracetam may prevent the production and accumulation of Aβ by increasing α-secretase activity through two distinct pathways: 1) increasing brain derived neurotrophic factor expression and 2) positively modulating metabotropic glutamate receptors. This is the first paper to propose an evidence-based model for aniracetam reducing the accumulation and production of Aβ.
Collapse
|
2
|
NMDA and AMPA Receptor Autoantibodies in Brain Disorders: From Molecular Mechanisms to Clinical Features. Cells 2021; 10:cells10010077. [PMID: 33466431 PMCID: PMC7824909 DOI: 10.3390/cells10010077] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
The role of autoimmunity in central nervous system (CNS) disorders is rapidly expanding. In the last twenty years, different types of autoantibodies targeting subunits of ionotropic glutamate receptors have been found in a variety of patients affected by brain disorders. Several of these antibodies are directed against NMDA receptors (NMDAR), mostly in autoimmune encephalitis, whereas a growing field of research has identified antibodies against AMPA receptor (AMPAR) subunits in patients with different types of epilepsy or frontotemporal dementia. Several in vitro and in vivo studies performed in the last decade have dramatically improved our understanding of the molecular and functional effects induced by both NMDAR and AMPAR autoantibodies at the excitatory glutamatergic synapse and, consequently, their possible role in the onset of clinical symptoms. In particular, the method by which autoantibodies can modulate the localization at synapses of specific target subunits leading to functional impairments and behavioral alterations has been well addressed in animal studies. Overall, these preclinical studies have opened new avenues for the development of novel pharmacological treatments specifically targeting the synaptic activation of ionotropic glutamate receptors.
Collapse
|
3
|
Robbins TW. Pharmacological treatment of cognitive deficits in nondementing mental health disorders
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020; 21:301-308. [PMID: 31749654 PMCID: PMC6829171 DOI: 10.31887/dcns.2019.21.3/trobbins] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Evidence for pharmacological remediation of cognitive deficits in three major
psychiatric disorders—attention deficit- hyperactivity disorder (ADHD), schizophrenia,
and depression—is reviewed. ADHD is effectively treated with the stimulant medications
methylphenidate and d-amphetamine, as well as nonstimulants such as atomoxetine,
implicating cognitive enhancing effects mediated by noradrenaline and dopamine. However,
the precise mechanisms underlying these effects remains unclear. Cognitive deficits in
schizophrenia are less effectively treated, but attempts via a variety of
neurotransmitter strategies are surveyed. The possibility of treating cognitive deficits
in depression via antidepressant medication (eg, selective serotonin reuptake
inhibitors) and by adjunctive drug treatment has only recently received attention
because of confounding, or possibly interactive, effects on mood. Prospects for future
advances in this important area may need to take into account transdiagnostic
perspectives on cognition (including neurodegenerative diseases) as well as improvements
in neuropsychological, neurobiological, and clinical trial design approaches to
cognitive enhancement.
Collapse
Affiliation(s)
- Trevor W Robbins
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Reversal of neurobehavioral teratogenicity in animal models and human: Three decades of progress. Brain Res Bull 2019; 150:328-342. [DOI: 10.1016/j.brainresbull.2019.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022]
|
5
|
Abstract
Abnormalities of glutamatergic transmission are implicated in neuropsychiatric disorders. Among the glutamate receptors, metabotropic (mGlu) 2/3 receptors have recently gained much attention as molecular targets for the treatment of several neuropsychiatric disorders including depression and anxiety. Both orthosteric and allosteric antagonists of mGlu2/3 receptors have been synthesized, and their therapeutic potential has been examined. These research activities have demonstrated the promise of mGlu2/3 receptor antagonists as potential treatment agents for the above-mentioned neuropsychiatric disorders. In particular, it has been considered that the antidepressant effects of mGlu2/3 receptor antagonists are worthy of pursuing, since the antidepressant profiles as well as synaptic/neural mechanisms involved in the actions of mGlu2/3 receptor antagonists are similar to those of ketamine, which has been demonstrated to show potent, rapid and sustained efficacy in patients with depression, even those resistant to the conventionally prescribed antidepressants. In this chapter, the general pharmacology of mGlu2/3 receptor antagonists and their therapeutic potential are reviewed. In particular, I focus on the usefulness of mGlu2/3 receptor antagonists as novel antidepressants, in comparison with ketamine.
Collapse
|
6
|
Designing a Formulation of the Nootropic Drug Aniracetam Using 2-Hydroxypropyl-β-Cyclodextrin Suitable for Parenteral Administration. Pharmaceutics 2018; 10:pharmaceutics10040240. [PMID: 30453664 PMCID: PMC6320825 DOI: 10.3390/pharmaceutics10040240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 11/16/2022] Open
Abstract
The nootropic drug aniracetam is greatly limited in its application by low aqueous solubility and a poor oral bioavailability. The primary aim of this study was to design a parenteral formulation of aniracetam that can be administered intravenously. Complexation of aniracetam with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was investigated as a strategy to enhance solubility. A phase solubility analysis was performed to quantify the extent of improvement. An 819% increase in the solubility of aniracetam was obtained, reaching 36.44 mg/mL. This marked increase enables aniracetam to exist in an aqueous solvent at levels sufficient for parenteral dosing. A stability test was then devised using a design of experiment approach. The aniracetam-HP-β-CD formulation was subjected to different relative humidity and temperature and cyclodextrin concentrations over a 12-week period. Key changes in FTIR vibrational frequencies suggest the benzene moiety of aniracetam was introduced into the hydrophobic cavity of HP-β-CD. These results are highly supportive of the formation of a predictable 1:1 molar stoichiometric inclusion complex, explaining the improvement seen in physiochemical properties of aniracetam following formulation with HP-β-CD. This novel formulation of aniracetam suitable for parenteral administration will have utility in future studies to further elucidate the pharmacokinetics of this drug.
Collapse
|
7
|
Reynolds CD, Jefferson TS, Volquardsen M, Pandian A, Smith GD, Holley AJ, Lugo JN. Oral aniracetam treatment in C57BL/6J mice without pre-existing cognitive dysfunction reveals no changes in learning, memory, anxiety or stereotypy. F1000Res 2017; 6:1452. [PMID: 29946420 PMCID: PMC5998011 DOI: 10.12688/f1000research.11023.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2017] [Indexed: 09/27/2023] Open
Abstract
Background: The piracetam analog, aniracetam, has recently received attention for its cognition enhancing potential, with minimal reported side effects. Previous studies report the drug to be effective in both human and non-human models with pre-existing cognitive dysfunction, but few studies have evaluated its efficacy in healthy subjects. A previous study performed in our laboratory found no cognitive enhancing effects of oral aniracetam administration 1-hour prior to behavioral testing in naïve C57BL/6J mice. Methods: The current study aims to further evaluate this drug by administration of aniracetam 30 minutes prior to testing in order to optimize any cognitive enhancing effects. In this study, all naïve C57BL/6J mice were tested in tasks of delayed fear conditioning, novel object recognition, rotarod, open field, elevated plus maze, and marble burying. Results: Across all tasks, animals in the treatment group failed to show enhanced learning when compared to controls. Conclusions: These results provide further evidence suggesting that aniracetam conveys no therapeutic benefit to subjects without pre-existing cognitive dysfunction.
Collapse
Affiliation(s)
- Conner D. Reynolds
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Taylor S. Jefferson
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Meagan Volquardsen
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Ashvini Pandian
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Gregory D. Smith
- Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| | - Andrew J. Holley
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
- Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| |
Collapse
|
8
|
Reynolds CD, Jefferson TS, Volquardsen M, Pandian A, Smith GD, Holley AJ, Lugo JN. Oral aniracetam treatment in C57BL/6J mice without pre-existing cognitive dysfunction reveals no changes in learning, memory, anxiety or stereotypy. F1000Res 2017; 6:1452. [PMID: 29946420 PMCID: PMC5998011 DOI: 10.12688/f1000research.11023.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2018] [Indexed: 11/20/2022] Open
Abstract
Background: The piracetam analog, aniracetam, has recently received attention for its cognition enhancing potential, with minimal reported side effects. Previous studies report the drug to be effective in both human and non-human models with pre-existing cognitive dysfunction, but few studies have evaluated its efficacy in healthy subjects. A previous study performed in our laboratory found no cognitive enhancing effects of oral aniracetam administration 1-hour prior to behavioral testing in naïve C57BL/6J mice. Methods: The current study aims to further evaluate this drug by administration of aniracetam 30 minutes prior to testing in order to optimize any cognitive enhancing effects. In this study, all naïve C57BL/6J mice were tested in tasks of delayed fear conditioning, novel object recognition, rotarod, open field, elevated plus maze, and marble burying. Results: Across all tasks, animals in the treatment group failed to show enhanced learning when compared to controls. Conclusions: These results provide further evidence suggesting that aniracetam conveys no therapeutic benefit to subjects without pre-existing cognitive dysfunction.
Collapse
Affiliation(s)
- Conner D. Reynolds
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Taylor S. Jefferson
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Meagan Volquardsen
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Ashvini Pandian
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Gregory D. Smith
- Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| | - Andrew J. Holley
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
- Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| |
Collapse
|
9
|
Reynolds CD, Jefferson TS, Volquardsen M, Pandian A, Smith GD, Holley AJ, Lugo JN. Study of oral aniracetam in C57BL/6J mice without pre-existing cognitive impairments. F1000Res 2017; 6:1452. [PMID: 29946420 PMCID: PMC5998011 DOI: 10.12688/f1000research.11023.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2017] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND The piracetam analog, aniracetam, has recently received attention for its cognition enhancing potential, with minimal reported side effects. Previous studies report the drug to be effective in both human and non-human models with pre-existing cognitive dysfunction, but few studies have evaluated its efficacy in healthy subjects. A previous study performed in our laboratory found no cognitive enhancing effects of oral aniracetam administration 1-hour prior to behavioral testing in naïve C57BL/6J mice. METHODS The current study aims to further evaluate this drug by administration of aniracetam 30 minutes prior to testing in order to optimize any cognitive enhancing effects. In this study, all naïve C57BL/6J mice were tested in tasks of delayed fear conditioning, novel object recognition, rotarod, open field, elevated plus maze, and marble burying. RESULTS Across all tasks, animals in the treatment group failed to show enhanced learning when compared to controls. CONCLUSIONS These results provide further evidence suggesting that aniracetam conveys no therapeutic benefit to subjects without pre-existing cognitive dysfunction.
Collapse
Affiliation(s)
- Conner D. Reynolds
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Taylor S. Jefferson
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Meagan Volquardsen
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Ashvini Pandian
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Gregory D. Smith
- Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| | - Andrew J. Holley
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
- Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| |
Collapse
|
10
|
Keller A, Ambert N, Legendre A, Bedez M, Bouteiller JM, Bischoff S, Baudry M, Moussaoui S. Impact of synaptic localization and subunit composition of ionotropic glutamate receptors on synaptic function: modeling and simulation studies. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:892-904. [PMID: 27164603 DOI: 10.1109/tcbb.2016.2561932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ionotropic NMDA and AMPA glutamate receptors (iGluRs) play important roles in synaptic function under physiological and pathological conditions. iGluRs sub-synaptic localization and subunit composition are dynamically regulated by activity-dependent insertion and internalization. However, understanding the impact on synaptic transmission of changes in composition and localization of iGluRs is difficult to address experimentally. To address this question, we developed a detailed computational model of glutamatergic synapses, including spine and dendritic compartments, elementary models of subtypes of NMDA and AMPA receptors, glial glutamate transporters, intracellular calcium and a calcium-dependent signaling cascade underlying the development of long-term potentiation (LTP). These synapses were distributed on a neuron model and numerical simulations were performed to assess the impact of changes in composition and localization (synaptic vs extrasynaptic) of iGluRs on synaptic transmission and plasticity following various patterns of presynaptic stimulation. In addition, the effects of various pharmacological compounds targeting NMDARs or AMPARs were determined. Our results showed that changes in NMDAR localization have a greater impact on synaptic plasticity than changes in AMPARs. Moreover, the results suggest that modulators of AMPA and NMDA receptors have differential effects on restoring synaptic plasticity under different experimental situations mimicking various human diseases.
Collapse
|
11
|
Chaki S. mGlu2/3 Receptor Antagonists as Novel Antidepressants. Trends Pharmacol Sci 2017; 38:569-580. [DOI: 10.1016/j.tips.2017.03.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/18/2017] [Accepted: 03/22/2017] [Indexed: 12/28/2022]
|
12
|
Yu C, Gao J, Zhou Y, Chen X, Xiao R, Zheng J, Liu Y, Zhou H. Deep Phosphoproteomic Measurements Pinpointing Drug Induced Protective Mechanisms in Neuronal Cells. Front Physiol 2016; 7:635. [PMID: 28066266 PMCID: PMC5179568 DOI: 10.3389/fphys.2016.00635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurological disorder that impairs the living quality of old population and even life spans. New compounds have shown potential inneuroprotective effects in AD, such as GFKP-19, a 2-pyrrolidone derivative which has been proved to enhance the memory of dysmnesia mouse. The molecular mechanisms remain to be established for these drug candidates. Large-scale phosphoproteomic approach has been evolved rapidly in the last several years, which holds the potential to provide a useful toolkit to understand cellular signaling underlying drug effects. To establish and test such a method, we accurately analyzed the deep quantitative phosphoproteome of the neuro-2a cells treated with and without GFKP-19 using triple SILAC labeling. A total of 14,761 Class I phosphosites were quantified between controls, damaged, and protected conditions using the high resolution mass spectrometry, with a decent inter-mass spectrometer reproducibility for even subtle regulatory events. Our data suggests that GFKP-19 can reverse Aβ25−35 induced phosphorylation change in neuro-2a cells, and might protect the neuron system in two ways: firstly, it may decrease oxidative damage and inflammation induced by NO via down regulating the phosphorylation of nitric oxide synthase NOS1 at S847; Secondly, it may decrease tau protein phosphorylation through down-regulating the phosphorylation level of MAPK14 at T180. All mass spectrometry data are available via ProteomeXchange with identifier PXD005312.
Collapse
Affiliation(s)
- Chengli Yu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai, China; College of Pharmacy, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijing, China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai, China
| | - Yanting Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai, China
| | - Xiangling Chen
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai, China; College of Pharmacy, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijing, China
| | - Ruoxuan Xiao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai, China; College of Pharmacy, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijing, China
| | - Jing Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai, China
| | - Yansheng Liu
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology in Zurich Zurich, Switzerland
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai, China; College of Pharmacy, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
13
|
Cazarim MDS, Moriguti JC, Ogunjimi AT, Pereira LRL. Perspectives for treating Alzheimer's disease: a review on promising pharmacological substances. SAO PAULO MED J 2016; 134:342-54. [PMID: 27557144 PMCID: PMC10876341 DOI: 10.1590/1516-3180.2015.01980112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/14/2015] [Indexed: 11/22/2022] Open
Abstract
CONTEXT AND OBJECTIVE Dementia is a syndrome characterized by functional and cognitive decline. Alzheimer's disease (AD) is one of the most common causes of dementia and has high prevalence among the elderly. It is known that there is no drug capable of interfering with the course of the disease. Research on treatments for AD has been marked by the appearance of new drugs and their abandonment. This study aimed to describe drugs that have been studied with regard to treating AD and which are capable of influencing the course of the disease. DESIGN AND SETTING Narrative review on original articles published worldwide. METHODS A systematized search was conducted in the PubMed/MEDLINE, Cochrane Library/Cochrane and SciELO/Bireme databases. The descriptors "Molecular Mechanisms of Pharmacological Action" and "Drug Therapy" were each combined with the descriptor "Alzheimer disease". All of these can be found in MeSH and DeCS. These descriptors were used alone or in combination, and a filter specifying publication between January 2009 and October 2015 in English, Spanish or Portuguese was set. RESULTS 6,888 articles were found, of which 37 were included in this review; 70.3% of the articles selected were of good quality with low or unclear risk of bias. 86 drugs were considered promising for AD treatment and these were classified into 20 pharmacological categories. CONCLUSION There are no drugs capable of influencing the course of AD such that treatments are safe and effective. However, immunomodulators stood out as promising, given their effectiveness and quality in the articles analyzed.
Collapse
Affiliation(s)
- Maurílio de Souza Cazarim
- MSc. Doctoral Student in the Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.
| | - Julio Cesar Moriguti
- MSc, PhD. Associate professor (MS-5) in the Department of Internal Medicine, Ribeirão Preto Medical School, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.
| | - Abayomi Tolulope Ogunjimi
- MSc, Professor in the Department of Pharmaceutics, Faculty of Pharmacy, Obafemi Awolowo University, Nigeria. Doctoral Student, School of Pharmaceutical Sciences of Ribeirão Preto Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.
| | - Leonardo Régis Leira Pereira
- MSc, PhD. Professor of the Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
14
|
Deutschenbaur L, Beck J, Kiyhankhadiv A, Mühlhauser M, Borgwardt S, Walter M, Hasler G, Sollberger D, Lang UE. Role of calcium, glutamate and NMDA in major depression and therapeutic application. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:325-33. [PMID: 25747801 DOI: 10.1016/j.pnpbp.2015.02.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/04/2015] [Accepted: 02/20/2015] [Indexed: 01/17/2023]
Abstract
Major depression is a common, recurrent mental illness that affects millions of people worldwide. Recently, a unique fast neuroprotective and antidepressant treatment effect has been observed by ketamine, which acts via the glutamatergic system. Hence, a steady accumulation of evidence supporting a role for the excitatory amino acid neurotransmitter (EAA) glutamate in the treatment of depression has been observed in the last years. Emerging evidence indicates that N-methyl-D-aspartate (NMDA), group 1 metabotropic glutamate receptor antagonists and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) agonists have antidepressant properties. Indeed, treatment with NMDA receptor antagonists has shown the ability to sprout new synaptic connections and reverse stress-induced neuronal changes. Based on glutamatergic signaling, a number of therapeutic drugs might gain interest in the future. Several compounds such as ketamine, memantine, amantadine, tianeptine, pioglitazone, riluzole, lamotrigine, AZD6765, magnesium, zinc, guanosine, adenosine aniracetam, traxoprodil (CP-101,606), MK-0657, GLYX-13, NRX-1047, Ro25-6981, LY392098, LY341495, D-cycloserine, D-serine, dextromethorphan, sarcosine, scopolamine, pomaglumetad methionil, LY2140023, LY404039, MGS0039, MPEP, 1-aminocyclopropanecarboxylic acid, all of which target this system, have already been brought up, some of them recently. Drugs targeting the glutamatergic system might open up a promising new territory for the development of drugs to meet the needs of patients with major depression.
Collapse
Affiliation(s)
- Lorenz Deutschenbaur
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Johannes Beck
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Anna Kiyhankhadiv
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Markus Mühlhauser
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Marc Walter
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Gregor Hasler
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Daniel Sollberger
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Undine E Lang
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland.
| |
Collapse
|
15
|
Aniracetam does not alter cognitive and affective behavior in adult C57BL/6J mice. PLoS One 2014; 9:e104443. [PMID: 25099639 PMCID: PMC4123976 DOI: 10.1371/journal.pone.0104443] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/01/2014] [Indexed: 11/19/2022] Open
Abstract
There is a growing community of individuals who self-administer the nootropic aniracetam for its purported cognitive enhancing effects. Aniracetam is believed to be therapeutically useful for enhancing cognition, alleviating anxiety, and treating various neurodegenerative conditions. Physiologically, aniracetam enhances both glutamatergic neurotransmission and long-term potentiation. Previous studies of aniracetam have demonstrated the cognition-restoring effects of acute administration in different models of disease. No previous studies have explored the effects of aniracetam in healthy subjects. We investigated whether daily 50 mg/kg oral administration improves cognitive performance in naïve C57BL/6J mice in a variety of aspects of cognitive behavior. We measured spatial learning in the Morris water maze test; associative learning in the fear conditioning test; motor learning in the accelerating rotarod test; and odor discrimination. We also measured locomotion in the open field test, anxiety through the elevated plus maze test and by measuring time in the center of the open field test. We measured repetitive behavior through the marble burying test. We detected no significant differences between the naive, placebo, and experimental groups across all measures. Despite several studies demonstrating efficacy in impaired subjects, our findings suggest that aniracetam does not alter behavior in normal healthy mice. This study is timely in light of the growing community of healthy humans self-administering nootropic drugs.
Collapse
|
16
|
Abstract
Monoamine-based treatments for depression have evolved greatly over the past several years, but shortcomings such as suboptimal efficacy, treatment lag, and residual cognitive dysfunction are still significant. Preclinical and clinical studies using compounds directly targeting glutamatergic neurotransmission present new opportunities for antidepressant treatment, with ketamine having a surprisingly rapid and sustained antidepressant effect that is presumably mediated through glutamate-dependent mechanisms. While direct modulation of glutamate transmission for antidepressant and cognition-enhancing actions may be hampered by nonspecific effects, indirect modulation through the serotonin (5-HT) system may be a viable alternative approach. Based on localization and function, 5-HT can modulate glutamate neurotransmission at least through the 5-HT1A, 5-HT1B, 5-HT3, and 5-HT7 receptors, which presents a rational pharmacological opportunity for modulating glutamatergic transmission without the direct use of glutamatergic compounds. Combining one or more of these glutamate-modulating 5-HT targets with 5-HT transporter inhibition may offer new therapeutic opportunities. The multimodal compounds vortioxetine and vilazodone are examples of this approach with diverse mechanisms, and their different clinical effects will provide valuable insights into serotonergic modulation of glutamate transmission for the potential treatment of depression and associated cognitive dysfunction.
Collapse
|