1
|
Teixeira H, Sousa AL, Azevedo AS. Bioinformatic Tools and Guidelines for the Design of Fluorescence In Situ Hybridization Probes. Methods Mol Biol 2021; 2246:35-50. [PMID: 33576981 DOI: 10.1007/978-1-0716-1115-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fluorescence in situ hybridization (FISH) is a well-established technique that allows the detection of microorganisms in diverse types of samples (e.g., clinical, food, environmental samples, and biofilm communities). The FISH probe design is an essential step in this technique. For this, two strategies can be used, the manual form based on multiple sequence alignment to identify conserved regions and programs/software specifically developed for the selection of the sequence of the probe. Additionally, databases/software for the theoretical evaluation of the probes in terms of specificity, sensitivity, and thermodynamic parameters (melting temperature and Gibbs free energy change) are used. The purpose of this chapter is to describe the essential steps and guidelines for the design of FISH probes (e.g., DNA and Nucleic Acid Mimic (NAM) probes), and its theoretical evaluation through the application of diverse bioinformatic tools.
Collapse
Affiliation(s)
- Helena Teixeira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Ana L Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.,INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Andreia S Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal. .,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal. .,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
| |
Collapse
|
2
|
Wang J, Cai K, Zhang R, He X, Shen X, Liu J, Xu J, Qiu F, Lei W, Wang J, Li X, Gao Y, Jiang Y, Xu W, Ma X. Novel One-Step Single-Tube Nested Quantitative Real-Time PCR Assay for Highly Sensitive Detection of SARS-CoV-2. Anal Chem 2020; 92:9399-9404. [PMID: 32438806 PMCID: PMC7299395 DOI: 10.1021/acs.analchem.0c01884] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has become a public health emergency. The reverse transcriptase real-time quantitative PCR (qRT-PCR) test is currently considered as the gold standard in the laboratory for the etiological detection of COVID-19. However, qRT-PCR results could be false-negative due to the inadequate sensitivity of qRT-PCR. In this study, we have developed and evaluated a novel one-step single-tube nested quantitative real-time PCR (OSN-qRT-PCR) assay for the highly sensitive detection of SARS-CoV-2 targeting the ORF1ab and N genes. The sensitivity of the OSN-qRT-PCR assay was 1 copy/reaction and 10-fold higher than that of the commercial qRT-PCR kit (10 copies/reaction). The clinical performance of the OSN-qRT-PCR assay was evaluated using 181 clinical samples. Among them, 14 qRT-PCR-negative samples (7 had no repetitive results and 7 had no cycle threshold (CT) values) were detected by OSN-qRT-PCR. Moreover, the 7 qRT-PCR-positives in the qRT-PCR gray zone (CT values of ORF1ab ranged from 37.48 to 39.07, and CT values of N ranged from 37.34 to 38.75) were out of the gray zone and thus were deemed to be positive by OSN-qRT-PCR, indicating that the positivity of these samples is confirmative. Compared to the qRT-PCR kit, the OSN-qRT-PCR assay revealed higher sensitivity and specificity, showing better suitability to clinical applications for the detection of SARS-CoV-2 in patients with low viral load.
Collapse
Affiliation(s)
- Ji Wang
- National Institute for
Viral Disease Control and Prevention, Chinese Center for Disease
Control and Prevention, Beijing 102206,
China
| | - Kun Cai
- Hubei Center for Disease
Control and Prevention, Wuhan 430000,
China
| | - Ruiqing Zhang
- National Institute for
Viral Disease Control and Prevention, Chinese Center for Disease
Control and Prevention, Beijing 102206,
China
- Hebei General
Hospital, Shijiazhuang 050051,
China
| | - Xiaozhou He
- National Institute for
Viral Disease Control and Prevention, Chinese Center for Disease
Control and Prevention, Beijing 102206,
China
| | - Xinxin Shen
- National Institute for
Viral Disease Control and Prevention, Chinese Center for Disease
Control and Prevention, Beijing 102206,
China
| | - Jun Liu
- National Institute for
Viral Disease Control and Prevention, Chinese Center for Disease
Control and Prevention, Beijing 102206,
China
| | - Junqiang Xu
- Hubei Center for Disease
Control and Prevention, Wuhan 430000,
China
| | - Feng Qiu
- National Institute for
Viral Disease Control and Prevention, Chinese Center for Disease
Control and Prevention, Beijing 102206,
China
| | - Wenwen Lei
- National Institute for
Viral Disease Control and Prevention, Chinese Center for Disease
Control and Prevention, Beijing 102206,
China
| | - Jinrong Wang
- National Institute for
Viral Disease Control and Prevention, Chinese Center for Disease
Control and Prevention, Beijing 102206,
China
- Hebei Medical
University, Shijiazhuang 050031,
China
| | - Xinna Li
- National Institute for
Viral Disease Control and Prevention, Chinese Center for Disease
Control and Prevention, Beijing 102206,
China
| | - Yuan Gao
- National Institute for
Viral Disease Control and Prevention, Chinese Center for Disease
Control and Prevention, Beijing 102206,
China
- Hebei Medical
University, Shijiazhuang 050031,
China
| | - Yongzhong Jiang
- Hubei Center for Disease
Control and Prevention, Wuhan 430000,
China
| | - Wenbo Xu
- National Institute for
Viral Disease Control and Prevention, Chinese Center for Disease
Control and Prevention, Beijing 102206,
China
| | - Xuejun Ma
- National Institute for
Viral Disease Control and Prevention, Chinese Center for Disease
Control and Prevention, Beijing 102206,
China
- Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan
430071, China
| |
Collapse
|
3
|
Zhang RQ, Li Z, Li GX, Tie YQ, Li XN, Gao Y, Duan QX, Wang L, Zhao L, Fan GH, Bai XD, Wang RH, Chen ZW, Wang JR, Wu Y, Zhao MC, Feng ZS, Wang J, Ma XJ. A highly sensitive one-tube nested quantitative real-time PCR assay for specific detection of Bordetella pertussis using the LNA technique. Int J Infect Dis 2020; 93:224-230. [PMID: 32045697 DOI: 10.1016/j.ijid.2020.01.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Bordetella pertussis is a highly contagious respiratory agent and is the causative pathogen of pertussis, which primarily affects children. Current diagnostic techniques for this pathogen have a variety of limitations including a long culture time, low bacterial load, and lack of specificity. METHODS This article reports the development of a one-tube nested quantitative real-time PCR assay using the locked nucleic acid (LNA) technique (LNA-OTN-q-PCR), targeting the BP485 gene and using a simple inexpensive extraction method. A total of 130 clinical samples from patients with clinically suspected pertussis, collected from the Children's Hospital of Hebei, China, were tested by LNA-OTN-q-PCR assay. RT-PCR and two-step semi-nested PCR assays were performed in parallel for comparison. RESULTS Only strains of B. pertussis were identified as positive, whereas all of the remaining strains were appropriately identified as negative by the LNA-OTN-q-PCR assay. A single copy per reaction can be detected by the LNA-OTN-q-PCR assay. Additionally, the sensitivity of this method was 100 times that of the RT-PCR assay (100 copies per reaction). Sixty-three of the 130 clinical samples were detected positive by LNA-OTN-q-PCR assay; in contrast, RT-PCR was able to detect only 41 positive samples. Following this, all 63 samples were positively identified by two-step semi-nested PCR. Compared with the two-step semi-nested PCR assay, both the specificity and sensitivity of the LNA-OTN-q-PCR assay using purified DNA and crude extract were 100%. CONCLUSIONS This assay was able to detect B. pertussis infection with high sensitivity and specificity. This test shows great potential as a promising technique to detect B. pertussis in both clinical laboratories and public health settings.
Collapse
Affiliation(s)
- Rui-Qing Zhang
- Hebei Medical University, Shijiazhuang, 050031, Hebei, China; NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing 102206, China; Hebei General Hospital, Shijiazhuang, 050051, Hebei, China.
| | - Zheng Li
- Hebei General Hospital, Shijiazhuang, 050051, Hebei, China.
| | - Gui-Xia Li
- Children's Hospital of Hebei Province, Shijiazhuang, 050031, Hebei, China.
| | - Yan-Qing Tie
- Hebei General Hospital, Shijiazhuang, 050051, Hebei, China.
| | - Xin-Na Li
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing 102206, China.
| | - Yuan Gao
- Hebei Medical University, Shijiazhuang, 050031, Hebei, China; NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing 102206, China.
| | - Qing-Xia Duan
- Hebei Medical University, Shijiazhuang, 050031, Hebei, China; NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing 102206, China.
| | - Le Wang
- Children's Hospital of Hebei Province, Shijiazhuang, 050031, Hebei, China.
| | - Li Zhao
- Children's Hospital of Hebei Province, Shijiazhuang, 050031, Hebei, China.
| | - Guo-Hao Fan
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing 102206, China.
| | - Xue-Ding Bai
- Tangshan Gongren Hospital, Tangshan, 063000, China.
| | - Rui-Huan Wang
- Hunan Provincial Center for Disease Control and Prevention, Hunan, 410005, China.
| | - Zi-Wei Chen
- The Third Xiangya Hospital of Central South University, Hunan, 410013, China.
| | - Jin-Rong Wang
- Hebei Medical University, Shijiazhuang, 050031, Hebei, China; NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing 102206, China.
| | - Yong Wu
- Health Gene Technologies, Ningbo, 315040, China.
| | - Meng-Chuan Zhao
- Children's Hospital of Hebei Province, Shijiazhuang, 050031, Hebei, China.
| | - Zhi-Shan Feng
- Hebei Medical University, Shijiazhuang, 050031, Hebei, China; Hebei General Hospital, Shijiazhuang, 050051, Hebei, China.
| | - Ji Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing 102206, China.
| | - Xue-Jun Ma
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing 102206, China.
| |
Collapse
|
4
|
Zhao L, Wang J, Li GX, Qiu FZ, Chen C, Zhao MC, Wang L, Duan SX, Feng ZS, Ma XJ. A highly sensitive 1-tube nested real-time RT-PCR assay using LNA-modified primers for detection of respiratory syncytial virus. Diagn Microbiol Infect Dis 2018; 93:101-106. [PMID: 30266400 PMCID: PMC7126397 DOI: 10.1016/j.diagmicrobio.2018.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/23/2018] [Accepted: 09/03/2018] [Indexed: 12/31/2022]
Abstract
Respiratory syncytial virus (RSV) causes serious respiratory tract infection worldwide. The relatively low RSV load makes it difficult to detect in frail, elderly, and severely immune-compromised patients. In the present study, we developed a locked nucleic acid–-based 1-tube nested real-time RT-PCR (OTNRT-PCR) assay with the advantages of extremely high sensitivity, facile operability, and less likelihood of cross-contamination. The sensitivity, specificity, and clinical performance of the OTNRT-PCR assay were compared in parallel with a conventional TaqMan probe-based real-time PCR (qRT-PCR) assay and a traditional 2-step nested RT-PCR assay. The limit of detection of the OTNRT-PCR assay was 1.02 × 10−1 TCID50/mL, equivalent to the traditional 2-step nested RT-PCR assay and 25-fold lower than the qRT-PCR assay. Of 616 nasopharyngeal aspirates tested, 143 RSV-negative samples by qRT-PCR were confirmed as positive by sequencing the OTNRT-PCR products. We therefore conclude that OTNRT-PCR is more sensitive than qRT-PCR for detection of RSV in clinical samples.
Collapse
Affiliation(s)
- Li Zhao
- Hebei Medical University, Shijiazhuang, 050031, Hebei, China; Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Ji Wang
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Gui-Xia Li
- Children's Hospital of Hebei Province, Shijiazhuang, 050031, Hebei, China.
| | - Fang-Zhou Qiu
- Hebei Medical University, Shijiazhuang, 050031, Hebei, China; Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Chen Chen
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Meng-Chuan Zhao
- Children's Hospital of Hebei Province, Shijiazhuang, 050031, Hebei, China.
| | - Le Wang
- Children's Hospital of Hebei Province, Shijiazhuang, 050031, Hebei, China.
| | - Su-Xia Duan
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Children's Hospital of Hebei Province, Shijiazhuang, 050031, Hebei, China.
| | - Zhi-Shan Feng
- Children's Hospital of Hebei Province, Shijiazhuang, 050031, Hebei, China.
| | - Xue-Jun Ma
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
5
|
Ikenaga M, Tabuchi M, Kawauchi T, Sakai M. Application of Locked Nucleic Acid (LNA) Primer and PCR Clamping by LNA Oligonucleotide to Enhance the Amplification of Internal Transcribed Spacer (ITS) Regions in Investigating the Community Structures of Plant-Associated Fungi. Microbes Environ 2016; 31:339-48. [PMID: 27600711 PMCID: PMC5017812 DOI: 10.1264/jsme2.me16085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The simultaneous extraction of host plant DNA severely limits investigations of the community structures of plant-associated fungi due to the similar homologies of sequences in primer-annealing positions between fungi and host plants. Although fungal-specific primers have been designed, plant DNA continues to be excessively amplified by PCR, resulting in the underestimation of community structures. In order to overcome this limitation, locked nucleic acid (LNA) primers and PCR clamping by LNA oligonucleotides have been applied to enhance the amplification of fungal internal transcribed spacer (ITS) regions. LNA primers were designed by converting DNA into LNA, which is specific to fungi, at the forward primer side. LNA oligonucleotides, the sequences of which are complementary to the host plants, were designed by overlapping a few bases with the annealing position of the reverse primer. Plant-specific DNA was then converted into LNA at the shifted position from the 3' end of the primer-binding position. PCR using the LNA technique enhanced the amplification of fungal ITS regions, whereas those of the host plants were more likely to be amplified without the LNA technique. A denaturing gradient gel electrophoresis (DGGE) analysis displayed patterns that reached an acceptable level for investigating the community structures of plant-associated fungi using the LNA technique. The sequences of the bands detected using the LNA technique were mostly affiliated with known isolates. However, some sequences showed low similarities, indicating the potential to identify novel fungi. Thus, the application of the LNA technique is considered effective for widening the scope of community analyses of plant-associated fungi.
Collapse
Affiliation(s)
- Makoto Ikenaga
- Research Field in Agriculture, Agriculture Fisheries and Veterinary Medicine Area, Kagoshima University
| | | | | | | |
Collapse
|
6
|
Burbano CS, Grönemeyer JL, Hurek T, Reinhold-Hurek B. Microbial community structure and functional diversity of nitrogen-fixing bacteria associated with Colophospermum mopane. FEMS Microbiol Ecol 2015; 91:fiv030. [PMID: 25873605 DOI: 10.1093/femsec/fiv030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2015] [Indexed: 01/23/2023] Open
Abstract
Colophospermum mopane is an indigenous legume tree that grows in Southern Africa and is one of the predominant trees of the woodland vegetation. In order to increase knowledge about its ecology, especially how C. mopane thrives in the nitrogen-poor soils of the region, we analyzed the root-associated bacteria to assess the active diazotrophic diversity and total microbial diversity by culture-dependent and independent techniques. Root nodules were not detected but in some samples the lateral roots showed an outgrowth-like protuberance, that were not likely to have functions related to legume root nodules. The bacterial isolates recovered were related to Actinobacteria, Firmicutes and Proteobacteria. The total microbial diversity was dominated by Actinobacteria-related phylotypes, while the active diazotrophic diversity showed that the majority of the sequences were related to the order Rhizobiales but also to Spirochaetes, Firmicutes, Bacteroidetes and Deltaproteobacteria. Several isolates showed characteristics of plant growth-promoting bacteria. These findings increase the spectrum of possible phylotypes that can be found in legume trees that are typically nodulated by Alpha- and Betaproteobacteria, and reveal for the first time a surprising diversity of nitrogen-fixing bacteria active in legume tree roots.
Collapse
Affiliation(s)
- Claudia Sofía Burbano
- Department of Microbe-Plant Interactions, Center for Biomolecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, PO. Box 330440, D-28334 Bremen, Germany
| | - Jann Lasse Grönemeyer
- Department of Microbe-Plant Interactions, Center for Biomolecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, PO. Box 330440, D-28334 Bremen, Germany
| | - Thomas Hurek
- Department of Microbe-Plant Interactions, Center for Biomolecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, PO. Box 330440, D-28334 Bremen, Germany
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Center for Biomolecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, PO. Box 330440, D-28334 Bremen, Germany
| |
Collapse
|
7
|
Ikenaga M, Sakai M. Application of Locked Nucleic Acid (LNA) oligonucleotide-PCR clamping technique to selectively PCR amplify the SSU rRNA genes of bacteria in investigating the plant-associated community structures. Microbes Environ 2014; 29:286-95. [PMID: 25030190 PMCID: PMC4159040 DOI: 10.1264/jsme2.me14061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The simultaneous extraction of plant organelle (mitochondria and plastid) genes during the DNA extraction step is a major limitation in investigating the community structures of bacteria associated with plants because organelle SSU rRNA genes are easily amplified by PCR using primer sets that are specific to bacteria. To inhibit the amplification of organelle genes, the locked nucleic acid (LNA) oligonucleotide-PCR clamping technique was applied to selectively amplify bacterial SSU rRNA genes by PCR. LNA oligonucleotides, the sequences of which were complementary to mitochondria and plastid genes, were designed by overlapping a few bases with the annealing position of the bacterial primer and converting DNA bases into LNA bases specific to mitochondria and plastids at the shifted region from the 3' end of the primer-binding position. PCR with LNA oligonucleotides selectively amplified the bacterial genes while inhibited that of organelle genes. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that conventional amplification without LNA oligonucleotides predominantly generated DGGE bands from mitochondria and plastid genes with few bacterial bands. In contrast, additional bacterial bands were detected in DGGE patterns, the amplicons of which were prepared using LNA oligonucleotides. These results indicated that the detection of bacterial genes had been screened by the excessive amplification of the organelle genes. Sequencing of the bands newly detected by using LNA oligonucleotides revealed that their similarity to the known isolated bacteria was low, suggesting the potential to detect novel bacteria. Thus, application of the LNA oligonucleotide-PCR clamping technique was considered effective for the selective amplification of bacterial genes from extracted DNA containing plant organelle genes.
Collapse
|
8
|
Liu Y, Döring J, Hurek T. Bias in topoisomerase (TOPO)-cloning of multitemplate PCR products using locked nucleic acid (LNA)-substituted primers. J Microbiol Methods 2012; 91:483-6. [PMID: 23064262 DOI: 10.1016/j.mimet.2012.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/05/2012] [Accepted: 10/06/2012] [Indexed: 11/15/2022]
Abstract
Locked nucleic acid (LNA) modifications help to improve nucleic acid recognition in molecular biology applications. We report that LNA-substituted primers in PCR reactions may cause considerable cloning bias when the widely used topoisomerase-based ligation is used for cloning of multitemplate PCR products.
Collapse
Affiliation(s)
- Yuan Liu
- University of Bremen, Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), 28359 Bremen, Germany
| | | | | |
Collapse
|
9
|
Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:28-36. [PMID: 21970692 DOI: 10.1094/mpmi-08-11-0204] [Citation(s) in RCA: 338] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Roots are the primary site of interaction between plants and microorganisms. To meet food demands in changing climates, improved yields and stress resistance are increasingly important, stimulating efforts to identify factors that affect plant productivity. The role of bacterial endophytes that reside inside plants remains largely unexplored, because analysis of their specific functions is impeded by difficulties in cultivating most prokaryotes. Here, we present the first metagenomic approach to analyze an endophytic bacterial community resident inside roots of rice, one of the most important staple foods. Metagenome sequences were obtained from endophyte cells extracted from roots of field-grown plants. Putative functions were deduced from protein domains or similarity analyses of protein-encoding gene fragments, and allowed insights into the capacities of endophyte cells. This allowed us to predict traits and metabolic processes important for the endophytic lifestyle, suggesting that the endorhizosphere is an exclusive microhabitat requiring numerous adaptations. Prominent features included flagella, plant-polymer-degrading enzymes, protein secretion systems, iron acquisition and storage, quorum sensing, and detoxification of reactive oxygen species. Surprisingly, endophytes might be involved in the entire nitrogen cycle, as protein domains involved in N(2)-fixation, denitrification, and nitrification were detected and selected genes expressed. Our data suggest a high potential of the endophyte community for plant-growth promotion, improvement of plant stress resistance, biocontrol against pathogens, and bioremediation, regardless of their culturability.
Collapse
Affiliation(s)
- A Sessitsch
- AIT Austrian Institute of Technology, Tulin, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Reinhold-Hurek B, Hurek T. Living inside plants: bacterial endophytes. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:435-43. [PMID: 21536480 DOI: 10.1016/j.pbi.2011.04.004] [Citation(s) in RCA: 373] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 05/03/2023]
Abstract
As current research activities have focused on symbiotic or parasitic plant-microbe interactions, other types of associations between plants and microorganisms are often overlooked. Endophytic bacteria colonize inner host tissues, sometimes in high numbers, without damaging the host or eliciting strong defense responses. Unlike endosymbionts they are not residing in living plant cells or surrounded by a membrane compartment. The molecular basis of endophytic interactions is still not well understood. Several traits involved in the establishment of endophytes have been elucidated. Culture-independent methods for community analysis and functional genomic as well as comparative genomic analyses will provide a better understanding of community dynamics, signaling, and functions in endophyte-plant associations.
Collapse
Affiliation(s)
- Barbara Reinhold-Hurek
- University Bremen, Department of Molecular Plant Microbiology, Center for Biomolecular Interactions Bremen, 28334 Bremen, Germany.
| | | |
Collapse
|
12
|
Burbano CS, Liu Y, Rösner KL, Reis VM, Caballero-Mellado J, Reinhold-Hurek B, Hurek T. Predominant nifH transcript phylotypes related to Rhizobium rosettiformans in field-grown sugarcane plants and in Norway spruce. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:383-9. [PMID: 23761284 DOI: 10.1111/j.1758-2229.2010.00238.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although some sugarcane cultivars may benefit substantially from biological nitrogen fixation (BNF), the responsible bacteria have been not identified yet. Here, we examined the active diazotrophic bacterial community in sugarcane roots from Africa and America by reverse transcription (RT)-PCR using broad-range nifH-specific primers. Denaturing gradient gel electrophoresis (DGGE) profiles obtained from sugarcane showed a low diversity at all sample locations with one phylotype amounting up to 100% of the nifH transcripts. This major phylotype has 93.9-99.6% DNA identity to the partial nifH sequence from a strain affiliated with Rhizobium rosettiformans. In addition, nifH transcripts of this phylotype were also detected in spruce roots sampled in Germany, where they made up 91% of nifH transcripts detected. In contrast, in control soil or shoot samples two distinct nifH transcript sequences distantly related to nifH from Sulfurospirillum multivorans or Bradyrhizobium elkanii, respectively, were predominant. These results suggest that R. rosettiformans is involved in root-associated nitrogen fixation with sugarcane and spruce, plants that do not form root-nodule symbioses.
Collapse
Affiliation(s)
- Claudia Sofía Burbano
- Lab of General Microbiology, Center for Biomolecular Interactions Bremen (CBIB), University of Bremen, D-28359 Bremen, Germany. Embrapa Agrobiologia, km 447, Estrada Antiga Rio-São Paulo, Seropédica, 23890-000, Rio de Janeiro, Brazil. Centro de Ciencias Genomicas, UNAM, Apdo. Postal No. 565-A, Cuernavaca, Mor., México
| | | | | | | | | | | | | |
Collapse
|