1
|
Zhang P, Zhang Y, Pang W, Alonazi MA, Alwathnani H, Rensing C, Xie R, Zhang T. Cenococcum geophilum impedes cadmium toxicity in Pinus massoniana by modulating nitrogen metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174296. [PMID: 38944303 DOI: 10.1016/j.scitotenv.2024.174296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Nitrogen (N) is of great significance to the absorption, distribution and detoxification of cadmium (Cd). Ectomycorrhizal fungi (EMF) are able to affect the key processes of plant N uptake to resist Cd stress, while the mechanism is still unclear. Therefore, we explored potential strategies of Cenococcum geophilum (C. geophilum) symbiosis to alleviate Cd stress in Pinus massoniana (P. massoniana) from the perspective of plant N metabolism and soil N transformation. The results showed that inoculation of C. geophilum significantly increased the activities of NR, NiR and GS in the shoots and roots of P. massoniana, thereby promoting the assimilation of NO3- and NH4+ into amino acids. Moreover, C. geophilum promoted soil urease and protease activities, but decreased soil NH4+ content, indicating that C. geophilum might increase plant uptake of soil inorganic N. qRT-PCR results showed that C3 symbiosis significantly up-regulated the expression of genes encoding functions involved in NH4+ uptake (AMT3;1), NO3- uptake (NRT2.1, NRT2.4, NRT2.9), as well as Cd resistance (ABCC1 and ABCC2), meanwhile down-regulated the expression of NRT7.3, Cd transporter genes (HMA2 and NRAMP3) in the roots of P. massoniana seedlings. These results demonstrated that C. geophilum was able to alleviate Cd stress by increasing the absorption and assimilation of inorganic N in plants and inhibiting the transport of Cd from roots to shoots, which provided new insights into how EMF improved host resistance to abiotic stress.
Collapse
Affiliation(s)
- Panpan Zhang
- International Joint Laboratory of Forest Symbiology, College of Juncao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuhu Zhang
- International Joint Laboratory of Forest Symbiology, College of Juncao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenbo Pang
- International Joint Laboratory of Forest Symbiology, College of Juncao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Madeha A Alonazi
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Hend Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongzhang Xie
- Forestry Bureau, Sanyuan District, Sanming 365000, China
| | - Taoxiang Zhang
- International Joint Laboratory of Forest Symbiology, College of Juncao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Rivera Pérez CA, Janz D, Schneider D, Daniel R, Polle A. Transcriptional Landscape of Ectomycorrhizal Fungi and Their Host Provides Insight into N Uptake from Forest Soil. mSystems 2022; 7:e0095721. [PMID: 35089084 PMCID: PMC8725588 DOI: 10.1128/msystems.00957-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
Mineral nitrogen (N) is a major nutrient showing strong fluctuations in the environment due to anthropogenic activities. The acquisition and translocation of N to forest trees are achieved mainly by highly diverse ectomycorrhizal fungi (EMF) living in symbioses with their host roots. Here, we examined colonized root tips to characterize the entire root-associated fungal community by DNA metabarcoding-Illumina sequencing of the fungal internal transcribed spacer 2 (ITS2) molecular marker and used RNA sequencing to target metabolically active fungi and the plant transcriptome after N application. The study was conducted with beech (Fagus sylvatica L.), a dominant tree species in central Europe, grown in native forest soil. We demonstrate strong enrichment of 15N from nitrate or ammonium in the ectomycorrhizal roots by stable-isotope labeling. The relative abundance of the EMF members in the fungal community was correlated with their transcriptional abundances. The fungal metatranscriptome covered Kyoto Encyclopedia of Genes and Genomes (KEGG) and Eukaryotic Orthologous Groups (KOG) categories similar to those of model fungi and did not reveal significant changes related to N metabolization but revealed species-specific transcription patterns, supporting trait stability. In contrast to the resistance of the fungal metatranscriptome, the transcriptome of the host exhibited dedicated nitrate- or ammonium-responsive changes with the upregulation of transporters and enzymes required for nitrate reduction and a drastic enhancement of glutamine synthetase transcript levels, indicating the channeling of ammonium into the pathway for plant protein biosynthesis. Our results support that naturally assembled fungal communities living in association with the tree roots buffer nutritional signals in their own metabolism but do not shield plants from high environmental N levels. IMPORTANCE Although EMF are well known for their role in supporting tree N nutrition, the molecular mechanisms underlying N flux from the soil solution into the host through the ectomycorrhizal pathway remain widely unknown. Furthermore, ammonium and nitrate availability in the soil solution is subject to frequent oscillations that create a dynamic environment for the tree roots and associated microbes during N acquisition. Therefore, it is important to understand how root-associated mycobiomes and the tree roots handle these fluctuations. We studied the responses of the symbiotic partners by screening their transcriptomes after a sudden environmental flux of nitrate or ammonium. We show that the fungi and the host respond asynchronously, with the fungi displaying resistance to increased nitrate or ammonium and the host dynamically metabolizing the supplied N sources. This study provides insights into the molecular mechanisms of the symbiotic partners operating under N enrichment in a multidimensional symbiotic system.
Collapse
Affiliation(s)
- Carmen Alicia Rivera Pérez
- Forest Botany and Tree Physiology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Stuart EK, Plett KL. Digging Deeper: In Search of the Mechanisms of Carbon and Nitrogen Exchange in Ectomycorrhizal Symbioses. FRONTIERS IN PLANT SCIENCE 2020; 10:1658. [PMID: 31993064 PMCID: PMC6971170 DOI: 10.3389/fpls.2019.01658] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/25/2019] [Indexed: 05/12/2023]
Abstract
Symbiosis with ectomycorrhizal (ECM) fungi is an advantageous partnership for trees in nutrient-limited environments. Ectomycorrhizal fungi colonize the roots of their hosts and improve their access to nutrients, usually nitrogen (N) and, in exchange, trees deliver a significant portion of their photosynthetic carbon (C) to the fungi. This nutrient exchange affects key soil processes and nutrient cycling, as well as plant health, and is therefore central to forest ecosystem functioning. Due to their ecological importance, there is a need to more accurately understand ECM fungal mediated C and N movement within forest ecosystems such that we can better model and predict their role in soil processes both now and under future climate scenarios. There are a number of hurdles that we must overcome, however, before this is achievable such as understanding how the evolutionary history of ECM fungi and their inter- and intra- species variability affect their function. Further, there is currently no generally accepted universal mechanism that appears to govern the flux of nutrients between fungal and plant partners. Here, we consider the current state of knowledge on N acquisition and transport by ECM fungi and how C and N exchange may be related or affected by environmental conditions such as N availability. We emphasize the role that modern genomic analysis, molecular biology techniques and more comprehensive and standardized experimental designs may have in bringing cohesion to the numerous ecological studies in this area and assist us in better understanding this important symbiosis. These approaches will help to build unified models of nutrient exchange and develop diagnostic tools to study these fungi at various scales and environments.
Collapse
Affiliation(s)
| | - Krista L. Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
4
|
Abstract
Metabolic gene clusters (MGCs) have provided some of the earliest glimpses at the biochemical machinery of yeast and filamentous fungi. MGCs encode diverse genetic mechanisms for nutrient acquisition and the synthesis/degradation of essential and adaptive metabolites. Beyond encoding the enzymes performing these discrete anabolic or catabolic processes, MGCs may encode a range of mechanisms that enable their persistence as genetic consortia; these include enzymatic mechanisms to protect their host fungi from their inherent toxicities, and integrated regulatory machinery. This modular, self-contained nature of MGCs contributes to the metabolic and ecological adaptability of fungi. The phylogenetic and ecological patterns of MGC distribution reflect the broad diversity of fungal life cycles and nutritional modes. While the origins of most gene clusters are enigmatic, MGCs are thought to be born into a genome through gene duplication, relocation, or horizontal transfer, and analyzing the death and decay of gene clusters provides clues about the mechanisms selecting for their assembly. Gene clustering may provide inherent fitness advantages through metabolic efficiency and specialization, but experimental evidence for this is currently limited. The identification and characterization of gene clusters will continue to be powerful tools for elucidating fungal metabolism as well as understanding the physiology and ecology of fungi.
Collapse
Affiliation(s)
- Jason C Slot
- The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
5
|
Behie SW, Bidochka MJ. Nutrient transfer in plant-fungal symbioses. TRENDS IN PLANT SCIENCE 2014; 19:734-740. [PMID: 25022353 DOI: 10.1016/j.tplants.2014.06.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/26/2014] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Abstract
Almost all plant species form symbioses with soil fungi, and nutrient transfer to plants is largely mediated through this partnership. Studies of fungal nutrient transfer to plants have largely focused on the transfer of limiting soil nutrients, such as nitrogen and phosphorous, by mycorrhizal fungi. However, certain fungal endophytes, such as Metarhizium and Beauveria, are also able to transfer nitrogen to their plant hosts. Here, we review recent studies that have identified genes and their encoded transporters involved in the movement of nitrogen, phosphorous, and nonlimiting soil nutrients between symbionts. These recent advances in our understanding could lead to applications in agricultural and horticultural settings, and to the development of model fungal systems that could further elucidate the role of fungi in these symbioses.
Collapse
Affiliation(s)
- Scott W Behie
- Department of Biological Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada
| | - Michael J Bidochka
- Department of Biological Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
6
|
Velmala SM, Rajala T, Heinonsalo J, Taylor AFS, Pennanen T. Profiling functions of ectomycorrhizal diversity and root structuring in seedlings of Norway spruce (Picea abies) with fast- and slow-growing phenotypes. THE NEW PHYTOLOGIST 2014; 201:610-622. [PMID: 24117652 DOI: 10.1111/nph.12542] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/09/2013] [Indexed: 06/02/2023]
Abstract
We studied the role of taxonomical and functional ectomycorrhizal (ECM) fungal diversity in root formation and nutrient uptake by Norway spruce (Picea abies) seedlings with fast- and slow-growing phenotypes. Seedlings were grown with an increasing ECM fungal diversity gradient from one to four species and sampled before aboveground growth differences between the two phenotypes were apparent. ECM fungal colonization patterns were determined and functional diversity was assayed via measurements of potential enzyme activities of eight exoenzymes probably involved in nutrient mobilization. Phenotypes did not vary in their receptiveness to different ECM fungal species. However, seedlings of slow-growing phenotypes had higher fine-root density and thus more condensed root systems than fast-growing seedlings, but the potential enzyme activities of ectomycorrhizas did not differ qualitatively or quantitatively. ECM species richness increased host nutrient acquisition potential by diversifying the exoenzyme palette. Needle nitrogen content correlated positively with high chitinase activity of ectomycorrhizas. Rather than fast- and slow-growing phenotypes exhibiting differing receptiveness to ECM fungi, our results suggest that distinctions in fine-root structuring and in the belowground growth strategy already apparent at early stages of seedling development may explain later growth differences between fast- and slow-growing families.
Collapse
Affiliation(s)
| | - Tiina Rajala
- Finnish Forest Research Institute - Metla, PO Box 18, 01301 Vantaa, Finland
| | - Jussi Heinonsalo
- Viikki Biocenter, Department of Food and Environmental Sciences, Faculty of Agriculture and Forestry, PO Box 56, 00014 University of Helsinki, Finland
| | - Andy F S Taylor
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, UK
| | - Taina Pennanen
- Finnish Forest Research Institute - Metla, PO Box 18, 01301 Vantaa, Finland
| |
Collapse
|
7
|
Kemppainen MJ, Pardo AG. LbNrt RNA silencing in the mycorrhizal symbiont Laccaria bicolor reveals a nitrate-independent regulatory role for a eukaryotic NRT2-type nitrate transporter. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:353-366. [PMID: 23754716 DOI: 10.1111/1758-2229.12029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 12/13/2012] [Indexed: 06/02/2023]
Abstract
Fungal nitrogen metabolism plays a fundamental role in function of mycorrhizal symbiosis and consequently in nutrient cycling of terrestrial ecosystems. Despite its global ecological relevance the information on control and molecular regulation of nitrogen utilization in mycorrhizal fungi is very limited. We have extended the nitrate utilization RNA silencing studies of the model mycorrhizal basidiomycete, Laccaria bicolor, by altering the expression of LbNrt, the sole nitrate transporter-encoding gene of the fungus. Here we report the first nutrient transporter mutants for mycorrhizal fungi. Silencing of LbNrt results in fungal strains with minimal detectable LbNrt transcript levels, significantly reduced growth capacity on nitrate and altered symbiotic interaction with poplar. Transporter silencing also creates marked co-downregulation of whole Laccaria fHANT-AC (fungal high-affinity nitrate assimilation cluster). Most importantly, this effect on the nitrate utilization pathway appears independent of extracellular nitrate or nitrogen status of the fungus. Our results indicate a novel and central nitrate uptake-independent regulatory role for a eukaryotic nitrate transporter. The possible cellular mechanisms behind this regulation mode are discussed in the light of current knowledge on NRT2-type nitrate transporters in different eukaryotes.
Collapse
Affiliation(s)
- Minna J Kemppainen
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Provincia de Buenos Aires, Argentina
| | | |
Collapse
|
8
|
Avolio M, Müller T, Mpangara A, Fitz M, Becker B, Pauck A, Kirsch A, Wipf D. Regulation of genes involved in nitrogen utilization on different C/N ratios and nitrogen sources in the model ectomycorrhizal fungus Hebeloma cylindrosporum. MYCORRHIZA 2012; 22:515-24. [PMID: 22302131 DOI: 10.1007/s00572-011-0428-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 12/20/2011] [Indexed: 05/26/2023]
Abstract
Nitrogen (N) utilization by ectomycorrhizal fungi is an essential aspect of their ecosystem function. N deposition changes both the N pools and the carbon/nitrogen (C/N) ratio of the substrates where ectomycorrhizal fungi are found, and it is important to understand how these changes affect the N forms used by ectomycorrhizal fungi. To overcome the difficulties of studying ectomycorrhizal fungi in situ, we investigated all known N genes in the model fungus, Hebeloma cylindrosporum in a culture study. In addition to studying the regulation of all known N utilization genes, we aimed to understand whether there are gene clusters that undergo similar regulation. Lastly we studied how C/N ratio, N transporter type, and N source affected relative gene expression levels. We grew the D2 strain of H. cylindrosporum on a range of inorganic and organic N sources under low, medium, and high C/N ratios. We found three gene clusters that were regulated in a similar pattern. Lastly, we found C/N ratio, N source and N transporter type all affected gene expression levels. Relative expression levels were highest on the high C/N ratio, BSA and diLeucine N sources, and inorganic N transporters were always expressed at higher levels than organic N transporters. These results suggest that inorganic N sources may always the default preference for H. cylindrosporum, regardless of both the N sources and the C/N ratio of the substrate.
Collapse
Affiliation(s)
- Meghan Avolio
- University Bonn, IZMB, Transport in Ectomycorrhiza, Kirschallee 1, 53115 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Community profiling and gene expression of fungal assimilatory nitrate reductases in agricultural soil. ISME JOURNAL 2011; 5:1771-83. [PMID: 21562596 PMCID: PMC3197165 DOI: 10.1038/ismej.2011.53] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although fungi contribute significantly to the microbial biomass in terrestrial ecosystems, little is known about their contribution to biogeochemical nitrogen cycles. Agricultural soils usually contain comparably high amounts of inorganic nitrogen, mainly in the form of nitrate. Many studies focused on bacterial and archaeal turnover of nitrate by nitrification, denitrification and assimilation, whereas the fungal role remained largely neglected. To enable research on the fungal contribution to the biogeochemical nitrogen cycle tools for monitoring the presence and expression of fungal assimilatory nitrate reductase genes were developed. To the ∼100 currently available fungal full-length gene sequences, another 109 partial sequences were added by amplification from individual culture isolates, representing all major orders occurring in agricultural soils. The extended database led to the discovery of new horizontal gene transfer events within the fungal kingdom. The newly developed PCR primers were used to study gene pools and gene expression of fungal nitrate reductases in agricultural soils. The availability of the extended database allowed affiliation of many sequences to known species, genera or families. Energy supply by a carbon source seems to be the major regulator of nitrate reductase gene expression for fungi in agricultural soils, which is in good agreement with the high energy demand of complete reduction of nitrate to ammonium.
Collapse
|