1
|
Paula Goetting-Minesky M, Godovikova V, Saraithong P, Rickard AH, Crawley BR, Agolli SM, Fenno JC. Functional characterization and optimization of protein expression in Treponema denticola shuttle plasmids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.27.620309. [PMID: 39484406 PMCID: PMC11527128 DOI: 10.1101/2024.10.27.620309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Oral spirochetes are among a small group of keystone pathogens contributing to dysregulation of periodontal tissue homeostasis, leading to breakdown of the tissue and bone supporting the teeth in periodontal disease. Of the greater than sixty oral Treponema species and phylotypes, T. denticola is one of the few that can be grown in culture and the only one in which genetic manipulation has been shown to be practicable. T. denticola is thus a model organism for studying spirochete metabolic processes, interactions with other microbes and host cell and tissue responses relevant to oral diseases as well as venereal and nonvenereal treponematoses. We recently demonstrated enhanced transformation efficiency using a SyngenicDNA-based shuttle plasmid resistant to T. denticola restriction-modification systems. Here we expand on this work by further characterizing the shuttle plasmid and optimizing expression of cloned genes using several promoter-gene constructs for genetic complementation and exogenous gene expression, including the first inducible system for controlled expression of potentially toxic plasmid-encoded genes in Treponema . Our results highlight the importance of precise pairing of promoters and genes of interest to obtaining biologically optimal protein expression. This work expands the utility of the shuttle plasmid and will facilitate future studies employing shuttle plasmids in analysis of Treponema physiology and behavior. IMPORTANCE Rigorous genetic analysis in oral spirochetes has been hampered by the limited utility of available versions of the E. coli-T. denticola shuttle plasmid system. We report expanded characterization of the shuttle plasmid, including relative activity of diverse promoters and the first inducible expression system described for T. denticola. We show that careful customization of the shuttle plasmid for specific applications is crucial for obtaining successful results.
Collapse
|
2
|
Patel DT, O'Bier NS, Schuler EJA, Marconi RT. The Treponema denticola DgcA protein (TDE0125) is a functional diguanylate cyclase. Pathog Dis 2021; 79:6102550. [PMID: 33452878 DOI: 10.1093/femspd/ftab004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/13/2021] [Indexed: 11/12/2022] Open
Abstract
Periodontal disease (PD) is a progressive inflammatory condition characterized by degradation of the gingival epithelium, periodontal ligament, and alveolar bone ultimately resulting in tooth loss. Treponema denticola is a keystone periopathogen that contributes to immune dysregulation and direct tissue destruction. As periodontal disease develops, T. denticola must adapt to environmental, immunological and physiochemical changes in the subgingival crevice. Treponema denticola produces bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), an important regulatory nucleotide. While T. denticola encodes several putative diguanylate cyclases (DGCs), none have been studied and hence the biological role of c-di-GMP in oral treponemes remains largely unexplored. Here, we demonstrate that the T. denticola open reading frame, TDE0125, encodes a functional DGC designated as DgcA (Diguanylate cyclase A). The dgcA gene is universal among T. denticola isolates, highly conserved and is a stand-alone GGEEF protein with a GAF domain. Recombinant DgcA converts GTP to c-di-GMP using either manganese or magnesium under aerobic and anaerobic reaction conditions. Size exclusion chromatography revealed that DgcA exists as a homodimer and in larger oligomers. Site-directed mutagenesis of residues that define the putative inhibitory site of DgcA suggest that c-di-GMP production is allosterically regulated. This report is the first to characterize a DGC of an oral treponeme.
Collapse
Affiliation(s)
- Dhara T Patel
- Department of Microbiology and Immunology, VCU Medical Center, 1112 East Clay Street, Room 101 McGuire Hall, PO Box 980678, Richmond, VA 23298-0678, USA
| | - Nathaniel S O'Bier
- Department of Microbiology and Immunology, VCU Medical Center, 1112 East Clay Street, Room 101 McGuire Hall, PO Box 980678, Richmond, VA 23298-0678, USA
| | - Edward J A Schuler
- Department of Microbiology and Immunology, VCU Medical Center, 1112 East Clay Street, Room 101 McGuire Hall, PO Box 980678, Richmond, VA 23298-0678, USA
| | - Richard T Marconi
- Department of Microbiology and Immunology, VCU Medical Center, 1112 East Clay Street, Room 101 McGuire Hall, PO Box 980678, Richmond, VA 23298-0678, USA
| |
Collapse
|
3
|
Roles of TroA and TroR in Metalloregulated Growth and Gene Expression in Treponema denticola. J Bacteriol 2020; 202:JB.00770-19. [PMID: 31932313 DOI: 10.1128/jb.00770-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
The availability of divalent metal cations required as cofactors for microbial metabolism is severely limited in the host environment. Bacteria have evolved highly regulated uptake systems to maintain essential metal homeostasis to meet cellular demands while preventing toxicity. The Tro operon (troABCDR), present in all sequenced Treponema spp., is a member of a highly conserved family of ATP-binding cassette transporters involved in metal cation uptake whose expression is controlled by TroR, a DtxR-like cation-responsive regulatory protein. Transcription of troA responds to divalent manganese and iron (T. denticola) or manganese and zinc (T. pallidum), and metal-dependent TroR binding to the troA promoter represses troA transcription. We report here the construction and complementation of defined T. denticola ΔtroR and ΔtroA strains to characterize (i) the role of TroA in metal-dependent T. denticola growth and (ii) the role of TroR in T. denticola gene expression. We show that TroA expression is required for T. denticola growth under iron- and manganese-limited conditions. Furthermore, TroR is required for the transcriptional regulation of troA in response to iron or manganese, and deletion of troR results in significant differential expression of more than 800 T. denticola genes in addition to troA These results suggest that (i) TroA-mediated cation uptake is important in metal homeostasis in vitro and may be important for Treponema survival in the host environment and (ii) the absence of TroR results in significant dysregulation of nearly one-third of the T. denticola genome. These effects may be direct (as with troA) or indirect due to dysregulation of metal homeostasis.IMPORTANCE Treponema denticola is one of numerous host-associated spirochetes, a group including commensals, pathobionts, and at least one frank pathogen. While most T. denticola research concerns its role in periodontitis, its relative tractability for growth and genetic manipulation make it a useful model for studying Treponema physiology, metabolism, and host-microbe interactions. Metal micronutrient acquisition and homeostasis are highly regulated both in microbial cells and by host innate defense mechanisms that severely limit metal cation bioavailability. Here, we characterized the T. denticola troABCDR operon, the role of TroA-mediated iron and manganese uptake in growth, and the effects of TroR on global gene expression. This study contributes to our understanding of the mechanisms involved in cellular metal homeostasis required for survival in the host environment.
Collapse
|
4
|
Miller DP, Lamont RJ. Signaling Systems in Oral Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:27-43. [PMID: 31732932 DOI: 10.1007/978-3-030-28524-1_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The supra- and subgingival plaque biofilm communities of plaque are composed of hundreds of different microbes. These communities are spatially and temporally structured, largely due to cell-cell communications that coordinate synergistic interactions, and intracellular signaling systems to sense changes in the surrounding environment. Homeostasis is maintained through metabolic communication, mutualistic cross-feeding, and cross-respiration. These nutritional symbioses can reciprocally influence the local microenvironments by altering the pH and by detoxifying oxidative compounds. Signal transduction mechanisms include two-component systems, tyrosine phosphorelays, quorum sensing systems, and cyclic nucleotide secondary messengers. Signaling converges on transcriptional programs and can result in synergistic or antagonistic interbacterial interactions that sculpt community development. The sum of all these interactions can be a well-organized polymicrobial community that remains in homeostasis with the host, or a dysbiotic community that provokes pathogenic responses in the host.
Collapse
Affiliation(s)
- Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.
| |
Collapse
|
5
|
The Treponema denticola PAS Domain-Containing Histidine Kinase Hpk2 Is a Heme Binding Sensor of Oxygen Levels. J Bacteriol 2018; 200:JB.00116-18. [PMID: 29986942 DOI: 10.1128/jb.00116-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/04/2018] [Indexed: 12/29/2022] Open
Abstract
Periodontal disease (PD) results from a shift in the composition of the microbial community of the subgingival crevice. As the bacterial population transitions from Gram-positive bacteria to predominantly Gram-negative anaerobes and spirochetes, dramatic changes occur in the physiological and immunological environment at diseased sites. Treponema denticola thrives in periodontal pockets, indicating that it has a unique ability to adapt to changing environmental conditions. Hpk2 (tde1970), a Per-Arnt-Sim motif (PAS) domain-containing histidine kinase (HK), is part of the T. denticola Hpk2-Rrp2 (tde1969) two-component regulatory (TCR) system. This TCR system is growth phase regulated and has been postulated to play a key role in adaptive responses. In this study, we employ predictive structural analyses and site-directed mutagenesis to investigate the functional role of specific amino acid residues located within the Hpk2 PAS domain. Specific substitutions impacted autophosphorylation (AP), phosphotransfer (PT), oligomerization, and hemin binding. The AP, PT, hemin binding, and oligomerization potential of some mutated Hpk2 proteins differed under aerobic versus anaerobic reaction conditions. The data presented here suggest that the regulatory activity of Hpk2 is linked to diatomic gas levels. In a broader sense, this study highlights the importance of studying proteins produced by anaerobes under conditions that approximate the environment in which they thrive.IMPORTANCE Periodontal disease affects nearly 60% of the global adult population. Its costs to individuals, and to society as a whole, are enormous. As periodontal disease develops, there is a shift in the composition of the oral microbial community. The bacteria that become dominant are able to cause significant damage to the tissues that support the teeth, leading to tooth loss. Treponema denticola is one of the keystone pathogens associated with periodontal disease. An earlier study demonstrated that the Hpk2 and Rrp2 proteins play an important role in adaptive responses. Here, we explore the role of specific Hpk2 amino acids in environmental sensing and function, using structural analyses and site-directed mutagenesis.
Collapse
|
6
|
Gene Regulation, Two Component Regulatory Systems, and Adaptive Responses in Treponema Denticola. Curr Top Microbiol Immunol 2017; 415:39-62. [PMID: 29026924 DOI: 10.1007/82_2017_66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The oral microbiome consists of a remarkably diverse group of 500-700 bacterial species. The microbial etiology of periodontal disease is similarly complex. Of the ~400 bacterial species identified in subgingival plaque, at least 50 belong to the genus Treponema. As periodontal disease develops and progresses, T. denticola transitions from a low to high abundance species in the subgingival crevice. Changes in the overall composition of the bacterial population trigger significant changes in the local physical, immunological and physiochemical conditions. For T. denticola to thrive in periodontal pockets, it must be nimble and adapt to rapidly changing environmental conditions. The purpose of this chapter is to review the current understanding of the molecular basis of these essential adaptive responses, with a focus on the role of two component regulatory systems with global regulatory potential.
Collapse
|
7
|
Miller DP, Frederick JR, Sarkar J, Marconi RT. The Treponema denticola AtcR LytTR domain-containing response regulator interacts with three architecturally distinct promoter elements: implications for understanding the molecular signaling mechanisms that drive the progression of periodontal disease. Mol Oral Microbiol 2014; 29:219-32. [PMID: 24890414 DOI: 10.1111/omi.12059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2014] [Indexed: 12/27/2022]
Abstract
Treponema denticola is an oral spirochete and periopathogen that transitions from low abundance in healthy subgingival crevices to high abundance in periodontal pockets. The T. denticola response regulator AtcR harbors the relatively rare, LytTR DNA-binding domain. LytTR domain containing response regulators control critical transcriptional responses required for environmental adaptation. Using a multi-step bioinformatics approach, 26 strong lytTR recognition motifs were identified in the genome of T. denticola strain 35405. Electrophoretic mobility shift assays demonstrated that AtcR binds to these recognition motifs. High specificity-high affinity complexes formed with phosphorylated AtcR. The LytTR recognition sequences were found to exist in three distinct promoter architectures designated as LytTR1, LytTR2 and LytTR3 promoters. LytTR1 and LytTR2 promoters harbor σ(54) binding sites. The functional diversity of the proteins encoded by the putative AtcR regulon suggests that AtcR sits at the top of a regulatory cascade that plays a central role in facilitating T. denticola's ability to adapt to changing environmental conditions and thrive in periodontal pockets.
Collapse
Affiliation(s)
- D P Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | | | | | | |
Collapse
|
8
|
Sarkar J, McHardy IH, Simanian EJ, Shi W, Lux R. Transcriptional responses of Treponema denticola to other oral bacterial species. PLoS One 2014; 9:e88361. [PMID: 24505483 PMCID: PMC3914990 DOI: 10.1371/journal.pone.0088361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/06/2014] [Indexed: 12/16/2022] Open
Abstract
The classic organization by Socransky and coworkers categorized the oral bacteria of the subgingival plaque into different complexes. Treponema denticola, Porphyromonas gingivalis and Tannerella forsythia are grouped into the red complex that is highly correlated with periodontal disease. Socransky's work closely associates red with orange complex species such as Fusobacterium nucleatum and Prevotella intermedia but not with members of the other complexes. While the relationship between species contained by these complexes is in part supported by their ability to physically attach to each other, the physiological consequences of these interactions and associations are less clear. In this study, we employed T. denticola as a model organism to analyze contact-dependent responses to interactions with species belonging to the same complex (P. gingivalis and T. forsythia), the closely associated orange complex (using F. nucleatum and P. intermedia as representatives) and the unconnected yellow complex (using Streptococcus sanguinis and S. gordonii as representatives). RNA was extracted from T. denticola alone as well as after pairwise co-incubation for 5 hrs with representatives of the different complexes, and the respective gene expression profiles were determined using microarrays. Numerous genes related to motility, metabolism, transport, outer membrane and hypothetical proteins were differentially regulated in T. denticola in the presence of the tested partner species. Further analysis revealed a significant overlap in the affected genes and we identified a general response to the presence of other species, those specific to two of the three complexes as well as individual complexes. Most interestingly, many predicted major antigens (e.g. flagella, Msp, CTLP) were suppressed in responses that included red complex species indicating that the presence of the most closely associated species induces immune-evasive strategies. In summary, the data presented here provide an in-depth understanding of the transcriptional responses triggered by contact-dependent interactions between microorganisms inhabiting the periodontal pocket.
Collapse
Affiliation(s)
- Juni Sarkar
- School of Dentistry, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Ian H. McHardy
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Emil J. Simanian
- School of Dentistry, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Wenyuan Shi
- School of Dentistry, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Renate Lux
- School of Dentistry, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Visser M, Ellen R. New insights into the emerging role of oral spirochaetes in periodontal disease. Clin Microbiol Infect 2011; 17:502-12. [DOI: 10.1111/j.1469-0691.2011.03460.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Frederick JR, Sarkar J, McDowell JV, Marconi RT. Molecular signaling mechanisms of the periopathogen, Treponema denticola. J Dent Res 2011; 90:1155-63. [PMID: 21447698 DOI: 10.1177/0022034511402994] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the healthy subgingiva, oral treponemes account for a small percentage of the total bacteria. However, in diseased periodontal pockets, treponemes thrive and become a dominant component of the bacterial population. Oral treponemes are uniquely adept at capitalizing on the environmental conditions that develop with periodontal disease. The molecular basis of adaptive responses of oral treponemes is just beginning to be investigated and defined. The completion of several treponeme genome sequences and the characterization of global regulatory systems provide an important starting point in the analysis of signaling and adaptive responses. In this review, we discuss existing literature focused on the genetic regulatory mechanisms of Treponema denticola and present an overview of the possible roles of regulatory proteins identified through genome analyses. This information provides insight into the possible molecular mechanisms utilized by oral spirochetes to survive in the periodontal pocket and transition from a minor to a dominant organism.
Collapse
Affiliation(s)
- J R Frederick
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | | | | | | |
Collapse
|