1
|
Robinson EL, Sisco E, Staymates ME, Lawrence JA. A New Wipe-Sampling Instrument for Measuring the Collection Efficiency of Trace Explosives Residues. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2018; 10:204-213. [PMID: 29881468 PMCID: PMC5986101 DOI: 10.1039/c7ay02694c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Trace explosives detection, a crucial component of many security screening environments, commonly employs wipe-sampling. Since collection of an explosive residue is necessary for detection, it is important to have a thorough understanding of the parameters that affect the efficiency of collection. Current wipe-sampling evaluation techniques for explosive particles have their limits: manual sampling (with fingers or a wand) is limited in its ability to isolate a single parameter and the TL-slip/peel tester is limited to a linear sample path. A new wipe-sampling instrument, utilizing a commercial off-the-shelf (COTS) 3D printer repurposed for its XYZ stage, was developed to address these limitations. This system allowed, for the first time, automated two-dimensional wipe-sampling patterns to be studied while keeping the force and speed of collection constant for the length of the sampling path. This new instrument is not only capable of investigating the same parameters as current technology (wipe materials, test surfaces, forces of collection, and linear sample patterns), it has added capabilities to investigate additional parameters such as directional wipe patterns (i.e. "L" and "U" shapes, square, and serpentine) and allowing for multiple lines to be sampled during a single collection without the need for adjustments by the user. In this work, parametric studies were completed using 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and the COTS 3D printer for wipe-sampling to establish collection efficiencies for numerous scenarios. Trace explosives detection in field screening environments could be greatly improved with the ability to comprehensively investigate how a wide range of parameters individually affect collection by wipe-sampling. A screener who knows how to properly interrogate any given surface will be much more efficient at detecting trace explosives.
Collapse
Affiliation(s)
- Elizabeth L. Robinson
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA
| | - Edward Sisco
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA
| | - Matthew E. Staymates
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA
| | - Jeffrey A. Lawrence
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA
| |
Collapse
|
2
|
Silvestri EE, Yund C, Taft S, Bowling CY, Chappie D, Garrahan K, Brady-Roberts E, Stone H, Nichols TL. Considerations for estimating microbial environmental data concentrations collected from a field setting. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2017; 27:141-151. [PMID: 26883476 PMCID: PMC5318663 DOI: 10.1038/jes.2016.3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
In the event of an indoor release of an environmentally persistent microbial pathogen such as Bacillus anthracis, the potential for human exposure will be considered when remedial decisions are made. Microbial site characterization and clearance sampling data collected in the field might be used to estimate exposure. However, there are many challenges associated with estimating environmental concentrations of B. anthracis or other spore-forming organisms after such an event before being able to estimate exposure. These challenges include: (1) collecting environmental field samples that are adequate for the intended purpose, (2) conducting laboratory analyses and selecting the reporting format needed for the laboratory data, and (3) analyzing and interpreting the data using appropriate statistical techniques. This paper summarizes some key challenges faced in collecting, analyzing, and interpreting microbial field data from a contaminated site. Although the paper was written with considerations for B. anthracis contamination, it may also be applicable to other bacterial agents. It explores the implications and limitations of using field data for determining environmental concentrations both before and after decontamination. Several findings were of interest. First, to date, the only validated surface/sampling device combinations are swabs and sponge-sticks on stainless steel surfaces, thus limiting availability of quantitative analytical results which could be used for statistical analysis. Second, agreement needs to be reached with the analytical laboratory on the definition of the countable range and on reporting of data below the limit of quantitation. Finally, the distribution of the microbial field data and statistical methods needed for a particular data set could vary depending on these data that were collected, and guidance is needed on appropriate statistical software for handling microbial data. Further, research is needed to develop better methods to estimate human exposure from pathogens using environmental data collected from a field setting.
Collapse
Affiliation(s)
- Erin E Silvestri
- United States Environmental Protection Agency, National Homeland Security Research Center, Threat Consequence Assessment Division, Cincinnati, Ohio, USA
| | - Cynthia Yund
- United States Environmental Protection Agency, National Homeland Security Research Center, Threat Consequence Assessment Division, Cincinnati, Ohio, USA
| | - Sarah Taft
- United States Environmental Protection Agency, National Homeland Security Research Center, Threat Consequence Assessment Division, Cincinnati, Ohio, USA
| | - Charlena Yoder Bowling
- United States Environmental Protection Agency, National Homeland Security Research Center, Threat Consequence Assessment Division, Cincinnati, Ohio, USA
| | | | | | - Eletha Brady-Roberts
- United States Environmental Protection Agency, National Homeland Security Research Center, Threat Consequence Assessment Division, Cincinnati, Ohio, USA
| | - Harry Stone
- Battelle Memorial Institute, Columbus, Ohio, USA
| | - Tonya L Nichols
- United States Environmental Protection Agency, National Homeland Security Research Center, Threat Consequence Assessment Division, Washington DC, USA
| |
Collapse
|
3
|
Hess BM, Amidan BG, Anderson KK, Hutchison JR. Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations. PLoS One 2016; 11:e0164582. [PMID: 27736999 PMCID: PMC5063342 DOI: 10.1371/journal.pone.0164582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/27/2016] [Indexed: 11/29/2022] Open
Abstract
Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces.
Collapse
Affiliation(s)
- Becky M. Hess
- National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352, United States of America
| | - Brett G. Amidan
- National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352, United States of America
| | - Kevin K. Anderson
- National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352, United States of America
| | - Janine R. Hutchison
- National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352, United States of America
| |
Collapse
|
4
|
Extraction of Aerosol-Deposited Yersinia pestis from Indoor Surfaces To Determine Bacterial Environmental Decay. Appl Environ Microbiol 2016; 82:2809-2818. [PMID: 26944839 DOI: 10.1128/aem.03989-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/24/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Public health and decontamination decisions following an event that causes indoor contamination with a biological agent require knowledge of the environmental persistence of the agent. The goals of this study were to develop methods for experimentally depositing bacteria onto indoor surfaces via aerosol, evaluate methods for sampling and enumerating the agent on surfaces, and use these methods to determine bacterial surface decay. A specialized aerosol deposition chamber was constructed, and methods were established for reproducible and uniform aerosol deposition of bacteria onto four coupon types. The deposition chamber facilitated the control of relative humidity (RH; 10 to 70%) following particle deposition to mimic the conditions of indoor environments, as RH is not controlled by standard heating, ventilation, and air conditioning (HVAC) systems. Extraction and culture-based enumeration methods to quantify the viable bacteria on coupons were shown to be highly sensitive and reproducible. To demonstrate the usefulness of the system for decay studies,Yersinia pestis persistence as a function of surface type at 21 °C and 40% RH was determined to be >40%/min for all surfaces. Based upon these results, at typical indoor temperature and RH, a 6-log reduction in titer would expected to be achieved within 1 h as the result of environmental decay on surfaces without active decontamination. The developed approach will facilitate future persistence and decontamination studies with a broad range of biological agents and surfaces, providing agent decay data to inform both assessments of risk to personnel entering a contaminated site and decontamination decisions following biological contamination of an indoor environment. IMPORTANCE Public health and decontamination decisions following contamination of an indoor environment with a biological agent require knowledge of the environmental persistence of the agent. Previous studies on Y. pestis persistence have utilized large liquid droplet deposition to provide persistence data. As a result, methods were developed to deposit aerosols containing bacteria onto indoor surfaces, reproducibly enumerate bacteria harvested from coupons, and determine surface decay utilizing Y. pestis The results of this study provide foundational methods required to evaluate surface decay of bacteria and potentially other biological agents, such as viruses, in aerosol particles as a function of surface type and environment. Integrating the data from both aerosol and liquid deposition surface decay studies will provide medical and public health personnel with a more complete understanding of agent persistence on surfaces in contaminated areas for assessment of health risks and to inform decontamination decisions.
Collapse
|
5
|
Omotade TO, Bernhards RC, Klimko CP, Matthews ME, Hill AJ, Hunter MS, Webster WM, Bozue JA, Welkos SL, Cote CK. The impact of inducing germination of Bacillus anthracis and Bacillus thuringiensis spores on potential secondary decontamination strategies. J Appl Microbiol 2014; 117:1614-33. [PMID: 25196092 DOI: 10.1111/jam.12644] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 12/22/2022]
Abstract
AIMS Decontamination and remediation of a site contaminated by the accidental or intentional release of fully virulent Bacillus anthracis spores are difficult, costly and potentially damaging to the environment. Development of novel decontamination strategies that have minimal environmental impacts remains a high priority. Although ungerminated spores are amongst the most resilient organisms known, once exposed to germinants, the germinating spores, in some cases, become susceptible to antimicrobial environments. We evaluated the concept that once germinated, B. anthracis spores would be less hazardous and significantly easier to remediate than ungerminated dormant spores. METHODS AND RESULTS Through in vitro germination and sensitivity assays, we demonstrated that upon germination, B. anthracis Ames spores and Bacillus thuringiensis Al Hakam spores (serving as a surrogate for B. anthracis) become susceptible to environmental stressors. The majority of these germinated B. anthracis and B. thuringiensis spores were nonviable after exposure to a defined minimal germination-inducing solution for prolonged periods of time. Additionally, we examined the impact of potential secondary disinfectant strategies including bleach, hydrogen peroxide, formaldehyde and artificial UV-A, UV-B and UV-C radiation, employed after a 60-min germination-induction step. Each secondary disinfectant employs a unique mechanism of killing; as a result, germination-induction strategies are better suited for some secondary disinfectants than others. CONCLUSIONS These results provide evidence that the deployment of an optimal combination strategy of germination-induction/secondary disinfection may be a promising aspect of wide-area decontamination following a B. anthracis contamination event. SIGNIFICANCE AND IMPACT OF THE STUDY By inducing spores to germinate, our data confirm that the resulting cells exhibit sensitivities that can be leveraged when paired with certain decontamination measures. This increased susceptibility could be exploited to devise more efficient and safe decontamination measures and may obviate the need for more stringent methods that are currently in place.
Collapse
Affiliation(s)
- T O Omotade
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Calfee MW, Rose LJ, Morse S, Mattorano D, Clayton M, Touati A, Griffin-Gatchalian N, Slone C, McSweeney N. Comparative evaluation of vacuum-based surface sampling methods for collection of Bacillus spores. J Microbiol Methods 2013; 95:389-96. [PMID: 24184017 DOI: 10.1016/j.mimet.2013.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/17/2013] [Accepted: 10/18/2013] [Indexed: 11/18/2022]
Abstract
In this study, four commonly-used sampling devices (vacuum socks, 37 mm 0.8 μm mixed cellulose ester (MCE) filter cassettes, 37 mm 0.3 μm polytetrafluoroethylene (PTFE) filter cassettes, and 3M™ forensic filters) were comparatively evaluated for their ability to recover surface-associated spores. Aerosolized spores (~10(5)CFUcm(-2)) of a Bacillus anthracis surrogate were allowed to settle onto three material types (concrete, carpet, and upholstery). Ten replicate samples were collected using each vacuum method, from each material type. Stainless steel surfaces, inoculated simultaneously with test materials, were sampled with pre-moistened wipes. Wipe recoveries were utilized to normalize vacuum-based recoveries across trials. Recovery (CFUcm(-2)) and relative recovery (vacuum recovery/wipe recovery) were determined for each method and material type. Recoveries and relative recoveries ranged from 3.8 × 10(3) to 7.4 × 10(4)CFUcm(-2) and 0.035 to 1.242, respectively. ANOVA results indicated that the 37 mm MCE method exhibited higher relative recoveries than the other methods when used for sampling concrete or upholstery. While the vacuum sock resulted in the highest relative recoveries on carpet, no statistically significant difference was detected. The results of this study may be used to guide selection of sampling approaches following biological contamination incidents.
Collapse
Affiliation(s)
- M Worth Calfee
- US Environmental Protection Agency, National Homeland Security Research Center, Research Triangle Park, NC, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|