1
|
Shen W, Feng Z, Hu K, Cao W, Li M, Ju R, Zhang Y, Chen Z, Zuo S. Tryptamine 5-Hydroxylase Is Required for Suppression of Cell Death and Uncontrolled Defense Activation in Rice. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.857760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lesion-mimic mutants are useful materials to dissect mechanisms controlling programmed cell death (PCD) and defense response in plants. Although dozens of lesion-mimic mutant genes have been identified in plants, the molecular mechanisms underlying PCD and defense response remain to be extensively elucidated. Here, we identified a rice lesion mimic mutant, named lesion mimic 42 (lm42), from an ethylmethylsulfone (EMS)-induced mutant population. The lm42 mutant displayed flame-red spots on the leaves and sheaths at the 3-leaf developmental stage and exhibited impaired photosynthetic capacity with decreased chlorophyll content and decomposed chloroplast thylakoids. The lesion development of lm42 was light- and temperature-dependent. We identified a single base mutation (T38A), changing a Leu to Gln, in the first exon of LOC_Os12g16720 (LM42), which encodes a tryptamine 5-hydroxylase, by map-based cloning. We carried out transgenic complementation to confirm that this mutation caused the lm42 phenotype. We further knocked out the LM42 gene by CRISPR/Cas9 to recreate the lm42 phenotype. LM42 is highly expressed in leaves, leaf sheaths and roots. Loss-of-function of LM42 activated expression of ROS-generating genes and inhibited expression of ROS-scavenging genes, leading to ROS accumulation and eventually cell death. Furthermore, its disruption induced expression of defense-response genes and enhanced host resistance to both fungal pathogen Magnaporthe oryzae and bacterial pathogen Xanthomonas oryzae pv. oryzae. Our transcriptomic data suggested that the way lm42 led to lesion-mimic was probably by affecting ribosome development. Overall, our results demonstrate that tryptamine 5-hydroxylase-coding gene LM42 is required for suppression of cell death and uncontrolled activation of defense responses in rice.
Collapse
|
2
|
Abbas A, Fu Y, Qu Z, Zhao H, Sun Y, Lin Y, Xie J, Cheng J, Jiang D. Isolation and evaluation of the biocontrol potential of Talaromyces spp. against rice sheath blight guided by soil microbiome. Environ Microbiol 2021; 23:5946-5961. [PMID: 33989446 DOI: 10.1111/1462-2920.15596] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022]
Abstract
Rice sheath blight caused by Rhizoctonia solani is the major disease of rice that seriously threatens food security worldwide. Efficient and eco-friendly biological approaches are urgently needed since no resistant cultivars are available. In this study, fallow and paddy soils were initially subjected to microbiome analyses, and the results showed that Talaromyces spp. were significantly more abundant in the paddy soil, while Trichoderma spp. were more abundant in the fallow soil, suggesting that Talaromyces spp. could live and survive better in the paddy soil. Five Talaromyces isolates, namely, TF-04, TF-03, TF-02, TF-01 and TA-02, were isolated from the paddy soil using sclerotia of R. solani as baits and were further evaluated for their activity against rice sheath blight. These isolates efficiently parasitized the hyphae and rotted the sclerotia even at higher water contents in the sterilized sand and the soil. Isolate TF-04 significantly promoted rice growth, reduced the severity of rice sheath blight and increased the rice yield under outdoor conditions. Defence-related genes were upregulated and enzyme activities were enhanced in rice treated with isolate TF-04. Our research supplies a microbiome-guided approach to screen biological control agents and provides Talaromyces isolates to biologically control rice sheath blight.
Collapse
Affiliation(s)
- Aqleem Abbas
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Zheng Qu
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Huizhang Zhao
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Yongjian Sun
- Xiangyang Academy of Agricultural Sciences, Xiangyang, Hubei Province, 441057, People's Republic of China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Jiatao Xie
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Jiasen Cheng
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| |
Collapse
|
3
|
Linkies A, Jacob S, Zink P, Maschemer M, Maier W, Koch E. Characterization of cultural traits and fungicidal activity of strains belonging to the fungal genus Chaetomium. J Appl Microbiol 2020; 131:375-391. [PMID: 33249672 DOI: 10.1111/jam.14946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/14/2020] [Accepted: 11/22/2020] [Indexed: 11/27/2022]
Abstract
AIMS Compare and characterize Chaetomium strains with special regard to their potentialities as biocontrol agents. METHODS AND RESULTS Twelve strains of the fungal genus Chaetomium from diverse ecological niches were identified as belonging to six different species. Large differences were observed between the strains with regard to temperature requirements for mycelial growth and pigmentation of culture filtrates. Culture filtrates and ethyl acetate extracts were assayed for fungicidal effects against important phytopathogens both on agar media and in multiwell plates. The samples from Chaetomium globosum were particularly active against Botrytis cinerea, Pyrenophora graminea and Bipolaris sorokiniana, while those from C. cochliodes and C. aureum were inhibitory towards Phytophthora infestans, and P. infestans and Fusarium culmorum respectively. To narrow down the active principle, the most promising extracts were separated by preparative HPLC and the resulting fractions tested in bioassays. Chaetoglobosins were identified as active compounds produced by C. globosum. CONCLUSIONS The bioassays revealed C. aureum and C. cochliodes as promising candidates for use in biocontrol. Both showed remarkably good activity against the prominent plant pathogen P. infestans. SIGNIFICANCE AND IMPACT OF THE STUDY We provide the first systematic study comparing six different Chaetomium species with regard to their use as biocontrol agents.
Collapse
Affiliation(s)
- A Linkies
- Julius Kühn Institute - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Darmstadt, Germany.,Department of Crop Protection, Hochschule Geisenheim University, Geisenheim, Germany
| | - S Jacob
- Institut für Biotechnologie und Wirkstoff-Forschung, Kaiserslautern, Germany
| | - P Zink
- Julius Kühn Institute - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Darmstadt, Germany
| | | | - W Maier
- Julius Kühn Institute - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - E Koch
- Julius Kühn Institute - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Darmstadt, Germany
| |
Collapse
|
4
|
Zhang M, Wang X, Ahmed T, Liu M, Wu Z, Luo J, Tian Y, Jiang H, Wang Y, Sun G, Li B. Identification of Genes Involved in Antifungal Activity of Burkholderia seminalis Against Rhizoctonia solani Using Tn5 Transposon Mutation Method. Pathogens 2020; 9:pathogens9100797. [PMID: 32992669 PMCID: PMC7600168 DOI: 10.3390/pathogens9100797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Rhizoctonia solani is the causative agent of rice sheath blight disease. In a previous study, we found that the growth of R. solani was inhibited by Burkholderia seminalis strain R456. Therefore, the present study was conducted to identify the genes involved in the antifungal activity of B. seminalis strain R456 by using a Tn5 transposon mutation method. Firstly, we constructed a random insertion transposon library of 997 mutants, out of which 11 mutants showed the defective antifungal activity against R. solani. Furthermore, the 10 antagonism-related genes were successfully identified based on analysis of the Tn5 transposon insertion site. Indeed, this result indicated that three mutants were inserted on an indigenous plasmid in which the same insertion site was observed in two mutants. In addition, the remaining eight mutants were inserted on different genes encoding glycosyl transferase, histone H1, nonribosomal peptide synthetase, methyltransferase, MnmG, sulfate export transporter, catalase/peroxidase HPI and CysD, respectively. Compared to the wild type, the 11 mutants showed a differential effect in bacteriological characteristics such as cell growth, biofilm formation and response to H2O2 stress, revealing the complexity of action mode of these antagonism-related genes. However, a significant reduction of cell motility was observed in the 11 mutants compared to the wild type. Therefore, it can be inferred that the antifungal mechanism of the 10 above-mentioned genes may be, at least partially, due to the weakness of cell motility. Overall, the result of this study will be helpful for us to understand the biocontrol mechanism of this bacterium.
Collapse
Affiliation(s)
- Muchen Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
| | - Xiaoxuan Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
| | - Mengju Liu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
| | - Zhifeng Wu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China;
| | - Ye Tian
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
| | - Hubiao Jiang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- Correspondence: (Y.W.); (B.L.); Tel.: +86-0571-88982412 (Y.W. & B.L.)
| | - Guochang Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
- Correspondence: (Y.W.); (B.L.); Tel.: +86-0571-88982412 (Y.W. & B.L.)
| |
Collapse
|
5
|
|
6
|
Xu T, Li Y, Zeng X, Yang X, Yang Y, Yuan S, Hu X, Zeng J, Wang Z, Liu Q, Liu Y, Liao H, Tong C, Liu X, Zhu Y. Isolation and evaluation of endophytic Streptomyces endus OsiSh-2 with potential application for biocontrol of rice blast disease. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1149-1157. [PMID: 27293085 DOI: 10.1002/jsfa.7841] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/01/2016] [Accepted: 06/05/2016] [Indexed: 05/13/2023]
Abstract
BACKGROUND Biocontrol is a promising strategy in the control of rice blast disease. In the present study, we isolated and characterized a novel antagonist to the pathogen Magnaporthe oryzae from rice endophytic actinomycetes. RESULTS Out of 482 endophytic actinomycetes isolated from rice blast infected and healthy rice, Streptomyces endus OsiSh-2 exhibited remarkable in vitro antagonistic activity. Scanning electron microscopy observations of M. oryzae treated by OsiSh-2 revealed significant morphological alterations in hyphae. In 2-year field tests, the spraying of OsiSh-2 spore solution (107 spores mL-1 ) is capable of reducing rice blast disease severity by 59.64%. In addition, a fermentation broth of OsiSh-2 and its cell-free filtrates could inhibit the growth of M. oryzae, suggesting the presence of active enzymes and secondary metabolites. OsiSh-2 tested positive for polyketide synthase-I and nonribosomal peptide synthetase genes and can produce cellulase, protease, gelatinase, siderophore, indole-3-acetic acid and 1-amino-cyclopropane-1-carboxylate deaminase. A preliminary separation indicated that the methanol extract of OsiSh-2 could suppress the growth of pathogens. The major active component was identified as nigericin. CONCLUSION Endophytic S. endus OsiSh-2 has potential as a biocontrol agent against rice blast in agriculture. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting Xu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Yan Li
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Xiadong Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Xiaolu Yang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Yuanzhu Yang
- Yahua Seeds Science Academy of Hunan, Changsha, 410119, Hunan, PR China
| | - Shanshan Yuan
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Xiaochun Hu
- Yahua Seeds Science Academy of Hunan, Changsha, 410119, Hunan, PR China
| | - Jiarui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Zhenzhen Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Qian Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Yuqing Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Hongdong Liao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Chunyi Tong
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| |
Collapse
|
7
|
Wang S, Lei C, Wang J, Ma J, Tang S, Wang C, Zhao K, Tian P, Zhang H, Qi C, Cheng Z, Zhang X, Guo X, Liu L, Wu C, Wan J. SPL33, encoding an eEF1A-like protein, negatively regulates cell death and defense responses in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:899-913. [PMID: 28199670 PMCID: PMC5441852 DOI: 10.1093/jxb/erx001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Lesion-mimic mutants are useful to dissect programmed cell death and defense-related pathways in plants. Here we identified a new rice lesion-mimic mutant, spotted leaf 33 (spl33) and cloned the causal gene by a map-based cloning strategy. SPL33 encodes a eukaryotic translation elongation factor 1 alpha (eEF1A)-like protein consisting of a non-functional zinc finger domain and three functional EF-Tu domains. spl33 exhibited programmed cell death-mediated cell death and early leaf senescence, as evidenced by analyses of four histochemical markers, namely H2O2 accumulation, cell death, callose accumulation and TUNEL-positive nuclei, and by four indicators, namely loss of chlorophyll, breakdown of chloroplasts, down-regulation of photosynthesis-related genes, and up-regulation of senescence-associated genes. Defense responses were induced in the spl33 mutant, as shown by enhanced resistance to both the fungal pathogen Magnaporthe oryzae and the bacterial pathogen Xanthomonas oryzae pv. oryzae and by up-regulation of defense response genes. Transcriptome analysis of the spl33 mutant and its wild type provided further evidence for the biological effects of loss of SPL33 function in cell death, leaf senescence and defense responses in rice. Detailed analyses showed that reactive oxygen species accumulation may be the cause of cell death in the spl33 mutant, whereas uncontrolled activation of multiple innate immunity-related receptor genes and signaling molecules may be responsible for the enhanced disease resistance observed in spl33. Thus, we have demonstrated involvement of an eEF1A-like protein in programmed cell death and provided a link to defense responses in rice.
Collapse
Affiliation(s)
- Shuai Wang
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Cailin Lei
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Jiulin Wang
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Jian Ma
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Sha Tang
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Chunlian Wang
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Kaijun Zhao
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Peng Tian
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Huan Zhang
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Changyan Qi
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Zhijun Cheng
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Xin Zhang
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Xiuping Guo
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Linglong Liu
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuanyin Wu
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Jianmin Wan
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Chaibub AA, de Carvalho JCB, de Sousa Silva C, Collevatti RG, Gonçalves FJ, de Carvalho Barros Côrtes MV, de Filippi MCC, de Faria FP, Lopes DCB, de Araújo LG. Defence responses in rice plants in prior and simultaneous applications of Cladosporium sp. during leaf blast suppression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:21554-21564. [PMID: 27515526 DOI: 10.1007/s11356-016-7379-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
An alternative method to control rice blast (Magnaporthe oryzae) is to include biological agent in the disease management strategy. The objective of this study was to assess the leaf blast-suppressing effects of rice phylloplane fungi. One Cladosporium sp. phylloplane fungus was shown to possess biocontrolling traits based on its morphological characteristics and an analysis of its 18S ribosomal DNA. Experiments aimed at determining the optimal time to apply the bioagent and the mechanisms involved in its rice blast-suppressing activities were performed under controlled greenhouse conditions. We used foliar spraying to apply the Cladosporium sp. 48 h prior to applying the pathogen, and we found that this increased the enzymatic activity. Furthermore, in vitro tests performed using isolate C24 showed that it possessed the ability to secrete endoxylanases and endoglucanases. When Cladosporium sp. was applied either prior to or simultaneous with the pathogen, we observed a significant increase in defence enzyme activity, and rice blast was suppressed by 84.0 and 78.6 %, respectively. However, some enzymes showed higher activity at 24 h while others did so at 48 h after the challenge inoculation. Cladosporium sp. is a biological agent that is capable of suppressing rice leaf blast by activating biochemical defence mechanisms in rice plants. It is highly adapted to natural field conditions and should be included in further studies aimed at developing strategies to support ecologically sustainable disease management and reduce environmental pollution by the judicious use of fungicidal sprays.
Collapse
Affiliation(s)
- Amanda Abdallah Chaibub
- Genetics of Microorganism Laboratory, Federal University of Goiás, Rodovia Goiânia/Nova Veneza, km 0. Goiânia, Goiás, 74001-970, Brazil
| | | | - Carlos de Sousa Silva
- Genetics of Microorganism Laboratory, Federal University of Goiás, Rodovia Goiânia/Nova Veneza, km 0. Goiânia, Goiás, 74001-970, Brazil
| | - Rosane Garcia Collevatti
- Genetics and Biodiversity Laboratory, Federal University of Goiás, Rodovia Goiânia/Nova Veneza, Km 0. Goiânia, Goiás, 74001-970, Brazil
| | - Fábio José Gonçalves
- Plant Pathology and Microbiology Laboratory at Embrapa Rice and Beans, Rodovia GO-462, km 12 Zona Rural C.P. 179, Cep, Santo Antônio de Goiás, GO, 75375-000, Brazil
| | - Márcio Vinícius de Carvalho Barros Côrtes
- Plant Pathology and Microbiology Laboratory at Embrapa Rice and Beans, Rodovia GO-462, km 12 Zona Rural C.P. 179, Cep, Santo Antônio de Goiás, GO, 75375-000, Brazil
| | - Marta Cristina Corsi de Filippi
- Plant Pathology and Microbiology Laboratory at Embrapa Rice and Beans, Rodovia GO-462, km 12 Zona Rural C.P. 179, Cep, Santo Antônio de Goiás, GO, 75375-000, Brazil.
| | - Fabrícia Paula de Faria
- Fungi Biotechnology Laboratory, Rodovia Goiânia / Nova Veneza, Km 0. Goiânia, Goiás, 74001-970, Brazil
| | | | - Leila Garcês de Araújo
- Genetics of Microorganism Laboratory, Federal University of Goiás, Rodovia Goiânia/Nova Veneza, km 0. Goiânia, Goiás, 74001-970, Brazil
| |
Collapse
|