1
|
Bizjan B, Rak G, Repinc SK, Ropret P, Kosel J. Inactivation of MS-2 virus in water by rotational generator of hydraulic shock. Heliyon 2024; 10:e39795. [PMID: 39524829 PMCID: PMC11544053 DOI: 10.1016/j.heliyon.2024.e39795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigates the effect of hydraulic shock waves on inactivation of MS-2 bacteriophage, a norovirus surrogate. A falling circular jet of water spiked with the MS-2 (∼1000 PFU/mL) was repeatedly impacted by a rotating blade, resulting in occurrence of hydraulic shock waves within the liquid region adjacent to the impact. The proof-of-concept rotational generator of hydraulic shock treating 9 L of water spiked with viruses was able to achieve 3 logs reduction of viral plaque count within 80-100 liquid passes at moderate blade impact velocities (namely, 70 and 88 m/s) despite the water temperature not exceeding 40 °C and no detectible cavitation. Within the first 20 liquid passes, most MS-2 capsid proteins were degraded, with their concentration reduced from 22 μg/mL to only 7.3 μg/mL. Due to the lack of further capsid protein destruction, additional reduction in MS-2 plaque count in subsequent 80 passes is indicative of damage inflicted to the viral recognition receptors. All this suggests that shockwaves of moderate amplitude (few tens of MPa) alone are sufficient for effective viral inactivation. Considering this and the device's good scalability potential, rotational hydraulic shock generators could prove effective in treating virus-contaminated waters.
Collapse
Affiliation(s)
- Benjamin Bizjan
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova 2, 1000, Ljubljana, Slovenia
| | - Gašper Rak
- University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova 2, 1000, Ljubljana, Slovenia
| | - Sabina Kolbl Repinc
- University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova 2, 1000, Ljubljana, Slovenia
- National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Polonca Ropret
- Institute for the Protection of Cultural Heritage of Slovenia, Poljanska 40, 1000, Ljubljana, Slovenia
- Smithsonian Museum Conservation Institute, 4210 Silver Hill Road, Suitland, MD, 20746, USA
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Janez Kosel
- Institute for the Protection of Cultural Heritage of Slovenia, Poljanska 40, 1000, Ljubljana, Slovenia
| |
Collapse
|
2
|
Fatullaev EI, Shavykin OV, Neelov IM. Molecular Dynamics of Lysine Dendrigrafts in Methanol-Water Mixtures. Int J Mol Sci 2023; 24:ijms24043063. [PMID: 36834474 PMCID: PMC9963150 DOI: 10.3390/ijms24043063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
The molecular dynamics method was used to study the structure and properties of dendrigrafts of the first and second generations in methanol-water mixtures with various volume fractions of methanol. At a small volume fraction of methanol, the size and other properties of both dendrigrafts are very similar to those in pure water. A decrease in the dielectric constant of the mixed solvent with an increase in the methanol fraction leads to the penetration of counterions into the dendrigrafts and a reduction of the effective charge. This leads to a gradual collapse of dendrigrafts: a decrease in their size, and an increase in the internal density and the number of intramolecular hydrogen bonds inside them. At the same time, the number of solvent molecules inside the dendrigraft and the number of hydrogen bonds between the dendrigraft and the solvent decrease. At small fractions of methanol in the mixture, the dominant secondary structure in both dendrigrafts is an elongated polyproline II (PPII) helix. At intermediate volume fractions of methanol, the proportion of the PPII helix decreases, while the proportion of another elongated β-sheet secondary structure gradually increases. However, at a high fraction of methanol, the proportion of compact α-helix conformations begins to increase, while the proportion of both elongated conformations decreases.
Collapse
Affiliation(s)
- Emil I. Fatullaev
- School of Computer Technologies and Control, St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
| | - Oleg V. Shavykin
- School of Computer Technologies and Control, St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
- Department of Mathematics, Tver State University, Sadoviy per. 35, 170102 Tver, Russia
| | - Igor M. Neelov
- School of Computer Technologies and Control, St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
3
|
Francoia JP, Vial L. Everything You Always Wanted to Know about Poly-l-lysine Dendrigrafts (But Were Afraid to Ask). Chemistry 2018; 24:2806-2814. [PMID: 29034997 DOI: 10.1002/chem.201704147] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/12/2017] [Indexed: 12/12/2022]
Abstract
Less than a decade ago, dendrigrafts of poly-l-lysine (DGLs) joined the family of polycationic dendritic macromolecules. Resulting from the iterative polycondensation of an N-carboxyanhydride in water, four generations of the dendrigraft can be obtained on a multigram scale and without chromatographic purification. DGLs share features with both dendrimers and hyperbranched polymers, but turned out to have unique biophysical and bioactive properties. The macromolecules-in their native form or functionalized-have been extensively characterized by various analytical and computational methods, and have already found numerous applications in the biomedical field, such as drug and gene delivery, biomaterials, tissue engineering, bioimaging, and biosensing. Despite a growing interest for DGLs, there is still plenty of room for further exciting developments that could result from a better exposure of these macromolecules, which is the ambition of this short review.
Collapse
Affiliation(s)
| | - Laurent Vial
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université de Montpellier-ENSCM, Place Eugène, Bataillon, 34296, Montpellier cedex 5, France.,Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 CNRS-Université Claude Bernard, Lyon 1-CPE Lyon-INSA, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| |
Collapse
|
4
|
Francoia JP, Rossi JC, Monard G, Vial L. Digitizing Poly-l-lysine Dendrigrafts: From Experimental Data to Molecular Dynamics Simulations. J Chem Inf Model 2017; 57:2173-2180. [PMID: 28853871 DOI: 10.1021/acs.jcim.7b00258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Despite the growing use of poly-l-lysine dendrigrafts in biomedical applications, a deeper understanding of the molecular level properties of these macromolecules is missing. Herein, we report a simple methodology for the construction of three-dimensional structures of poly-l-lysine dendrigrafts and the subsequent investigation of their structural features using microsecond molecular dynamics simulations. This methodology relies on the encoding of the polymers' experimental characterizations (i.e., composition, degrees of polymerization, branching ratios, charges) into alphanumeric strings that are readable by the Amber simulation package. Such an original approach opens avenues toward the in silico exploration of dendrigrafts and hyperbranched polymers.
Collapse
Affiliation(s)
- Jean-Patrick Francoia
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM , Place Eugéne Bataillon, 34296 Montpellier cedex 5, France
| | - Jean-Christophe Rossi
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM , Place Eugéne Bataillon, 34296 Montpellier cedex 5, France
| | - Gerald Monard
- Université de Lorraine, UMR 7565 SRSMC , Boulevard des Aiguillettes B.P. 70239, F-54506 Vandoeuvre-les-Nancy, France.,CNRS, UMR 7565 SRSMC , Boulevard des Aiguillettes B.P. 70239, F-54506 Vandoeuvre-les-Nancy, France
| | - Laurent Vial
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM , Place Eugéne Bataillon, 34296 Montpellier cedex 5, France.,Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 CNRS, Université Claude Bernard Lyon 1, CPE Lyon, INSA , 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne cedex, France
| |
Collapse
|