1
|
Su H, Lin J, Wang Y, Chen Q, Wang G, Tan F. Engineering Brevibacterium flavum
for the production of renewable bioenergy: C4-C5 advanced alcohols. Biotechnol Bioeng 2017; 114:1946-1958. [DOI: 10.1002/bit.26324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/18/2017] [Accepted: 04/26/2017] [Indexed: 12/30/2022]
Affiliation(s)
- HaiFeng Su
- Chongqing Institute of Green and Interligent Technology; Chinese Academy of Science; 266, Fangzheng Avenue, Shuitu High-Tech Park, Beibei Chongqing 400714 P. R. China
| | - JiaFu Lin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics, Chengdu University; Chengdu P. R. China
| | - YuanHong Wang
- Center of Analysis and Testing; School of Public Health; Institute of Analytical Chemistry for Life Science; Nantong University; Nantong P. R. China
| | - Qiao Chen
- Chongqing Institute of Green and Interligent Technology; Chinese Academy of Science; 266, Fangzheng Avenue, Shuitu High-Tech Park, Beibei Chongqing 400714 P. R. China
| | - GuangWei Wang
- Chongqing Institute of Green and Interligent Technology; Chinese Academy of Science; 266, Fangzheng Avenue, Shuitu High-Tech Park, Beibei Chongqing 400714 P. R. China
| | - FuRong Tan
- Biogas Institute of Ministry of Agriculture; Chengdu 610041 Sichuan P. R. China
| |
Collapse
|
2
|
Production of 2-methyl-1-butanol and 3-methyl-1-butanol in engineered Corynebacterium glutamicum. Metab Eng 2016; 38:436-445. [PMID: 27746323 DOI: 10.1016/j.ymben.2016.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 11/23/2022]
Abstract
The pentanol isomers 2-methyl-1-butanol and 3-methyl-1-butanol represent commercially interesting alcohols due to their potential application as biofuels. For a sustainable microbial production of these compounds, Corynebacterium glutamicum was engineered for producing 2-methyl-1-butanol and 3-methyl-1-butanol via the Ehrlich pathway from 2-keto-3-methylvalerate and 2-ketoisocaproate, respectively. In addition to an already available 2-ketoisocaproate producer, a 2-keto-3-methylvalerate accumulating C. glutamicum strain was also constructed. For this purpose, we reduced the activity of the branched-chain amino acid transaminase in an available C. glutamicuml-isoleucine producer (K2P55) via a start codon exchange in the ilvE gene enabling accumulation of up to 3.67g/l 2-keto-3-methylvalerate. Subsequently, nine strains expressing different gene combinations for three 2-keto acid decarboxylases and three alcohol dehydrogenases were constructed and characterized. The best strains accumulated 0.37g/l 2-methyl-1-butanol and 2.76g/l 3-methyl-1-butanol in defined medium within 48h under oxygen deprivation conditions, making these strains ideal candidates for additional strain and process optimization.
Collapse
|
3
|
Roy A, Ranjan A. HosA, a MarR Family Transcriptional Regulator, Represses Nonoxidative Hydroxyarylic Acid Decarboxylase Operon and Is Modulated by 4-Hydroxybenzoic Acid. Biochemistry 2016; 55:1120-34. [PMID: 26818787 DOI: 10.1021/acs.biochem.5b01163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Members of the Multiple antibiotic resistance Regulator (MarR) family of DNA binding proteins regulate transcription of a wide array of genes required for virulence and pathogenicity of bacteria. The present study reports the molecular characterization of HosA (Homologue of SlyA), a MarR protein, with respect to its target gene, DNA recognition motif, and nature of its ligand. Through a comparative genomics approach, we demonstrate that hosA is in synteny with nonoxidative hydroxyarylic acid decarboxylase (HAD) operon and is present exclusively within the mutS-rpoS polymorphic region in nine different genera of Enterobacteriaceae family. Using molecular biology and biochemical approach, we demonstrate that HosA binds to a palindromic sequence downstream to the transcription start site of divergently transcribed nonoxidative HAD operon and represses its expression. Furthermore, in silico analysis showed that the recognition motif for HosA is highly conserved in the upstream region of divergently transcribed operon in different genera of Enterobacteriaceae family. A systematic chemical search for the physiological ligand revealed that 4-hydroxybenzoic acid (4-HBA) interacts with HosA and derepresses HosA mediated repression of the nonoxidative HAD operon. Based on our study, we propose a model for molecular mechanism underlying the regulation of nonoxidative HAD operon by HosA in Enterobacteriaceae family.
Collapse
Affiliation(s)
- Ajit Roy
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500001, India.,Graduate studies, Manipal University , Manipal 576104, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500001, India
| |
Collapse
|
4
|
Wang Q, ding Y, Liu L, Shi J, Sun J, Xue Y. Engineering Escherichia coli for autoinducible production of n-butanol. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
5
|
Su H, Jiang J, Lu Q, Zhao Z, Xie T, Zhao H, Wang M. Engineering Corynebacterium crenatum to produce higher alcohols for biofuel using hydrolysates of duckweed (Landoltia punctata) as feedstock. Microb Cell Fact 2015; 14:16. [PMID: 25889648 PMCID: PMC4324788 DOI: 10.1186/s12934-015-0199-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/26/2015] [Indexed: 11/10/2022] Open
Abstract
Early trials have demonstrated great potential for the use of duckweed (family Lemnaceae) as the next generation of energy plants for the production of biofuels. Achieving this technological advance demands research to develop novel bioengineering microorganisms that can ferment duckweed feedstock to produce higher alcohols. In this study, we used relevant genes to transfer five metabolic pathways of isoleucine, leucine and valine from the yeast Saccharomyces cerevisiae into the bioengineered microorganism Corynebacterium crenatum. Experimental results showed that the bioengineered strain was able to produce 1026.61 mg/L of 2-methyl-1-butanol by fermenting glucose, compared to 981.79 mg/L from the acid hydrolysates of duckweed. The highest isobutanol yields achieved were 1264.63 mg/L from glucose and 1154.83 mg/L from duckweed, and the corresponding highest yields of 3-methyl-1-butanol were 748.35 and 684.79 mg/L. Our findings demonstrate the feasibility of using bioengineered C. crenatum as a platform to construct a bacterial strain that is capable of producing higher alcohols. We have also shown the promise of using duckweed as the basis for developing higher alcohols, illustrating that this group of plants represents an ideal fermentation substrate that can be considered the next generation of alternative energy feedstocks.
Collapse
Affiliation(s)
- Haifeng Su
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, PR China.
| | - Juan Jiang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, PR China.
| | - Qiuli Lu
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, PR China.
| | - Zhao Zhao
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, PR China.
| | - Tian Xie
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, PR China.
| | - Hai Zhao
- Bioenergy Laboratory, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, PR China.
| | - Maolin Wang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, PR China.
| |
Collapse
|