1
|
Sajjad W, Ilahi N, Haq A, Shang Z, Nabi G, Rafiq M, Bahadur A, Banerjee A, Kang S. Bacteria populating freshly appeared supraglacial lake possess metals and antibiotic-resistant genes. ENVIRONMENTAL RESEARCH 2024; 247:118288. [PMID: 38262510 DOI: 10.1016/j.envres.2024.118288] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/20/2024] [Indexed: 01/25/2024]
Abstract
Antibiotic resistance (AR) has been extensively studied in natural habitats and clinical applications. AR is mainly reported with the use and misuse of antibiotics; however, little is known about its presence in antibiotic-free remote supraglacial lake environments. This study evaluated bacterial strains isolated from supraglacial lake debris and meltwater in Dook Pal Glacier, northern Pakistan, for antibiotic-resistant genes (ARGs) and metal-tolerant genes (MTGs) using conventional PCR. Several distinct ARGs were reported in the bacterial strains isolated from lake debris (92.5%) and meltwater (100%). In lake debris, 57.5% of isolates harbored the blaTEM gene, whereas 58.3% of isolates in meltwater possessed blaTEM and qnrA each. Among the ARGs, qnrA was dominant in debris isolates (19%), whereas in meltwater isolates, qnrA (15.2%) and blaTEM (15.2%) were dominant. ARGs were widely distributed among the bacterial isolates and different bacteria shared similar types of ARGs. Relatively greater number of ARGs were reported in Gram-negative bacterial strains. In addition, 92.5% of bacterial isolates from lake debris and 83.3% of isolates from meltwater harbored MTGs. Gene copA was dominant in meltwater isolates (50%), whereas czcA was greater in debris bacterial isolates (45%). Among the MTGs, czcA (18.75%) was dominant in debris strains, whereas copA (26.0%) was greater in meltwater isolates. This presents the co-occurrence and co-selection of MTGs and ARGs in a freshly appeared supraglacial lake. The same ARGs and MTGs were present in different bacteria, exhibiting horizontal gene transfer (HGT). Both positive and negative correlations were determined between ARGs and MTGs. The research provides insights into the existence of MTGs and ARGs in bacterial strains isolated from remote supraglacial lake environments, signifying the need for a more detailed study of bacteria harboring ARGs and MTGs in supraglacial lakes.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Nikhat Ilahi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Abdul Haq
- Peshawar Laboratories Complex, Pakistan Council of Scientific and Industrial Research, Peshawar, 25120, Pakistan
| | - Zhanhuan Shang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Ghulam Nabi
- Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Abhishek Banerjee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Sajjad W, Ali B, Niu H, Ilahi N, Rafiq M, Bahadur A, Banerjee A, Kang S. High prevalence of antibiotic-resistant and metal-tolerant cultivable bacteria in remote glacier environment. ENVIRONMENTAL RESEARCH 2023; 239:117444. [PMID: 37858689 DOI: 10.1016/j.envres.2023.117444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
Studies of antibiotic-resistant bacteria (ARB) have mainly originated from anthropic-influenced environments, with limited information from pristine environments. Remote cold environments are major reservoirs of ARB and have been determined in polar regions; however, their abundance in non-polar cold habitats is underexplored. This study evaluated antibiotics and metals resistance profiles, prevalence of antibiotic resistance genes (ARGs) and metals tolerance genes (MTGs) in 38 ARB isolated from the glacier debris and meltwater from Baishui Glacier No 1, China. Molecular identification displayed Proteobacteria (39.3%) predominant in debris, while meltwater was dominated by Actinobacteria (30%) and Proteobacteria (30%). Bacterial isolates exhibited multiple antibiotic resistance index values > 0.2. Gram-negative bacteria displayed higher resistance to antibiotics and metals than Gram-positive. PCR amplification exhibited distinct ARGs in bacteria dominated by β-lactam genes blaCTX-M (21.1-71.1%), blaACC (21.1-60.5%), tetracycline-resistant gene tetA (21.1-60.5%), and sulfonamide-resistant gene sulI (18.4-52.6%). Moreover, different MTGs were reported in bacterial isolates, including mercury-resistant merA (21.1-63.2%), copper-resistant copB (18.4-57.9%), chromium-resistant chrA (15.8-44.7%) and arsenic-resistant arsB (10.5-44.7%). This highlights the co-selection and co-occurrence of MTGs and ARGs in remote glacier environments. Different bacteria shared same ARGs, signifying horizontal gene transfer between species. Strong positive correlation among ARGs and MTGs was reported. Metals tolerance range exhibited that Gram-negative and Gram-positive bacteria clustered distinctly. Gram-negative bacteria were significantly tolerant to metals. Amino acid sequences of blaACC,blaCTX-M,blaSHV,blaampC,qnrA, sulI, tetA and blaTEM revealed variations. This study presents promising ARB, harboring ARGs with variations in amino acid sequences, highlighting the need to assess the transcriptome study of glacier bacteria conferring ARGs and MTGs.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Barkat Ali
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Hewen Niu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; National Field Science Observation and Research Station of Yulong Snow Mountain Cryosphere and Sustainable Development, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Nikhat Ilahi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Engineering and Management Sciences, Balochistan University of Information Technology, Quetta, Pakistan
| | - Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Abhishek Banerjee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Caneschi A, Bardhi A, Barbarossa A, Zaghini A. The Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review. Antibiotics (Basel) 2023; 12:antibiotics12030487. [PMID: 36978354 PMCID: PMC10044628 DOI: 10.3390/antibiotics12030487] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
As warned by Sir Alexander Fleming in his Nobel Prize address: “the use of antimicrobials can, and will, lead to resistance”. Antimicrobial resistance (AMR) has recently increased due to the overuse and misuse of antibiotics, and their use in animals (food-producing and companion) has also resulted in the selection and transmission of resistant bacteria. The epidemiology of resistance is complex, and factors other than the overall quantity of antibiotics consumed may influence it. Nowadays, AMR has a serious impact on society, both economically and in terms of healthcare. This narrative review aimed to provide a scenario of the state of the AMR phenomenon in veterinary medicine related to the use of antibiotics in different animal species; the impact that it can have on animals, as well as humans and the environment, was considered. Providing some particular instances, the authors tried to explain the vastness of the phenomenon of AMR in veterinary medicine due to many and diverse aspects that cannot always be controlled. The veterinarian is the main reference point here and has a high responsibility towards the human–animal–environment triad. Sharing such a burden with human medicine and cooperating together for the same purpose (fighting and containing AMR) represents an effective example of the application of the One Health approach.
Collapse
Affiliation(s)
| | - Anisa Bardhi
- Correspondence: (A.B.); (A.B.); Tel.: +39-051-2097-500 (Andrea Barbarossa)
| | - Andrea Barbarossa
- Correspondence: (A.B.); (A.B.); Tel.: +39-051-2097-500 (Andrea Barbarossa)
| | | |
Collapse
|
4
|
Silverio MP, Kraychete GB, Rosado AS, Bonelli RR. Pseudomonas fluorescens Complex and Its Intrinsic, Adaptive, and Acquired Antimicrobial Resistance Mechanisms in Pristine and Human-Impacted Sites. Antibiotics (Basel) 2022; 11:antibiotics11080985. [PMID: 35892375 PMCID: PMC9331890 DOI: 10.3390/antibiotics11080985] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas spp. are ubiquitous microorganisms that exhibit intrinsic and acquired resistance to many antimicrobial agents. Pseudomonas aeruginosa is the most studied species of this genus due to its clinical importance. In contrast, the Pseudomonas fluorescens complex consists of environmental and, in some cases, pathogenic opportunistic microorganisms. The records of antimicrobial-resistant P. fluorescens are quite scattered, which hinders the recognition of patterns. This review compiles published data on antimicrobial resistance in species belonging to the P. fluorescens complex, which were identified through phylogenomic analyses. Additionally, we explored the occurrence of clinically relevant antimicrobial resistance genes in the genomes of the respective species available in the NCBI database. Isolates were organized into two categories: strains isolated from pristine sites and strains isolated from human-impacted or metal-polluted sites. Our review revealed that many reported resistant phenotypes in this complex might be related to intrinsic features, whereas some of them might be ascribed to adaptive mechanisms such as colistin resistance. Moreover, a few studies reported antimicrobial resistance genes (ARGs), mainly β-lactamases. In-silico analysis corroborated the low occurrence of transferable resistance mechanisms in this Pseudomonas complex. Both phenotypic and genotypic assays are necessary to gain insights into the evolutionary aspects of antimicrobial resistance in the P. fluorescens complex and the possible role of these ubiquitous species as reservoirs of clinically important and transmissible ARGs.
Collapse
Affiliation(s)
- Myllena Pereira Silverio
- Laboratório de Ecologia Molecular Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Gabriela Bergiante Kraychete
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Alexandre Soares Rosado
- Laboratório de Ecologia Molecular Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Raquel Regina Bonelli
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
5
|
Characteristics changes on Applications of Antibiotics and Current Approaches to Enhance Productivity with Soil Microbiome. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The contamination of environmental sully with antibiotics is regarded as a major problem today and predictable to attain more recognition in near future. However, human intervention resulting in antibiotic consumption is being enhancing all around the world. Our review of literature revealed the role of microbiome in sully and how antibiotic resistant genes raised. The structure of antibiotics basically influenced by natural components such as biotic and abiotic push which shifts based on different soils. Therefore, management of microbiome in soil and their expression studies were distinctively revealed. The assessment of antibiotic resistance genes with help of next generation sequencing provided a clear comprehension on genome and transcriptome of the bacterial genes. Thus, interaction of microbiome with soil can also be well understood. The current findings in our study will guide every researcher to follow logical protocol in analyzing microbiota composition is covered as well and also to understand its metagenomic and sequenced with next-generation sequencer which helps to comprehend the diverse micro-flora present in soil and its operation. Finally, later progresses in bioinformatics computer program, flow of work, and applications for analyzing metagenomic information are put in a nutshell.
Collapse
|
6
|
Canton L, Lanusse C, Moreno L. Rational Pharmacotherapy in Infectious Diseases: Issues Related to Drug Residues in Edible Animal Tissues. Animals (Basel) 2021; 11:2878. [PMID: 34679899 PMCID: PMC8532868 DOI: 10.3390/ani11102878] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Drugs are used in veterinary medicine to prevent or treat animal diseases. When rationally administered to livestock following Good Veterinary Practices (GVP), they greatly contribute to improving the production of food of animal origin. Since humans can be exposed chronically to veterinary drugs through the diet, residues in food are evaluated for effects following chronic exposures. Parameters such as an acceptable daily intake (ADI), the no-observed-adverse-effect level (NOAEL), maximum residue limits (MRLs), and the withdrawal periods (WPs) are determined for each drug used in livestock. Drug residues in food exceeding the MRLs usually appear when failing the GVP application. Different factors related either to the treated animal or to the type of drug administration, and even the type of cooking can affect the level of residues in edible tissues. Residues above the MRLs can have a diverse negative impact, mainly on the consumer's health, and favor antimicrobial resistance (AMR). Drug residue monitoring programmes are crucial to ensure that prohibited or authorized substances do not exceed MRLs. This comprehensive review article addresses different aspects of drug residues in edible tissues produced as food for human consumption and provides relevant information contributing to rational pharmacotherapy in food-producing animals.
Collapse
Affiliation(s)
| | | | - Laura Moreno
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBACONICET, Facultad de Ciencias Veterinarias, Tandil CP7000, Argentina; (L.C.); (C.L.)
| |
Collapse
|
7
|
Kang Y, Sun B, Chen Y, Lou Y, Zheng M, Li Z. Dental Plaque Microbial Resistomes of Periodontal Health and Disease and Their Changes after Scaling and Root Planing Therapy. mSphere 2021; 6:e0016221. [PMID: 34287005 PMCID: PMC8386447 DOI: 10.1128/msphere.00162-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/23/2021] [Indexed: 11/20/2022] Open
Abstract
The human oral microbial community has been considered a reservoir of antibiotic resistance. Currently, the effects of periodontitis and the scaling and root planing (SRP) treatment on the performance of antibiotic-resistant genes (ARGs) and metal-resistant genes (MRGs) in the dental plaque microbiota are not well characterized. To explore this issue, we selected 48 healthy-state (HS), 40 periodontitis-state (PS; before treatment), and 24 resolved-state (RS; after SRP treatment) metagenomic data of dental plaque samples from the Sequence Read Archive (SRA) database. NetShift analysis identified Fretibacterium fastidiosum, Tannerella forsythia, and Campylobacter rectus as key drivers during dental plaque microbiota alteration in the progression of periodontitis. Periodontitis and SRP treatment resulted in an increase in the number of ARGs and MRGs in dental plaque and significantly altered the composition of ARG and MRG profiles. Bacitracin, beta-lactam, macrolide-lincosamide-streptogramin (MLS), tetracycline, and multidrug resistance genes were the main classes of ARGs with high relative abundance, whereas multimetal, iron, chromium, and copper resistance genes were the primary types of MRGs in dental plaque microbiota. The cooccurrence of ARGs, MRGs, and mobile genetic elements (MGEs) indicated that a coselection phenomenon exists in the resistomes of dental plaque microbiota. Overall, our data provide new insights into the standing of the distribution of ARGs and MRGs in oral microbiota of periodontitis patients, and it was possible to contribute to the understanding of the complicated correlations among microorganisms, resistomes, and MGEs. IMPORTANCE The emergence and development of resistance to antibiotics in periodontal pathogens have affected the success rate of treatment for periodontitis. The development of new antibacterial strategies is urgently needed to help control and treat periodontal disease, and dental plaque microbiome studies offer a promising new angle of attack. In this study, we investigated the dental plaque microbiota and resistomes in periodontal health and disease states and their changes after SRP therapy. This is the first analysis of the profile of the microbial community and antibiotic and metal resistance genes in dental plaque by the metagenomic approach, to the best of our knowledge. Monitoring the profile of these resistomes has huge potential to provide reference levels for proper antibiotics use and the development of new antimicrobial strategies in periodontitis therapy and thereby improve actual efficacy of the treatment regimens.
Collapse
Affiliation(s)
- Yutong Kang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bianjin Sun
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Yiju Chen
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Meiqin Zheng
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
8
|
Greenman NA, Jurgensen SK, Holmes CP, Kapsak CJ, Davis RE, Maza WM, Edemba D, Esser BA, Hise SM, Keen TN, Larson HG, Lockwood DJ, Wang B, Harsh JA, Herrick JB. Genomics of Environmental Salmonella: Engaging Students in the Microbiology and Bioinformatics of Foodborne Pathogens. Front Microbiol 2021; 12:592422. [PMID: 33967968 PMCID: PMC8100199 DOI: 10.3389/fmicb.2021.592422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
We have developed and implemented an undergraduate microbiology course in which students isolate, characterize, and perform whole genome assembly and analysis of Salmonella enterica from stream sediments and poultry litter. In the development of the course and over three semesters, successive teams of undergraduate students collected field samples and performed enrichment and isolation techniques specific for the detection of S. enterica. Eighty-eight strains were confirmed using standard microbiological methods and PCR of the invA gene. The isolates' genomes were Illumina-sequenced by the Center for Food Safety and Applied Nutrition at the FDA and the Virginia state Division of Consolidated Laboratory Services as part of the GenomeTrakr program. Students used GalaxyTrakr and other web- and non-web-based platforms and tools to perform quality control on raw and assembled sequence data, assemble, and annotate genomes, identify antimicrobial resistance and virulence genes, putative plasmids, and other mobile genetic elements. Strains with putative plasmid-borne antimicrobial resistance genes were further sequenced by students in our research lab using the Oxford Nanopore MinIONTM platform. Strains of Salmonella that were isolated include human infectious serotypes such as Typhimurium and Infantis. Over 31 of the isolates possessed antibiotic resistance genes, some of which were located on large, multidrug resistance plasmids. Plasmid pHJ-38, identified in a Typhimurium isolate, is an apparently self-transmissible 183 kb IncA/C2 plasmid that possesses multiple antimicrobial resistance and heavy-metal resistance genes. Plasmid pFHS-02, identified in an Infantis isolate, is an apparently self-transmissible 303 kb IncF1B plasmid that also possesses numerous heavy-metal and antimicrobial resistance genes. Using direct and indirect measures to assess student outcomes, results indicate that course participation contributed to cognitive gains in relevant content knowledge and research skills such as field sampling, molecular techniques, and computational analysis. Furthermore, participants self-reported a deeper interest in scientific research and careers as well as psychosocial outcomes (e.g., sense of belonging and self-efficacy) commonly associated with student success and persistence in STEM. Overall, this course provided a powerful combination of field, wet lab, and computational biology experiences for students, while also providing data potentially useful in pathogen surveillance, epidemiological tracking, and for the further study of environmental reservoirs of S. enterica.
Collapse
Affiliation(s)
- Noah A. Greenman
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Sophie K. Jurgensen
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Charles P. Holmes
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Curtis J. Kapsak
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Raechel E. Davis
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - William M. Maza
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Desiree Edemba
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Bethany A. Esser
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Selena M. Hise
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Tara N. Keen
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Hunter G. Larson
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | | | - Brian Wang
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Joseph A. Harsh
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - James B. Herrick
- Department of Biology, James Madison University, Harrisonburg, VA, United States
- Center for Genome and Metagenome Studies, James Madison University, Harrisonburg, VA, United States
| |
Collapse
|
9
|
Chen J, Li J, Zhang H, Shi W, Liu Y. Bacterial Heavy-Metal and Antibiotic Resistance Genes in a Copper Tailing Dam Area in Northern China. Front Microbiol 2019; 10:1916. [PMID: 31481945 PMCID: PMC6710345 DOI: 10.3389/fmicb.2019.01916] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 08/05/2019] [Indexed: 12/02/2022] Open
Abstract
Heavy metal resistance genes (MRGs) and antibiotic resistance genes (ARGs) in bacteria can respond to the inducement of heavy metals. However, the co-occurrence of MRGs and ARGs in the long-term heavy metal contaminated area is still poorly understood. Here, we investigated the relationship between the abundance of soil bacteria MRGs, ARGs and heavy metal pollution in a copper tailing dam area of northern China. We found that arsC and ereA genes coding for resistance mechanisms to arsenic and to macrolides, respectively, are the most abundant MRG and ARG in the study area. The abundance of MRGs is positively correlated with cadmium (Cd) concentration, and this indicates the importance of Cd in the selection of MRGs. The network analysis results show that sulII and MRGs co-occur and copB occur with ARGs, which suggests that MRGs and ARGs can be co-selected in the soil contaminated by heavy metal. The network analysis also reveals the co-occurrence of Cd and MRGs, and thus heavy metal with a high 'toxic-response' factor can be used as the indicator of MRGs. This study improves the understanding of the relationship between bacterial resistance and multi-metal contamination, and underlies the exploration of the adaptive mechanism of microbes in the multi-metal contaminated environment.
Collapse
Affiliation(s)
- Jianwen Chen
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Junjian Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Hong Zhang
- School of Environment and Resources, Shanxi University, Taiyuan, China
| | - Wei Shi
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Yong Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| |
Collapse
|
10
|
Decundo JM, Diéguez SN, Martínez G, Romanelli A, Fernández Paggi MB, Pérez Gaudio DS, Amanto FA, Soraci AL. Impact of water hardness on oxytetracycline oral bioavailability in fed and fasted piglets. Vet Med Sci 2019; 5:517-525. [PMID: 31282118 PMCID: PMC6868454 DOI: 10.1002/vms3.185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Water hardness is a critical factor that affects oxytetracycline dissolution by chelation with cations. These interactions may lead to impaired dosing and consequently decrease absorption. Moreover, feed present in gastrointestinal tract may interact with antibiotic and alter pharmacokinetic parameters. In the present study, dissolution profiles of an oxytetracycline veterinary formulation were assessed in purified, soft and hard water. Furthermore, oxytetracycline absolute bioavailability, after oral administration of the drug dissolved in soft or hard water, was evaluated in fed and fasted piglets. A maximum dissolution of 86% and 80% was obtained in soft and hard water, respectively, while in purified water dissolution was complete. Results from in vivo study reconfirmed oxytetracycline's very low oral bioavailability. The greatest values were attained when antibiotic was dissolved in soft water and in fasted animals. Statistically significant lower absolute bioavailability was achieved when hard water was used and/or animals were fed. Moreover, Cmax attained in all treatments was lower than MIC90 of most important swine pathogens. For these reasons, the oral use of OTC formulations, that have demonstrated low oral bioavailability, should be avoided to treat systemic diseases in pigs. In the present study, dissolution profiles of an oxytetracycline veterinary formulation were assessed in purified, soft and hard water. Furthermore, oxytetracycline absolute bioavailability, after oral administration of the drug dissolved in soft or hard water, was evaluated in fed and fasted piglets. A maximum dissolution of 86% and 80% was obtained in soft and hard water respectively, while in purified water dissolution was complete. Results from in vivo study reconfirmed oxytetracycline's very low oral bioavailability, the lowest value statistically significant was achieved when hard water was used and/or fed animals. The use of low oral bioavailability antibiotics represents a risk factor that might lead to therapeutic failure and antimicrobial resistance, for these reasons the oral use of oxytetracycline to treat systemic diseases in pig production should be avoided.![]()
Collapse
Affiliation(s)
- Julieta M Decundo
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Argentina
| | - Susana N Diéguez
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Argentina.,Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), Tandil, Argentina
| | - Guadalupe Martínez
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Argentina
| | - Agustina Romanelli
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Argentina.,Área Fisiología de la Nutrición, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - María B Fernández Paggi
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Argentina.,Área Producción Porcina, Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Denisa S Pérez Gaudio
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Argentina
| | - Fabián A Amanto
- Área Producción Porcina, Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Alejandro L Soraci
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Argentina
| |
Collapse
|
11
|
Cycoń M, Mrozik A, Piotrowska-Seget Z. Antibiotics in the Soil Environment-Degradation and Their Impact on Microbial Activity and Diversity. Front Microbiol 2019; 10:338. [PMID: 30906284 PMCID: PMC6418018 DOI: 10.3389/fmicb.2019.00338] [Citation(s) in RCA: 419] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/08/2019] [Indexed: 01/11/2023] Open
Abstract
Antibiotics play a key role in the management of infectious diseases in humans, animals, livestock, and aquacultures all over the world. The release of increasing amount of antibiotics into waters and soils creates a potential threat to all microorganisms in these environments. This review addresses issues related to the fate and degradation of antibiotics in soils and the impact of antibiotics on the structural, genetic and functional diversity of microbial communities. Due to the emergence of bacterial resistance to antibiotics, which is considered a worldwide public health problem, the abundance and diversity of antibiotic resistance genes (ARGs) in soils are also discussed. When antibiotic residues enter the soil, the main processes determining their persistence are sorption to organic particles and degradation/transformation. The wide range of DT50 values for antibiotic residues in soils shows that the processes governing persistence depend on a number of different factors, e.g., physico-chemical properties of the residue, characteristics of the soil, and climatic factors (temperature, rainfall, and humidity). The results presented in this review show that antibiotics affect soil microorganisms by changing their enzyme activity and ability to metabolize different carbon sources, as well as by altering the overall microbial biomass and the relative abundance of different groups (i.e., Gram-negative bacteria, Gram-positive bacteria, and fungi) in microbial communities. Studies using methods based on analyses of nucleic acids prove that antibiotics alter the biodiversity of microbial communities and the presence of many types of ARGs in soil are affected by agricultural and human activities. It is worth emphasizing that studies on ARGs in soil have resulted in the discovery of new genes and enzymes responsible for bacterial resistance to antibiotics. However, many ambiguous results indicate that precise estimation of the impact of antibiotics on the activity and diversity of soil microbial communities is a great challenge.
Collapse
Affiliation(s)
- Mariusz Cycoń
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Sosnowiec, Poland
| | - Agnieszka Mrozik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Zofia Piotrowska-Seget
- Department of Microbiology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| |
Collapse
|
12
|
Wepking C, Avera B, Badgley B, Barrett JE, Franklin J, Knowlton KF, Ray PP, Smitherman C, Strickland MS. Exposure to dairy manure leads to greater antibiotic resistance and increased mass-specific respiration in soil microbial communities. Proc Biol Sci 2018; 284:rspb.2016.2233. [PMID: 28356447 DOI: 10.1098/rspb.2016.2233] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/27/2017] [Indexed: 01/08/2023] Open
Abstract
Intensifying livestock production to meet the demands of a growing global population coincides with increases in both the administration of veterinary antibiotics and manure inputs to soils. These trends have the potential to increase antibiotic resistance in soil microbial communities. The effect of maintaining increased antibiotic resistance on soil microbial communities and the ecosystem processes they regulate is unknown. We compare soil microbial communities from paired reference and dairy manure-exposed sites across the USA. Given that manure exposure has been shown to elicit increased antibiotic resistance in soil microbial communities, we expect that manure-exposed sites will exhibit (i) compositionally different soil microbial communities, with shifts toward taxa known to exhibit resistance; (ii) greater abundance of antibiotic resistance genes; and (iii) corresponding maintenance of antibiotic resistance would lead to decreased microbial efficiency. We found that bacterial and fungal communities differed between reference and manure-exposed sites. Additionally, the β-lactam resistance gene ampC was 5.2-fold greater under manure exposure, potentially due to the use of cephalosporin antibiotics in dairy herds. Finally, ampC abundance was positively correlated with indicators of microbial stress, and microbial mass-specific respiration, which increased 2.1-fold under manure exposure. These findings demonstrate that the maintenance of antibiotic resistance associated with manure inputs alters soil microbial communities and ecosystem function.
Collapse
Affiliation(s)
- Carl Wepking
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bethany Avera
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO 80521, USA
| | - Brian Badgley
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - John E Barrett
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Josh Franklin
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.,Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Partha P Ray
- Animal, Dairy and Food Chain Sciences, School of Agriculture, Policy and Development, University of Reading, Early Gate, Reading RG6 6AR, UK
| | - Crystal Smitherman
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | |
Collapse
|
13
|
Noyes NR, Weinroth ME, Parker JK, Dean CJ, Lakin SM, Raymond RA, Rovira P, Doster E, Abdo Z, Martin JN, Jones KL, Ruiz J, Boucher CA, Belk KE, Morley PS. Enrichment allows identification of diverse, rare elements in metagenomic resistome-virulome sequencing. MICROBIOME 2017; 5:142. [PMID: 29041965 PMCID: PMC5645900 DOI: 10.1186/s40168-017-0361-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/05/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND Shotgun metagenomic sequencing is increasingly utilized as a tool to evaluate ecological-level dynamics of antimicrobial resistance and virulence, in conjunction with microbiome analysis. Interest in use of this method for environmental surveillance of antimicrobial resistance and pathogenic microorganisms is also increasing. In published metagenomic datasets, the total of all resistance- and virulence-related sequences accounts for < 1% of all sequenced DNA, leading to limitations in detection of low-abundance resistome-virulome elements. This study describes the extent and composition of the low-abundance portion of the resistome-virulome, using a bait-capture and enrichment system that incorporates unique molecular indices to count DNA molecules and correct for enrichment bias. RESULTS The use of the bait-capture and enrichment system significantly increased on-target sequencing of the resistome-virulome, enabling detection of an additional 1441 gene accessions and revealing a low-abundance portion of the resistome-virulome that was more diverse and compositionally different than that detected by more traditional metagenomic assays. The low-abundance portion of the resistome-virulome also contained resistance genes with public health importance, such as extended-spectrum betalactamases, that were not detected using traditional shotgun metagenomic sequencing. In addition, the use of the bait-capture and enrichment system enabled identification of rare resistance gene haplotypes that were used to discriminate between sample origins. CONCLUSIONS These results demonstrate that the rare resistome-virulome contains valuable and unique information that can be utilized for both surveillance and population genetic investigations of resistance. Access to the rare resistome-virulome using the bait-capture and enrichment system validated in this study can greatly advance our understanding of microbiome-resistome dynamics.
Collapse
Affiliation(s)
- Noelle R Noyes
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maggie E Weinroth
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jennifer K Parker
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Chris J Dean
- Department of Computer Sciences, Colorado State University, Fort Collins, CO, USA
| | - Steven M Lakin
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert A Raymond
- Department of Computer Sciences, Colorado State University, Fort Collins, CO, USA
| | - Pablo Rovira
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Enrique Doster
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jennifer N Martin
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kenneth L Jones
- Department of Pediatrics, Section of Hematology Oncology and Bone Marrow Transplant, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jaime Ruiz
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
| | - Christina A Boucher
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
| | - Keith E Belk
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Paul S Morley
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
14
|
Toutain PL, Ferran AA, Bousquet-Melou A, Pelligand L, Lees P. Veterinary Medicine Needs New Green Antimicrobial Drugs. Front Microbiol 2016; 7:1196. [PMID: 27536285 PMCID: PMC4971058 DOI: 10.3389/fmicb.2016.01196] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/19/2016] [Indexed: 01/08/2023] Open
Abstract
Given that: (1) the worldwide consumption of antimicrobial drugs (AMDs) used in food-producing animals will increase over the coming decades; (2) the prudent use of AMDs will not suffice to stem the rise in human antimicrobial resistance (AMR) of animal origin; (3) alternatives to AMD use are not available or not implementable, there is an urgent need to develop novel AMDs for food-producing animals. This is not for animal health reasons, but to break the link between human and animal resistomes. In this review we establish the feasibility of developing for veterinary medicine new AMDs, termed "green antibiotics," having minimal ecological impact on the animal commensal and environmental microbiomes. We first explain why animal and human commensal microbiota comprise a "turnstile" exchange, between the human and animal resistomes. We then outline the ideal physico-chemical, pharmacokinetic, and pharmacodynamic properties of a veterinary green antibiotic and conclude that they can be developed through a rational screening of currently used AMD classes. The ideal drug will be hydrophilic, of relatively low potency, slow clearance and small volume of distribution. It should be eliminated principally by the kidney as inactive metabolite(s). For oral administration, bioavailability can be enhanced by developing lipophilic pro-drugs. For parenteral administration, slow-release formulations of existing eco-friendly AMDs with a short elimination half-life can be developed. These new eco-friendly veterinary AMDs can be developed from currently used drug classes to provide alternative agents to those currently used in veterinary medicine and mitigate animal contributions to the human AMR problem.
Collapse
Affiliation(s)
- Pierre-Louis Toutain
- Ecole Nationale Vétérinaire de Toulouse, Institut National de la Recherche Agronomique, TOXALIM, Université de ToulouseToulouse, France
| | - Aude A. Ferran
- Ecole Nationale Vétérinaire de Toulouse, Institut National de la Recherche Agronomique, TOXALIM, Université de ToulouseToulouse, France
| | - Alain Bousquet-Melou
- Ecole Nationale Vétérinaire de Toulouse, Institut National de la Recherche Agronomique, TOXALIM, Université de ToulouseToulouse, France
| | - Ludovic Pelligand
- Comparative Biomedical Sciences, The Royal Veterinary CollegeHatfield, UK
| | - Peter Lees
- Comparative Biomedical Sciences, The Royal Veterinary CollegeHatfield, UK
| |
Collapse
|
15
|
Noyes NR, Yang X, Linke LM, Magnuson RJ, Cook SR, Zaheer R, Yang H, Woerner DR, Geornaras I, McArt JA, Gow SP, Ruiz J, Jones KL, Boucher CA, McAllister TA, Belk KE, Morley PS. Characterization of the resistome in manure, soil and wastewater from dairy and beef production systems. Sci Rep 2016; 6:24645. [PMID: 27095377 PMCID: PMC4837390 DOI: 10.1038/srep24645] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/04/2016] [Indexed: 11/08/2022] Open
Abstract
It has been proposed that livestock production effluents such as wastewater, airborne dust and manure increase the density of antimicrobial resistant bacteria and genes in the environment. The public health risk posed by this proposed outcome has been difficult to quantify using traditional microbiological approaches. We utilized shotgun metagenomics to provide a first description of the resistome of North American dairy and beef production effluents, and identify factors that significantly impact this resistome. We identified 34 mechanisms of antimicrobial drug resistance within 34 soil, manure and wastewater samples from feedlot, ranch and dairy operations. The majority of resistance-associated sequences found in all samples belonged to tetracycline resistance mechanisms. We found that the ranch samples contained significantly fewer resistance mechanisms than dairy and feedlot samples, and that the resistome of dairy operations differed significantly from that of feedlots. The resistome in soil, manure and wastewater differed, suggesting that management of these effluents should be tailored appropriately. By providing a baseline of the cattle production waste resistome, this study represents a solid foundation for future efforts to characterize and quantify the public health risk posed by livestock effluents.
Collapse
Affiliation(s)
- Noelle R. Noyes
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Xiang Yang
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lyndsey M. Linke
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Roberta J. Magnuson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Shaun R. Cook
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB, Canada
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB, Canada
| | - Hua Yang
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, USA
| | - Dale R. Woerner
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ifigenia Geornaras
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jessica A. McArt
- Department of Population Medicine & Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Sheryl P. Gow
- Centre for Food-borne, Environmental Zoonotic Infectious Diseases, Public Health Agency of Canada, University of Saskatoon, Saskatchewan, Canada
| | - Jaime Ruiz
- Department of Computer Sciences, College of Natural Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kenneth L. Jones
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Denver, CO, USA
| | - Christina A. Boucher
- Department of Computer Sciences, College of Natural Sciences, Colorado State University, Fort Collins, CO, USA
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB, Canada
| | - Keith E. Belk
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, USA
| | - Paul S. Morley
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
16
|
Baker M, Hobman JL, Dodd CER, Ramsden SJ, Stekel DJ. Mathematical modelling of antimicrobial resistance in agricultural waste highlights importance of gene transfer rate. FEMS Microbiol Ecol 2016; 92:fiw040. [PMID: 26906100 DOI: 10.1093/femsec/fiw040] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2016] [Indexed: 01/19/2023] Open
Abstract
Antimicrobial resistance is of global concern. Most antimicrobial use is in agriculture; manures and slurry are especially important because they contain a mix of bacteria, including potential pathogens, antimicrobial resistance genes and antimicrobials. In many countries, manures and slurry are stored, especially over winter, before spreading onto fields as organic fertilizer. Thus, these are a potential location for gene exchange and selection for resistance. We develop and analyse a mathematical model to quantify the spread of antimicrobial resistance in stored agricultural waste. We use parameters from a slurry tank on a UK dairy farm as an exemplar. We show that the spread of resistance depends in a subtle way on the rates of gene transfer and antibiotic inflow. If the gene transfer rate is high, then its reduction controls resistance, while cutting antibiotic inflow has little impact. If the gene transfer rate is low, then reducing antibiotic inflow controls resistance. Reducing length of storage can also control spread of resistance. Bacterial growth rate, fitness costs of carrying antimicrobial resistance and proportion of resistant bacteria in animal faeces have little impact on spread of resistance. Therefore, effective treatment strategies depend critically on knowledge of gene transfer rates.
Collapse
Affiliation(s)
- Michelle Baker
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Jon L Hobman
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Christine E R Dodd
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Stephen J Ramsden
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Dov J Stekel
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| |
Collapse
|
17
|
Sun M, Ye M, Wu J, Feng Y, Wan J, Tian D, Shen F, Liu K, Hu F, Li H, Jiang X, Yang L, Kengara FO. Positive relationship detected between soil bioaccessible organic pollutants and antibiotic resistance genes at dairy farms in Nanjing, Eastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:421-428. [PMID: 26256145 DOI: 10.1016/j.envpol.2015.07.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 06/04/2023]
Abstract
Co-contaminated soils by organic pollutants (OPs), antibiotics and antibiotic resistance genes (ARGs) have been becoming an emerging problem. However, it is unclear if an interaction exists between mixed pollutants and ARG abundance. Therefore, the potential relationship between OP contents and ARG and class 1 integron-integrase gene (intI1) abundance was investigated from seven dairy farms in Nanjing, Eastern China. Phenanthrene, pentachlorophenol, sulfadiazine, roxithromycin, associated ARG genes, and intI1 had the highest detection frequencies. Correlation analysis suggested a stronger positive relationship between the ARG abundance and the bioaccessible OP content than the total OP content. Additionally, the significant correlation between the bioaccessible mixed pollutant contents and ARG/intI1 abundance suggested a direct/indirect impact of the bioaccessible mixed pollutants on soil ARG dissemination. This study provided a preliminary understanding of the interaction between mixed pollutants and ARGs in co-contaminated soils.
Collapse
Affiliation(s)
- Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mao Ye
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Jun Wu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yanfang Feng
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jinzhong Wan
- Nanjing Institute of Environmental Science, Ministry of Environmental Protection of China, Nanjing, 210042, China
| | - Da Tian
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fangyuan Shen
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kuan Liu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huixin Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Linzhang Yang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | | |
Collapse
|