1
|
Wang K, Yan D, Chen X, Xu Z, Cao W, Li H. New insight to the enriched microorganisms driven by pollutant concentrations and types for industrial and domestic wastewater via distinguishing the municipal wastewater treatment plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124789. [PMID: 39182810 DOI: 10.1016/j.envpol.2024.124789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Enriched microbial communities and their metabolic function were investigated from the three wastewater treatment plants (WWTPs), which were CWWTP (coking wastewater), MWWTP1 (domestic wastewater), and MWWTP2 (mixed wastewater with domestic wastewater and effluent from various industrial WWTPs that contained the mentioned CWWTP). Pollutant types and concentrations differed among the three WWTPs and the reaction units in each WWTP. CWWTP had a higher TCN and phenol concentrations than the MWWTPs, however, in MWWTP2 no phenol was discovered but 0.72 mg/L TCN was found in its anaerobic unit. RDA results revealed that COD, TN, TP, TCN, NO3--N, and phenol were the main factors influencing the microbial communities (P < 0.05). CPCoA confirmed the microbial community difference driven by pollutant types and concentrations (65.1% of variance, P = 0.006). They provided diverse growth environments and ecological niches for microorganisms, shaping unique bacterial community in each WWTP, as: Thiobacillus, Tepidiphilus, Soehngenia, Diaphorobacter in CWWTP; Saccharibacteria, Acidovorax, Flavobacterium, Gp4 in MWWTP1; and Mesorhizobium, Terrimicrobium, Shinella, Oscillochloris in MWWTP2. Group comparative was analyzed and indicated that these unique bacteria exhibited statistically significant difference (P < 0.01) among the WWTPs, and they were the biomarkers in each WWTP respectively. Co-occurrence and coexclusion patterns of bacteria revealed that the most of dominant bacteria in each WWTP were assigned to different modules respectively, and these microorganisms had a closer positive relationship in each module. Consistent with the functional profile prediction, xenobiotics biodegradation and metabolism were higher in CWWTP (3.86%) than other WWTPs. The distinct functional bacteria metabolized particular xenobiotics via oxidoreductases, isomerases, lyases, transferases, decarboxylase, hydroxylase, and hydrolase in each unit or WWTP. These results provided the evidences to support the idea that the pollutant types and concentration put selection stress on microorganisms in the activated sludge, shaping the distinct microbial community structure and function.
Collapse
Affiliation(s)
- Kedan Wang
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou, 450001, China
| | - Dengke Yan
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou, 450001, China
| | - Xiaolei Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zicong Xu
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou, 450001, China
| | - Wang Cao
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou, 450001, China
| | - Haisong Li
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Yu J, Xu X, Wang Y, Zhai X, Pan Z, Jiao X, Zhang Y. Prophage-mediated genome differentiation of the Salmonella Derby ST71 population. Microb Genom 2022; 8. [PMID: 35451954 PMCID: PMC9453062 DOI: 10.1099/mgen.0.000817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although Salmonella Derby ST71 strains have been recognized as poultry-specific by previous studies, multiple swine-associated S. Derby ST71 strains were identified in this long-term, multi-site epidemic study. Here, 15 representative swine-associated S. Derby ST71 strains were sequenced and compared with 65 (one swine-associated and 64 poultry-associated) S. Derby ST71 strains available in the NCBI database at a pangenomic level through comparative genomics analysis to identify genomic features related to the differentiation of swine-associated strains and previously reported poultry-associated strains. The distribution patterns of known Salmonella pathogenicity islands (SPIs) and virulence factor (VF) encoding genes were not capable of differentiating between the two strain groups. The results demonstrated that the S. Derby ST71 population harbours an open pan-genome, and swine-associated ST71 strains contain many more genes than the poultry-associated strains, mainly attributed to the prophage sequence contents in the genomes. The numbers of prophage sequences identified in the swine-associated strains were higher than those in the poultry-associated strains. Prophages specifically harboured by the swine-associated strains were found to contain genes that facilitate niche adaptation for the bacterial hosts. Gene deletion experiments revealed that the dam gene specifically present in the prophage of the swine-associated strains is important for S. Derby to adhere onto the host cells. This study provides novel insights into the roles of prophages during the genome differentiation of Salmonella.
Collapse
Affiliation(s)
- Jinyan Yu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, PR China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaomeng Xu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, PR China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, PR China
| | - Yu Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, PR China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, PR China
| | - Xianyue Zhai
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, PR China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, PR China
| | - Zhiming Pan
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, PR China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, PR China
| | - Xinan Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, PR China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, PR China
| | - Yunzeng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, PR China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, PR China
| |
Collapse
|
3
|
Matthews A, Majeed A, Barraclough TG, Raymond B. Function is a better predictor of plant rhizosphere community membership than 16S phylogeny. Environ Microbiol 2021; 23:6089-6103. [PMID: 34190398 DOI: 10.1111/1462-2920.15652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022]
Abstract
Rhizobacterial communities are important for plant health but we still have limited understanding of how they are constructed or how they can be manipulated. High-throughput 16S rRNA sequencing provides good information on taxonomic composition but remains an unreliable proxy for phenotypes. In this study, we tested the hypothesis that experimentally observed functional traits would be better predictors of community membership than phylogenetic origin. To test this hypothesis, we sampled communities on four plant species grown in two soil types and characterized 593 bacterial isolates in terms of antibiotic susceptibility, carbon metabolism, resource use and plant growth-promoting traits. In support of our hypothesis we found that three of the four plant species had phylogenetically diverse, but functionally constrained communities. Notably, communities did not grow best on complex media mimicking their host of origin but were distinguished by variation in overall growth characteristics (copiotrophy/oligotrophy) and antibiotic susceptibility. These data, combined with variation in phylogenetic structure, suggest that different classes of traits (antagonistic competition or resource-based) are more important in different communities. This culture-based approach supports and complements the findings of a previous high-throughput 16S rRNA analysis of this experiment and provides functional insights into the patterns observed with culture-independent methods.
Collapse
Affiliation(s)
- Andrew Matthews
- College of Life and Environmental Sciences, University of Exeter, Penryn, UK.,Department of Life Sciences, Imperial College London, Ascot, UK
| | - Afshan Majeed
- Department of Soil and Environmental Sciences, University of the Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | | | - Ben Raymond
- College of Life and Environmental Sciences, University of Exeter, Penryn, UK.,Department of Life Sciences, Imperial College London, Ascot, UK
| |
Collapse
|
4
|
Zhao Z, Xia L, Qin Z, Cao J, Omer Mohammed AA, Toland H. The environmental fate of phenanthrene in paddy field system and microbial responses in rhizosphere interface: Effect of water-saving patterns. CHEMOSPHERE 2021; 269:128774. [PMID: 33143890 DOI: 10.1016/j.chemosphere.2020.128774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
The effects of water-saving patterns (Semi-dry water-saving, B; Shallow-wet control irrigation, Q; Traditional flooding irrigation, C; and Moistening irrigation, S) on the environmental fate of phenanthrene (Phe) and microbial responses in rhizosphere were investigated in paddy field system. Results showed the rice grain in Q treatment was more high production and safety with less Phe residue (up to 18%-49%) than other treatments, and the residual Phe in soil declined in the order: C (14.17%) > S (13.36%) > B (5.86%)>Q (2.70%), which proves the existence of optimal water conditions for PAHs degradation and rhizosphere effect during rice cultivation. Laccase (LAC) and dioxygenase (C23O) played important roles in Phe degradation, which were significantly positively correlated with Phe dissipation rate in soil (p < 0.01). Moreover, their activities in Q treatment, rhizosphere and subsoil were higher than those in C treatment, non-rhizoshere and upper layer soil. The introduction of Phe and rice into paddy field system decreased the microorganism diversity, and promoted the activities of enzymes and some PAHs degrading bacteria, such as Delftia, Serratia, Enterobacter, Pseudomonas, norank_f_Rhodospirillaceae, norank_f_Nitrosomonadaceae and so on. According to the cluster analysis, redundancy analysis and correlation analysis between bacterial community composition and environmental factors, water-saving patterns markedly impacted the relative abundance and bacterial community structure by the regulating and controlling on environmental conditions of paddy field. The dioxygenase activity, laccase activity, oxidation-reduction potential and conductivity were the main affecting factors on Phe dissipation during growth stage of rice.
Collapse
Affiliation(s)
- Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| | - Liling Xia
- School of Computer & Software, Nanjing Institute of Industry Technology, Nanjing, 210016, PR China.
| | - Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jingjing Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Abduelrahman Adam Omer Mohammed
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Water Harvesting Center, Nyala University, Nyala, Sudan
| | - Harry Toland
- Department of Geography and Earth Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DB, UK
| |
Collapse
|
5
|
Rissanen AJ, Saarela T, Jäntti H, Buck M, Peura S, Aalto SL, Ojala A, Pumpanen J, Tiirola M, Elvert M, Nykänen H. Vertical stratification patterns of methanotrophs and their genetic controllers in water columns of oxygen-stratified boreal lakes. FEMS Microbiol Ecol 2021; 97:fiaa252. [PMID: 33316049 PMCID: PMC7840105 DOI: 10.1093/femsec/fiaa252] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022] Open
Abstract
The vertical structuring of methanotrophic communities and its genetic controllers remain understudied in the water columns of oxygen-stratified lakes. Therefore, we used 16S rRNA gene sequencing to study the vertical stratification patterns of methanotrophs in two boreal lakes, Lake Kuivajärvi and Lake Lovojärvi. Furthermore, metagenomic analyses were performed to assess the genomic characteristics of methanotrophs in Lovojärvi and the previously studied Lake Alinen Mustajärvi. The methanotroph communities were vertically structured along the oxygen gradient. Alphaproteobacterial methanotrophs preferred oxic water layers, while Methylococcales methanotrophs, consisting of putative novel genera and species, thrived, especially at and below the oxic-anoxic interface and showed distinct depth variation patterns, which were not completely predictable by their taxonomic classification. Instead, genomic differences among Methylococcales methanotrophs explained their variable vertical depth patterns. Genes in clusters of orthologous groups (COG) categories L (replication, recombination and repair) and S (function unknown) were relatively high in metagenome-assembled genomes representing Methylococcales clearly thriving below the oxic-anoxic interface, suggesting genetic adaptations for increased stress tolerance enabling living in the hypoxic/anoxic conditions. By contrast, genes in COG category N (cell motility) were relatively high in metagenome-assembled genomes of Methylococcales thriving at the oxic-anoxic interface, which suggests genetic adaptations for increased motility at the vertically fluctuating oxic-anoxic interface.
Collapse
Affiliation(s)
- Antti J Rissanen
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 6, FI-33720, Tampere, Finland
| | - Taija Saarela
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, FI-70210, Kuopio, Finland
| | - Helena Jäntti
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, FI-70210, Kuopio, Finland
| | - Moritz Buck
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, box 7050, SE-75007, Uppsala, Sweden
| | - Sari Peura
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Almas allé 5, SE-75651, Uppsala, Sweden
| | - Sanni L Aalto
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, FI-70210, Kuopio, Finland
- Department of Biological and Environmental Sciences, University of Jyväskylä, Survontie 9 C, FI-40014, Jyväskylä, Finland
| | - Anne Ojala
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, FI-00014, Helsinki, Finland
- Institute of Atmospheric and Earth System Research (INAR)/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 1, FI-00014, Helsinki, Finland
| | - Jukka Pumpanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, FI-70210, Kuopio, Finland
| | - Marja Tiirola
- Department of Biological and Environmental Sciences, University of Jyväskylä, Survontie 9 C, FI-40014, Jyväskylä, Finland
| | - Marcus Elvert
- MARUM - Center for Marine Environmental Sciences & Faculty of Geosciences, University of Bremen, Leobener Str. 8, D-28359, Bremen, Germany
| | - Hannu Nykänen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, FI-70210, Kuopio, Finland
| |
Collapse
|
6
|
Miao R, Guo M, Zhao X, Gong Z, Jia C, Li X, Zhuang J. Response of soil bacterial communities to polycyclic aromatic hydrocarbons during the phyto-microbial remediation of a contaminated soil. CHEMOSPHERE 2020; 261:127779. [PMID: 32736249 DOI: 10.1016/j.chemosphere.2020.127779] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/11/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Rhizo-box experiments were conducted to analyze the phyto-microbial remediation potential of a grass (Lolium multiflorum L.) and a crop (Glycine max L.) combined with exogenous strain (Pseudomonas sp.) for polycyclic aromatic hydrocarbons (PAHs) contaminated soils. The dynamics of bacterial community composition, abundances of 16 S rDNA and ring hydroxylating dioxygenases (RHDα) genes, and removal of PAHs were evaluated and compared on four culture stages (days 0, 10, 20, and 30). The results showed that 8.65%-47.42% of Σ12 PAHs were removed after 30 days of cultivation. Quantitative polymerase chain reaction (qPCR) analysis indicated that treatments with soybean and ryegrass rhizosphere markedly increased the abundances of total bacteria and PAH-degraders, especially facilitated the growth of gram-negative degrading bacteria. Flavobacterium sp. and Pseudomonas sp. were the main and active strains in the control soil. However, the presence of plants and/or exogenous Pseudomonas sp. changed the soil bacterial community structure and modified the bacterial diversity of PAH-degraders. On the whole, this study showed that the high molecular weight PAHs removal efficiency of phyto-microbial remediation with ryegrass was better than those of remediation with soybean. Furthermore, the removals of PAHs strongly coincided with the abundance of PAH-degraders and bacterial community structure.
Collapse
Affiliation(s)
- Renhui Miao
- International Joint Research Laboratory for Global Change Ecology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, PR China
| | - Meixia Guo
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Xuyang Zhao
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Zongqiang Gong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xiaojun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jie Zhuang
- Department of Biosystems Engineering and Soil Science, Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
7
|
Kotoky R, Pandey P. Difference in the rhizosphere microbiome of Melia azedarach during removal of benzo(a)pyrene from cadmium co-contaminated soil. CHEMOSPHERE 2020; 258:127175. [PMID: 32535435 DOI: 10.1016/j.chemosphere.2020.127175] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Benzo(a)pyrene (BaP) is a highly persistent biohazard polyaromatic hydrocarbon and often reported to be present in soils co-contaminated with heavy metals. The present study explains the rhizodegradation of BaP using bacterial consortium in the rhizosphere of Melia azedarach, along with a change in taxonomical and functional properties of the rhizosphere microbiome. The relative abundance of most dominant phylum Proteobacteria was 2% higher with BaP, while in the presence of both BaP and Cd, its abundance was 2.2% lower. Functional metagenome analysis also revealed the shifting of microbial community and functional gene abundance in the favor of xenobiotic compound degradation upon augmentation of bacterial consortium. Interestingly, upon the addition of BaP the range of functional abundance for genes of PAH degradation (0.165-0.19%), was found to be decreasing. However, augmentation of a bacterial consortium led to an increase in its abundance including genes for degradation of benzoate (0.55-0.64%), toluene (0.2-0.22%), naphthalene (0.25-0.295%) irrespective of the addition of BaP and Cd. Moreover, under greenhouse condition, the application of M. azedarach-bacterial consortium enhanced the degradation of BaP in the rhizosphere (88%) after 60 days, significantly higher than degradation in bulk soil (68.22%). The analysis also showed an increase in degradation of BaP by 15% with plant-native microbe association than in bulk soil. Therefore, the association of M. azedarach-bacterial consortium enhanced the degradation of BaP in soil along with the taxonomical and functional attributes of the rhizosphere microbiome.
Collapse
Affiliation(s)
- Rhitu Kotoky
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
8
|
Hidalgo KJ, Sierra-Garcia IN, Dellagnezze BM, de Oliveira VM. Metagenomic Insights Into the Mechanisms for Biodegradation of Polycyclic Aromatic Hydrocarbons in the Oil Supply Chain. Front Microbiol 2020; 11:561506. [PMID: 33072021 PMCID: PMC7530279 DOI: 10.3389/fmicb.2020.561506] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/24/2020] [Indexed: 02/01/2023] Open
Abstract
Petroleum is a very complex and diverse organic mixture. Its composition depends on reservoir location and in situ conditions and changes once crude oil is spilled into the environment, making the characteristics associated with every spill unique. Polycyclic aromatic hydrocarbons (PAHs) are common components of the crude oil and constitute a group of persistent organic pollutants. Due to their highly hydrophobic, and their low solubility tend to accumulate in soil and sediment. The process by which oil is sourced and made available for use is referred to as the oil supply chain and involves three parts: (1) upstream, (2) midstream and (3) downstream activities. As consequence from oil supply chain activities, crude oils are subjected to biodeterioration, acidification and souring, and oil spills are frequently reported affecting not only the environment, but also the economy and human resources. Different bioremediation techniques based on microbial metabolism, such as natural attenuation, bioaugmentation, biostimulation are promising approaches to minimize the environmental impact of oil spills. The rate and efficiency of this process depend on multiple factors, like pH, oxygen content, temperature, availability and concentration of the pollutants and diversity and structure of the microbial community present in the affected (contaminated) area. Emerging approaches, such as (meta-)taxonomics and (meta-)genomics bring new insights into the molecular mechanisms of PAH microbial degradation at both single species and community levels in oil reservoirs and groundwater/seawater spills. We have scrutinized the microbiological aspects of biodegradation of PAHs naturally occurring in oil upstream activities (exploration and production), and crude oil and/or by-products spills in midstream (transport and storage) and downstream (refining and distribution) activities. This work addresses PAH biodegradation in different stages of oil supply chain affecting diverse environments (groundwater, seawater, oil reservoir) focusing on genes and pathways as well as key players involved in this process. In depth understanding of the biodegradation process will provide/improve knowledge for optimizing and monitoring bioremediation in oil spills cases and/or to impair the degradation in reservoirs avoiding deterioration of crude oil quality.
Collapse
Affiliation(s)
- Kelly J. Hidalgo
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isabel N. Sierra-Garcia
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, Brazil
- Biology Department & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Bruna M. Dellagnezze
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, Brazil
| | - Valéria Maia de Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, Brazil
| |
Collapse
|
9
|
Guarino C, Zuzolo D, Marziano M, Conte B, Baiamonte G, Morra L, Benotti D, Gresia D, Stacul ER, Cicchella D, Sciarrillo R. Investigation and Assessment for an effective approach to the reclamation of Polycyclic Aromatic Hydrocarbon (PAHs) contaminated site: SIN Bagnoli, Italy. Sci Rep 2019; 9:11522. [PMID: 31395938 PMCID: PMC6687822 DOI: 10.1038/s41598-019-48005-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/26/2019] [Indexed: 02/05/2023] Open
Abstract
Native plant species were screened for their remediation potential for the removal of Polycyclic Aromatic Hydrocarbons (PAHs) contaminated soil of Bagnoli brownfield site (Southern Italy). Soils at this site contain all of the PAHs congeners at concentration levels well above the contamination threshold limits established by Italian environmental legislation for residential/recreational land use, which represent the remediation target. The concentration of 13 High Molecular Weight Polycyclic Aromatic Hydrocarbons in soil rhizosphere, plants roots and plants leaves was assessed in order to evaluate native plants suitability for a gentle remediation of the study area. Analysis of soil microorganisms are provides important knowledge about bioremediation approach. Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria are the main phyla of bacteria observed in polluted soil. Functional metagenomics showed changes in dioxygenases, laccase, protocatechuate, and benzoate-degrading enzyme genes. Indolacetic acid production, siderophores release, exopolysaccharides production and ammonia production are the key for the selection of the rhizosphere bacterial population. Our data demonstrated that the natural plant-bacteria partnership is the best strategy for the remediation of a PAHs-contaminated soil.
Collapse
Affiliation(s)
- Carmine Guarino
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy
| | - Mario Marziano
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy
| | - Barbara Conte
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy
| | - Giuseppe Baiamonte
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy
| | | | | | | | | | - Domenico Cicchella
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy.
| |
Collapse
|
10
|
Wu H, Wang M, Zhu S, Xie J, Preis S, Li F, Wei C. Structure and function of microbial community associated with phenol co-substrate in degradation of benzo[a]pyrene in coking wastewater. CHEMOSPHERE 2019; 228:128-138. [PMID: 31029958 DOI: 10.1016/j.chemosphere.2019.04.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/04/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
Coking wastewater (CWW) contains high contents of phenols and other toxic and refractory compounds including polycyclic aromatic hydrocarbons (PAHs) with the most carcinogenic benzo[a]pyrene (BaP) among them. The mechanism of PAHs/BaP degradation in activated sludge of CWW treatment with phenol as co-substrate was studied. For characterizing the structure and functions of microbial community associated with BaP degradation with phenol as co-substrate, high-throughput MiSeq sequencing was used to examine the 16S rRNA genes of microbiology, revealing noticeable shifts in CWW activated sludge bacterial populations. Major genera involved in anaerobic degradation were Tissierella_Soehngenia, Diaphorobacter and Geobacter, whereas in aerobic degradation Rhodanobacter, Dyella and Thauera prevailed. BaP degradation with phenol as co-substrate induced bacterial diversification in CWW activated sludge in opposite trends when anaerobic and aerobic conditions were applied. In order to predict the microbial community functional profiling, a bioinformatics software package of phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) was run to find that some dominant genera enriched in the BaP pathway may own the ability to degrade PAHs/BaP. Further experiments should focus on testing the dominant genera in BaP degradation at different oxygen levels.
Collapse
Affiliation(s)
- Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Ming Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Shuang Zhu
- Center for Bioresources & Drug Discovery and School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Junting Xie
- Center for Bioresources & Drug Discovery and School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Sergei Preis
- Department of Materials and Environmental Technology, Tallinn University of Technology, Tallinn, 19086, Estonia
| | - Fusheng Li
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
11
|
Kumar V, AlMomin S, Al-Aqeel H, Al-Salameen F, Nair S, Shajan A. Metagenomic analysis of rhizosphere microflora of oil-contaminated soil planted with barley and alfalfa. PLoS One 2018; 13:e0202127. [PMID: 30092049 PMCID: PMC6084965 DOI: 10.1371/journal.pone.0202127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/27/2018] [Indexed: 01/17/2023] Open
Abstract
The role of rhizosphere microbial communities in the degradation of hydrocarbons remains poorly understood and is a field of active study. We used high throughput sequencing to explore the rhizosphere microbial diversity in the alfalfa and barley planted oil contaminated soil samples. The analysis of 16s rRNA sequences showed Proteobacteria to be the most enriched (45.9%) followed by Bacteriodetes (21.4%) and Actinobacteria (10.4%) phyla. The results also indicated differences in the microbial diversity among the oil contaminated planted soil samples. The oil contaminated planted soil samples showed a higher richness in the microbial flora when compared to that of untreated samples, as indicated by the Chao1 indices. However, the trend was different for the diversity measure, where oil contaminated barley planted soil samples showed slightly lower diversity indices. While the clustering of soil samples grouped the oil contaminated samples within and across the plant types, the clean sandy soil samples formed a separate group. The oil contaminated rhizosphere soil showed an enrichment of known oil-degrading genera, such as Alcanivorax and Aequorivita, later being specifically enriched in the contaminated soil samples planted with barley. Overall, we found a few well known oil-degrading bacterial groups to be enriched in the oil contaminated planted soil samples compared to the untreated samples. Further, phyla such as Thermi and Gemmatimonadetes showed an enrichment in the oil contaminated soil samples, indicating their potential role in hydrocarbon degradation. The findings of the current study will be useful in understanding the rhizosphere microflora responsible for oil degradation and thus can help in designing appropriate phytoremediation strategies for oil contaminated lands.
Collapse
Affiliation(s)
- Vinod Kumar
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
- * E-mail:
| | - Sabah AlMomin
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Hamed Al-Aqeel
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Fadila Al-Salameen
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Sindhu Nair
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Anisha Shajan
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| |
Collapse
|
12
|
Song M, Cheng Z, Luo C, Jiang L, Zhang D, Yin H, Zhang G. Rhizospheric effects on the microbial community of e-waste-contaminated soils using phospholipid fatty acid and isoprenoid glycerol dialkyl glycerol tetraether analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9904-9914. [PMID: 29374376 DOI: 10.1007/s11356-018-1323-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/17/2018] [Indexed: 05/20/2023]
Abstract
We performed the study of rhizospheric effects on soil microbial community structure, including bacteria, fungi, actinomycete, and archaea, at an electronic waste (e-waste) recycling site by analyzing the phospholipid fatty acid (PLFA) and isoprenoid glycerol dialkyl glycerol tetraether (GDGT) contents. By comparing PLFA and isoprenoid GDGT profiles of rhizospheric and surrounding bulk soils of 11 crop species, we observed distinct microbial community structures. The total PLFA concentration was significantly higher in rhizospheric soils than in non-rhizospheric soils, whereas no obvious difference was found in the total isoprenoid GDGT concentrations. The microbial community structure was also different, with higher ratios of fungal-to-bacterial PLFAs (F/B) and lower relative abundance of Gram-positive bacteria in rhizospheric soils. The extent of rhizospheric effects varied among plant species, and Colocasia esculenta L. had the greatest positive effects on the total microbial biomass. Dissolved organic carbon and pH were the main environmental factors affecting the microbial community represented by PLFAs, while the archaeal community was influenced by copper and zinc in all soils. These results offer a comprehensive view of rhizospheric effects on microbes in heavy metal and persistent organic pollutant co-contaminated soil, and provide fundamental knowledge regarding microbial ecology in e-waste-contaminated soils.
Collapse
Affiliation(s)
- Mengke Song
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhineng Cheng
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Longfei Jiang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hua Yin
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
13
|
de Sousa STP, Cabral L, Lacerda Júnior GV, Oliveira VM. Diversity of aromatic hydroxylating dioxygenase genes in mangrove microbiome and their biogeographic patterns across global sites. Microbiologyopen 2017; 6. [PMID: 28544594 PMCID: PMC5552929 DOI: 10.1002/mbo3.490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/16/2017] [Accepted: 03/23/2017] [Indexed: 01/25/2023] Open
Abstract
Aromatic hydrocarbons (AH), such as polycyclic aromatic hydrocarbons, are compounds largely found in nature. Aromatic‐ring‐hydroxylating dioxygenases (ARHD) are proteins involved in AH degradation pathways. We used ARHD functional genes from an oil‐impacted mangrove area and compared their diversity with other sites around the world to understand the ARHD biogeographic distribution patterns. For this, a comprehensive database was established with 166 operational protein families (OPFs) from 1,758 gene sequences obtained from 15 different sites worldwide, of which twelve are already published studies and three are unpublished. Based on a deduced ARHD peptide sequences consensus phylogeny, we examined trends and divergences in the sequence phylogenetic clustering from the different sites. The taxonomic affiliation of the OPF revealed that Pseudomonas, Streptomyces, Variovorax, Bordetella and Rhodococcus were the five most abundant genera, considering all sites. The functional diversity analysis showed the enzymatic prevalence of benzene 1,2‐dioxygenase, 3‐phenylpropionate dioxygenase and naphthalene 1,2‐dioxygenase, in addition to 10.98% of undefined category ARHDs. The ARHD gene correlation analysis among different sites was essentially important to gain insights on spatial distribution patterns, genetic congruence and ecological coherence of the bacterial groups found. This work revealed the genetic potential from the mangrove sediment for AH biodegradation and a considerable evolutionary proximity among the dioxygenase OPFs found in Antarctica and South America sites, in addition to high level of endemism in each continental region.
Collapse
Affiliation(s)
- Sanderson T P de Sousa
- Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, São Paulo, Brazil.,Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lucélia Cabral
- Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, São Paulo, Brazil
| | - Gileno Vieira Lacerda Júnior
- Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, São Paulo, Brazil.,Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Valéria M Oliveira
- Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, São Paulo, Brazil
| |
Collapse
|
14
|
Oh SY, Fong JJ, Park MS, Lim YW. Distinctive Feature of Microbial Communities and Bacterial Functional Profiles in Tricholoma matsutake Dominant Soil. PLoS One 2016; 11:e0168573. [PMID: 27977803 PMCID: PMC5158061 DOI: 10.1371/journal.pone.0168573] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/03/2016] [Indexed: 02/01/2023] Open
Abstract
Tricholoma matsutake, the pine mushroom, is a valuable forest product with high economic value in Asia, and plays an important ecological role as an ectomycorrhizal fungus. Around the host tree, T. matsutake hyphae generate a distinctive soil aggregating environment called a fairy ring, where fruiting bodies form. Because T. matsutake hyphae dominate the soil near the fairy ring, this species has the potential to influence the microbial community. To explore the influence of T. matsutake on the microbial communities, we compared the microbial community and predicted bacterial function between two different soil types-T. matsutake dominant and T. matsutake minor. DNA sequence analyses showed that fungal and bacterial diversity were lower in the T. matsutake dominant soil compared to T. matsutake minor soil. Some microbial taxa were significantly more common in the T. matsutake dominant soil across geographic locations, many of which were previously identified as mycophillic or mycorrhiza helper bacteria. Between the two soil types, the predicted bacterial functional profiles (using PICRUSt) had significantly distinct KEGG modules. Modules for amino acid uptake, carbohydrate metabolism, and the type III secretion system were higher in the T. matsutake dominant soil than in the T. matsutake minor soil. Overall, similar microbial diversity, community structure, and bacterial functional profiles of the T. matsutake dominant soil across geographic locations suggest that T. matsutake may generate a dominance effect.
Collapse
Affiliation(s)
- Seung-Yoon Oh
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jonathan J. Fong
- Science Unit, Lingnan University, Tuen Mun, New Territories, Hong Kong
| | - Myung Soo Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Woon Lim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Zafra G, Taylor TD, Absalón AE, Cortés-Espinosa DV. Comparative metagenomic analysis of PAH degradation in soil by a mixed microbial consortium. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:702-710. [PMID: 27484946 DOI: 10.1016/j.jhazmat.2016.07.060] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/29/2016] [Accepted: 07/25/2016] [Indexed: 05/02/2023]
Abstract
In this study, we used a taxonomic and functional metagenomic approach to analyze some of the effects (e.g. displacement, permanence, disappearance) produced between native microbiota and a previously constructed Polycyclic Aromatic Hydrocarbon (PAH)-degrading microbial consortium during the bioremediation process of a soil polluted with PAHs. Bioaugmentation with a fungal-bacterial consortium and biostimulation of native microbiota using corn stover as texturizer produced appreciable changes in the microbial diversity of polluted soils, shifting native microbial communities in favor of degrading specific populations. Functional metagenomics showed changes in gene abundance suggesting a bias towards aromatic hydrocarbon and intermediary degradation pathways, which greatly favored PAH mineralization. In contrast, pathways favoring the formation of toxic intermediates such as cytochrome P450-mediated reactions were found to be significantly reduced in bioaugmented soils. PAH biodegradation in soil using the microbial consortium was faster and reached higher degradation values (84% after 30 d) as a result of an increased co-metabolic degradation when compared with other mixed microbial consortia. The main differences between inoculated and non-inoculated soils were observed in aromatic ring-hydroxylating dioxygenases, laccase, protocatechuate, salicylate and benzoate-degrading enzyme genes. Based on our results, we propose that several concurrent metabolic pathways are taking place in soils during PAH degradation.
Collapse
Affiliation(s)
- German Zafra
- Instituto Politécnico Nacional, CIBA-Tlaxcala, Carretera Estatal San Inés Tecuexcomac-Tepetitla Km 1.5, Tepetitla, Tlaxcala. 90700, Mexico
| | - Todd D Taylor
- RIKEN Center for Integrative Medical Sciences, Laboratory for Integrated Bioinformatics, Tsurumi-ku 230-0045, Yokohama, Kanagawa, Japan
| | - Angel E Absalón
- Instituto Politécnico Nacional, CIBA-Tlaxcala, Carretera Estatal San Inés Tecuexcomac-Tepetitla Km 1.5, Tepetitla, Tlaxcala. 90700, Mexico.
| | - Diana V Cortés-Espinosa
- Instituto Politécnico Nacional, CIBA-Tlaxcala, Carretera Estatal San Inés Tecuexcomac-Tepetitla Km 1.5, Tepetitla, Tlaxcala. 90700, Mexico.
| |
Collapse
|