1
|
Stapleton GS, Cazer CL, Gröhn YT. Modeling the Effect of Tylosin Phosphate on Macrolide-Resistant Enterococci in Feedlots and Reducing Resistance Transmission. Foodborne Pathog Dis 2020; 18:85-96. [PMID: 33006484 DOI: 10.1089/fpd.2020.2835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tylosin phosphate (TYL) is administered to more than 50% of U.S. beef cattle to reduce the incidence of liver abscesses but may increase the risk of macrolide-lincosamide-streptogramin-resistant bacteria disseminating from the feedlot. Limited evidence has been collected to understand how TYL affects the proportion of resistant bacteria in cattle or the feedlot environment. We created a mathematical model to investigate the effects of TYL administration on Enterococcus dynamics and examined preharvest strategies to mitigate the impact of TYL administration on resistance. The model simulated the physiological pharmacokinetics of orally administered TYL and estimated the pharmacodynamic effects of TYL on populations of resistant and susceptible Enterococcus within the cattle large intestine, feedlot pen, water trough, and feed bunk. The model parameters' population distributions were based on the available literature; 1000 Monte Carlo simulations were performed to estimate the likely distribution of outcomes. At the end of the simulated treatment period, the median estimated proportion of macrolide-resistant enterococci was only 1 percentage point higher within treated cattle compared with cattle not fed TYL, in part because the TYL concentrations in the large intestine were substantially lower than the enterococci minimum inhibitory concentrations. However, 25% of the simulated cattle had a >10 percentage point increase in the proportion of resistant enterococci associated with TYL administration, termed the TYL effect. The model predicts withdrawing TYL treatment and moving cattle to an antimicrobial-free terminal pen with a low prevalence of resistant environmental enterococci for as few as 6 days could reduce the TYL effect by up to 14 percentage points. Additional investigation of the importance of this subset of cattle to the overall risk of resistance transmission from feedlots will aid in the interpretation and implementation of resistance mitigation strategies.
Collapse
Affiliation(s)
| | - Casey L Cazer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Yrjö T Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Martzy R, Bica-Schröder K, Pálvölgyi ÁM, Kolm C, Jakwerth S, Kirschner AKT, Sommer R, Krska R, Mach RL, Farnleitner AH, Reischer GH. Simple lysis of bacterial cells for DNA-based diagnostics using hydrophilic ionic liquids. Sci Rep 2019; 9:13994. [PMID: 31570727 PMCID: PMC6768989 DOI: 10.1038/s41598-019-50246-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
The extraction of nucleic acids from microorganisms for subsequent molecular diagnostic applications is still a tedious and time-consuming procedure. We developed a method for the rapid preparation of genomic DNA from bacteria based on hydrophilic ionic liquids (ILs). First, we tested eight ILs in different buffer systems for their inhibitory effects on quantitative PCR. The cell lysis potential of different IL/buffer combinations was assessed by application on Enterococcus faecalis as a model organism for Gram-positive bacteria. The two best ILs, choline hexanoate and 1-ethyl-3-methylimidazolium acetate, were compared with the reference enzymatic method and two commercial DNA extraction kits. All methods were evaluated on four Gram-positive and four Gram-negative bacterial species that are highly relevant for environmental, food, or clinical diagnostics. In comparison to the reference method, extraction yields of the IL-based procedure were within one order of magnitude for most of the strains. The final protocol for DNA extraction using the two ILs is very low-cost, avoids the use of hazardous chemicals and can be performed in five minutes on a simple heating block. This makes the method ideal for high sample throughput and offers the opportunity for DNA extraction from bacteria in resource-limited settings or even in the field.
Collapse
Affiliation(s)
- Roland Martzy
- TU Wien, Institute of Chemical, Environmental & Bioscience Engineering, Molecular Diagnostics Group, Department of Agrobiotechnology (IFA-Tulln), Tulln, Austria
- ICC Interuniversity Cooperation Centre Water & Health, Vienna, Austria
| | - Katharina Bica-Schröder
- TU Wien, Institute of Applied Synthetic Chemistry, Research Group for Sustainable Organic Synthesis and Catalysis, Vienna, Austria
| | - Ádám Márk Pálvölgyi
- TU Wien, Institute of Applied Synthetic Chemistry, Research Group for Sustainable Organic Synthesis and Catalysis, Vienna, Austria
| | - Claudia Kolm
- TU Wien, Institute of Chemical, Environmental & Bioscience Engineering, Molecular Diagnostics Group, Department of Agrobiotechnology (IFA-Tulln), Tulln, Austria
- ICC Interuniversity Cooperation Centre Water & Health, Vienna, Austria
| | - Stefan Jakwerth
- ICC Interuniversity Cooperation Centre Water & Health, Vienna, Austria
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Unit Water Hygiene, Vienna, Austria
| | - Alexander K T Kirschner
- ICC Interuniversity Cooperation Centre Water & Health, Vienna, Austria
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Unit Water Hygiene, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Department for Pharmacology, Physiology and Microbiology, Research Area Water Quality and Health, Krems, Austria
| | - Regina Sommer
- ICC Interuniversity Cooperation Centre Water & Health, Vienna, Austria
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Unit Water Hygiene, Vienna, Austria
| | - Rudolf Krska
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Agrobiotechnology (IFA-Tulln), Tulln, Austria
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Robert L Mach
- TU Wien, Institute of Chemical, Environmental & Bioscience Engineering, Research Area Biochemical Technology 166/5, Vienna, Austria
| | - Andreas H Farnleitner
- ICC Interuniversity Cooperation Centre Water & Health, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Department for Pharmacology, Physiology and Microbiology, Research Area Water Quality and Health, Krems, Austria
- TU Wien, Institute of Chemical, Environmental & Bioscience Engineering, Research Area Biochemical Technology, Research Group of Environmental Microbiology and Molecular Diagnostics, Vienna, Austria
| | - Georg H Reischer
- TU Wien, Institute of Chemical, Environmental & Bioscience Engineering, Molecular Diagnostics Group, Department of Agrobiotechnology (IFA-Tulln), Tulln, Austria.
- TU Wien, Institute of Chemical, Environmental & Bioscience Engineering, Research Area Biochemical Technology, Research Group of Environmental Microbiology and Molecular Diagnostics, Vienna, Austria.
| |
Collapse
|
3
|
McClary JS, Ramos NA, Boehm AB. Photoinactivation of uncultured, indigenous enterococci. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:104-112. [PMID: 30525134 DOI: 10.1039/c8em00443a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Enterococci are used to monitor recreational water quality worldwide, so understanding their fate and transport in the environment is essential to the protection of human health. As such, researchers have documented enterococci inactivation under various exposure conditions and in diverse water matrices. However, the majority of studies have been performed using lab-cultured bacteria, which are distinct from indigenous, uncultured bacteria found in the environment. Here we investigate the photoinactivation of indigenous, uncultured enterococci from a range of sources, including wastewater treatment plants (WWTPs), marine beaches, urban streams, and a wastewater-influenced pond. We concentrated indigenous enterococci from their sources using filtration and centrifugation, placed them in a clear buffer solution, and then exposed them to simulated sunlight to measure their photoinactivation rates. First order decay rate constants (k) of indigenous, uncultured enterococci spanned an order of magnitude, from 0.3 to 2.3 m2 kJUVB-1. k values of indigenous enterococci from WWTPs tended to be larger than those from surface waters. The k value of lab-cultured Enterococcus faecalis was larger than those of indigenous, uncultured enterococci from most sources. Negative associations between the fraction of pigmented enterococci and sunlight susceptibility were observed. This work suggests that caution should be taken when extending results on bacterial photoinactivation obtained using lab-cultured bacteria to environmental bacteria, and that enterococci pigmentation may be a useful metric for estimating photoinactivation rate constants.
Collapse
Affiliation(s)
- Jill S McClary
- Civil & Environmental Engineering, Stanford University, Stanford, CA, USA.
| | | | | |
Collapse
|
4
|
Nelson KL, Boehm AB, Davies-Colley RJ, Dodd MC, Kohn T, Linden KG, Liu Y, Maraccini PA, McNeill K, Mitch WA, Nguyen TH, Parker KM, Rodriguez RA, Sassoubre LM, Silverman AI, Wigginton KR, Zepp RG. Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1089-1122. [PMID: 30047962 PMCID: PMC7064263 DOI: 10.1039/c8em00047f] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Health-relevant microorganisms present in natural surface waters and engineered treatment systems that are exposed to sunlight can be inactivated by a complex set of interacting mechanisms. The net impact of sunlight depends on the solar spectral irradiance, the susceptibility of the specific microorganism to each mechanism, and the water quality; inactivation rates can vary by orders of magnitude depending on the organism and environmental conditions. Natural organic matter (NOM) has a large influence, as it can attenuate radiation and thus decrease inactivation by endogenous mechanisms. Simultaneously NOM sensitizes the formation of reactive intermediates that can damage microorganisms via exogenous mechanisms. To accurately predict inactivation and design engineered systems that enhance solar inactivation, it is necessary to model these processes, although some details are not yet sufficiently well understood. In this critical review, we summarize the photo-physics, -chemistry, and -biology that underpin sunlight-mediated inactivation, as well as the targets of damage and cellular responses to sunlight exposure. Viruses that are not susceptible to exogenous inactivation are only inactivated if UVB wavelengths (280-320 nm) are present, such as in very clear, open waters or in containers that are transparent to UVB. Bacteria are susceptible to slightly longer wavelengths. Some viruses and bacteria (especially Gram-positive) are susceptible to exogenous inactivation, which can be initiated by visible as well as UV wavelengths. We review approaches to model sunlight-mediated inactivation and illustrate how the environmental conditions can dramatically shift the inactivation rate of organisms. The implications of this mechanistic understanding of solar inactivation are discussed for a range of applications, including recreational water quality, natural treatment systems, solar disinfection of drinking water (SODIS), and enhanced inactivation via the use of sensitizers and photocatalysts. Finally, priorities for future research are identified that will further our understanding of the key role that sunlight disinfection plays in natural systems and the potential to enhance this process in engineered systems.
Collapse
Affiliation(s)
- Kara L Nelson
- Civil and Environmental Engineering, University of California, Berkeley, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
McClary JS, Boehm AB. Transcriptional Response of Staphylococcus aureus to Sunlight in Oxic and Anoxic Conditions. Front Microbiol 2018; 9:249. [PMID: 29599752 PMCID: PMC5863498 DOI: 10.3389/fmicb.2018.00249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
The transcriptional response of Staphylococcus aureus strain Newman to sunlight exposure was investigated under both oxic and anoxic conditions using RNA sequencing to gain insight into potential mechanisms of inactivation. S. aureus is a pathogenic bacterium detected at recreational beaches which can cause gastrointestinal illness and skin infections, and is of increasing public health concern. To investigate the S. aureus photostress response in oligotrophic seawater, S. aureus cultures were suspended in seawater and exposed to full spectrum simulated sunlight. Experiments were performed under oxic or anoxic conditions to gain insight into the effects of oxygen-mediated and non-oxygen-mediated inactivation mechanisms. Transcript abundance was measured after 6 h of sunlight exposure using RNA sequencing and was compared to transcript abundance in paired dark control experiments. Culturable S. aureus decayed following biphasic inactivation kinetics with initial decay rate constants of 0.1 and 0.03 m2 kJ−1 in oxic and anoxic conditions, respectively. RNA sequencing revealed that 71 genes had different transcript abundance in the oxic sunlit experiments compared to dark controls, and 18 genes had different transcript abundance in the anoxic sunlit experiments compared to dark controls. The majority of genes showed reduced transcript abundance in the sunlit experiments under both conditions. Three genes (ebpS, NWMN_0867, and NWMN_1608) were found to have the same transcriptional response to sunlight between both oxic and anoxic conditions. In the oxic condition, transcripts associated with porphyrin metabolism, nitrate metabolism, and membrane transport functions were increased in abundance during sunlight exposure. Results suggest that S. aureus responds differently to oxygen-dependent and oxygen-independent photostress, and that endogenous photosensitizers play an important role during oxygen-dependent indirect photoinactivation.
Collapse
Affiliation(s)
- Jill S McClary
- Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
| | - Alexandria B Boehm
- Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
6
|
Zimmer-Faust AG, Thulsiraj V, Marambio-Jones C, Cao Y, Griffith JF, Holden PA, Jay JA. Effect of freshwater sediment characteristics on the persistence of fecal indicator bacteria and genetic markers within a Southern California watershed. WATER RESEARCH 2017; 119:1-11. [PMID: 28433878 DOI: 10.1016/j.watres.2017.04.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/22/2017] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
In this study, the aging of culturable FIB and DNA representing genetic markers for Enterococcus spp. (ENT1A), general Bacteroides (GB3), and human-associated Bacteroides (HF183) in freshwater sediments was evaluated. Freshwater sediment was collected from four different sites within the upper and lower reach of the Topanga Creek Watershed and two additional comparator sites within the Santa Monica Bay, for a total of six sites. Untreated (ambient) and oven-dried (reduced microbiota) sediment was inoculated with 5% sewage and artificial freshwater. Microcosms were held for a 21-day period and sampled on day 0, 1, 3, 5, 7, 12, and 21. There were substantial differences in decay among the sediments tested, and decay rates were related to sediment characteristics. In the ambient sediments, smaller particle size and higher levels of organic matter and nutrients (nitrogen and phosphorus) were associated with increased persistence of the GB3 marker and culturable Escherichia coli (cEC) and enterococci (cENT). The HF183 marker exhibited decay rates of -0.50 to -0.96 day-1, which was 2-5 times faster in certain ambient sediments than decay of culturable FIB and the ENT1A and GB3 markers. The ENT1A and GB3 markers decayed at rates of between -0.07 and -0.28 and -0.10 to -0.44 day-1, and cEC and cENT decayed at rates of between -0.22 and -0.81 and -0.03 and -0.40 day-1, respectively. In the oven-dried sediments, increased persistence of all indicators and potential for limited growth of culturable FIB and the GB3 and ENT1A markers was observed. A simplified two-box model using the HF183 marker and cENT decay rates generated from the microcosm experiments was applied to two reaches within the Topanga Canyon watershed in order to provide context for the variability in decay rates observed. The model predicted lower ambient concentrations of enterococci in sediment in the upper (90 MPN g-1) versus lower Topanga watershed (530 MPN g-1) and low ambient levels of the HF183 marker (below the LLOQ) in sediments in both lower and upper watersheds. It is important to consider the variability in the persistence of genetic markers and FIB when evaluating indicators of fecal contamination in sediments, even within one watershed.
Collapse
Affiliation(s)
- Amity G Zimmer-Faust
- Department of Civil and Environmental Engineering, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Vanessa Thulsiraj
- Department of Civil and Environmental Engineering, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Catalina Marambio-Jones
- Department of Civil and Environmental Engineering, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Yiping Cao
- Southern California Coastal Water Research Project, 3535 Harbor Blvd Ste 110, Costa Mesa, CA 92626, United States
| | - John F Griffith
- Southern California Coastal Water Research Project, 3535 Harbor Blvd Ste 110, Costa Mesa, CA 92626, United States
| | - Patricia A Holden
- Earth Research Institute and Bren School of Environmental Science & Management, University of California, Santa Barbara, CA 93106, United States
| | - Jennifer A Jay
- Department of Civil and Environmental Engineering, University of California at Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
7
|
Maraccini PA, Wenk J, Boehm AB. Exogenous indirect photoinactivation of bacterial pathogens and indicators in water with natural and synthetic photosensitizers in simulated sunlight with reduced UVB. J Appl Microbiol 2017; 121:587-97. [PMID: 27207818 DOI: 10.1111/jam.13183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/11/2016] [Accepted: 05/15/2016] [Indexed: 01/18/2023]
Abstract
AIMS To investigate the UVB-independent and exogenous indirect photoinactivation of eight human health-relevant bacterial species in the presence of photosensitizers. METHODS AND RESULTS Eight bacterial species were exposed to simulated sunlight with greatly reduced UVB light intensity in the presence of three synthetic photosensitizers and two natural photosensitizers. Inactivation curves were fit with shoulder log-linear or first-order kinetic models, from which the presence of a shoulder and magnitude of inactivation rate constants were compared. Eighty-four percent reduction in the UVB light intensity roughly matched a 72-95% reduction in the overall bacterial photoinactivation rate constants in sensitizer-free water. With the UVB light mostly reduced, the exogenous indirect mechanism contribution was evident for most bacteria and photosensitizers tested, although most prominently with the Gram-positive bacteria. CONCLUSIONS Results confirm the importance of UVB light in bacterial photoinactivation and, with the reduction of the UVB light intensity, that the Gram-positive bacteria are more vulnerable to the exogenous indirect mechanism than Gram-negative bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY UVB is the most important range of the sunlight spectrum for bacterial photoinactivation. In aquatic environments where photosensitizers are present and there is high UVB light attenuation, UVA and visible wavelengths can contribute to exogenous indirect photoinactivation.
Collapse
Affiliation(s)
- P A Maraccini
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA.,Engineering Research Center (ERC) for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), Stanford, CA, USA
| | - J Wenk
- Engineering Research Center (ERC) for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), Stanford, CA, USA.,Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - A B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA.,Engineering Research Center (ERC) for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), Stanford, CA, USA
| |
Collapse
|
8
|
Silverman AI, Nelson KL. Modeling the Endogenous Sunlight Inactivation Rates of Laboratory Strain and Wastewater E. coli and Enterococci Using Biological Weighting Functions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12292-12301. [PMID: 27934240 DOI: 10.1021/acs.est.6b03721] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Models that predict sunlight inactivation rates of bacteria are valuable tools for predicting the fate of pathogens in recreational waters and designing natural wastewater treatment systems to meet disinfection goals. We developed biological weighting function (BWF)-based numerical models to estimate the endogenous sunlight inactivation rates of E. coli and enterococci. BWF-based models allow the prediction of inactivation rates under a range of environmental conditions that shift the magnitude or spectral distribution of sunlight irradiance (e.g., different times, latitudes, water absorbances, depth). Separate models were developed for laboratory strain bacteria cultured in the laboratory and indigenous organisms concentrated directly from wastewater. Wastewater bacteria were found to be 5-7 times less susceptible to full-spectrum simulated sunlight than the laboratory bacteria, highlighting the importance of conducting experiments with bacteria sourced directly from wastewater. The inactivation rate models fit experimental data well and were successful in predicting the inactivation rates of wastewater E. coli and enterococci measured in clear marine water by researchers from a different laboratory. Additional research is recommended to develop strategies to account for the effects of elevated water pH on predicted inactivation rates.
Collapse
Affiliation(s)
- Andrea I Silverman
- Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt) , Berkeley, California 94720-1710, United States
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720-1710, United States
| | - Kara L Nelson
- Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt) , Berkeley, California 94720-1710, United States
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720-1710, United States
| |
Collapse
|
9
|
Maraccini PA, Mattioli MCM, Sassoubre LM, Cao Y, Griffith JF, Ervin JS, Van De Werfhorst LC, Boehm AB. Solar Inactivation of Enterococci and Escherichia coli in Natural Waters: Effects of Water Absorbance and Depth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5068-5076. [PMID: 27119980 DOI: 10.1021/acs.est.6b00505] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The decay of sewage-sourced Escherichia coli and enterococci was measured at multiple depths in a freshwater marsh, a brackish water lagoon, and a marine site, all located in California. The marine site had very clear water, while the waters from the marsh and lagoon contained colored dissolved organic matter that not only blocked light but also produced reactive oxygen species. First order decay rate constants of both enterococci and E. coli were between 1 and 2 d(-1) under low light conditions and as high as 6 d(-1) under high light conditions. First order decay rate constants were well correlated to the daily average UVB light intensity corrected for light screening incorporating water absorbance and depth, suggesting endogenous photoinactivation is a major pathway for bacterial decay. Additional laboratory experiments demonstrated the presence of colored dissolved organic matter in marsh water enhanced photoinactivation of a laboratory strain of Enterococcus faecalis, but depressed photoinactivation of sewage-sourced enterococci and E. coli after correcting for UVB light screening, suggesting that although the exogenous indirect photoinactivation mechanism may be active against Ent. faecalis, it is not for the sewage-source organisms. A simple linear regression model based on UVB light intensity appears to be a useful tool for predicting inactivation rate constants in natural waters of any depth and absorbance.
Collapse
Affiliation(s)
- Peter A Maraccini
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305, United States
- Engineering Research Center (ERC) for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt)
| | - Mia Catharine M Mattioli
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305, United States
| | - Lauren M Sassoubre
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305, United States
| | - Yiping Cao
- Southern California Coastal Water Research Project, 3535 Harbor Blvd Suite 110, Costa Mesa, California 92626, United States
| | - John F Griffith
- Southern California Coastal Water Research Project, 3535 Harbor Blvd Suite 110, Costa Mesa, California 92626, United States
| | - Jared S Ervin
- Earth Research Institute and Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106, United States
| | - Laurie C Van De Werfhorst
- Earth Research Institute and Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106, United States
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305, United States
- Engineering Research Center (ERC) for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt)
| |
Collapse
|
10
|
Maraccini PA, Wenk J, Boehm AB. Photoinactivation of Eight Health-Relevant Bacterial Species: Determining the Importance of the Exogenous Indirect Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5050-9. [PMID: 27121126 DOI: 10.1021/acs.est.6b00074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
It is presently unknown to what extent the endogenous direct, endogenous indirect, and exogenous indirect mechanisms contribute to bacterial photoinactivation in natural surface waters. In this study, we investigated the importance of the exogenous indirect mechanism by conducting photoinactivation experiments with eight health-relevant bacterial species (Bacteroides thetaiotaomicron, Campylobacter jejuni, Enterococcus faecalis, Escherichia coli K12, E. coli O157:H7, Salmonella enterica serovar Typhimurium LT2, Staphylococcus aureus, and Streptococcus bovis). We used three synthetic photosensitizers (methylene blue, rose bengal, and nitrite) and two model natural photosensitizers (Suwannee River natural organic matter and dissolved organic matter isolated from a wastewater treatment wetland) that generated singlet oxygen and hydroxyl radical. B. thetaiotaomicron had larger first order rate constants than all other organisms under all conditions tested. The presence of the synthetic photosensitizers generally enhanced photoinactivation of Gram-positive facultative anaerobes (Ent. faecalis, Staph. aureus, and Strep. bovis). Among Gram-negative bacteria, only methylene blue with E. coli K12 and rose bengal with C. jejuni showed an enhancing effect. The presence of model natural photosensitizers either reduced or did not affect photoinactivation rate constants. Our findings highlight the importance of the cellular membrane and photosensitizer properties in modulating the contribution of the exogenous indirect mechanism to the overall bacterial photoinactivation.
Collapse
Affiliation(s)
- Peter A Maraccini
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305, United States
- Engineering Research Center (ERC) for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), Stanford, California 94305, United States
| | - Jannis Wenk
- Department of Civil & Environmental Engineering, University of California , Berkeley, California 94720-1710, United States
- Engineering Research Center (ERC) for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), Stanford, California 94305, United States
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305, United States
- Engineering Research Center (ERC) for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), Stanford, California 94305, United States
| |
Collapse
|
11
|
Lui GY, Roser D, Corkish R, Ashbolt NJ, Stuetz R. Point-of-use water disinfection using ultraviolet and visible light-emitting diodes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 553:626-635. [PMID: 26967007 DOI: 10.1016/j.scitotenv.2016.02.039] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
Improvements in point-of-use (POU) drinking water disinfection technologies for remote and regional communities are urgently needed. Conceptually, UV-C light-emitting diodes (LEDs) overcome many drawbacks of low-pressure mercury tube based UV devices, and UV-A or visible light LEDs also show potential. To realistically evaluate the promise of LED disinfection, our study assessed the performance of a model 1.3 L reactor, similar in size to solar disinfection bottles. In all, 12 different commercial or semi-commercial LED arrays (270-740 nm) were compared for their ability to inactivate Escherichia coli K12 ATCC W3110 and Enterococcus faecalis ATCC 19433 over 6h. Five log10 and greater reductions were consistently achieved using the 270, 365, 385 and 405 nm arrays. The output of the 310 nm array was insufficient for useful disinfection while 430 and 455 nm performance was marginal (≈ 4.2 and 2.3-log10s E. coli and E. faecalis over the 6h). No significant disinfection was observed with the 525, 590, 623, 660 and 740 nm arrays. Delays in log-phase inactivation of E. coli were observed, particularly with UV-A wavelengths. The radiation doses required for >3-log10 reduction of E. coli and E. faecalis differed by 10 fold at 270 nm but only 1.5-2.5 fold at 365-455 nm. Action spectra, consistent with the literature, were observed with both indicators. The design process revealed cost and technical constraints pertaining to LED electrical efficiency, availability and lifetime. We concluded that POU LED disinfection using existing LED technology is already technically possible. UV-C LEDs offer speed and energy demand advantages, while UV-A/violet units are safer. Both approaches still require further costing and engineering development. Our study provides data needed for such work.
Collapse
Affiliation(s)
- Gough Yumu Lui
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; School of Photovoltaics and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - David Roser
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Richard Corkish
- School of Photovoltaics and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Nicholas J Ashbolt
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; School of Public Health, South Academic Building, University of Alberta, Edmonton, Alberta T6G 2G7, Canada.
| | - Richard Stuetz
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
12
|
Improved antibacterial phototoxicity of a neutral porphyrin in natural deep eutectic solvents. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 148:188-196. [PMID: 25966307 DOI: 10.1016/j.jphotobiol.2015.04.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/09/2015] [Accepted: 04/20/2015] [Indexed: 11/20/2022]
Abstract
Neutral porphyrins for antibacterial photodynamic therapy (aPDT) have received little attention due to their tendency to aggregate in aqueous media and reports of low phototoxic effect. These compounds may be less toxic to cells than positively and negatively charged photosensitisers. The preparation of highly bacterial phototoxic formulations of neutral porphyrins remains an open field of research with great potential if achievable. The purpose of this study was to develop novel hydrophilic formulations of the neutral porphyrin 5,10,15,20-tetrakis(4-hydroxyphenyl)-porphyrin (THPP) by use of natural deep eutectic solvents (NADES) prepared by the solvent evaporation method. Physical and photochemical stability and in vitro photoinactivation of Enterococcus faecalis and Escherichia coli were investigated. Two of the 15 NADES investigated demonstrated superior solubilising properties of THPP. The photostability of THPP was higher in NADES than in methanol. A 100-fold dilution of the preparations with buffer to a final concentration of 0.5-5 nM THPP resulted in complete photoinactivation of E. faecalis and E. coli both in their exponential and stationary phase. THPP demonstrated significantly higher phototoxicity when formulated in NADES than in other aqueous preparations like phosphate buffered saline. NADES as a formulation concept for photosensitisers shows a great potential in aPDT.
Collapse
|