1
|
Mantovam VB, Dos Santos DF, Giola Junior LC, Landgraf M, Pinto UM, Todorov SD. Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus: Threats to the Food Industry and Public Health. Foodborne Pathog Dis 2025. [PMID: 39761068 DOI: 10.1089/fpd.2024.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Foodborne pathogens have always been of public health concern and represent safety issues for food processors. These pathogens develop new ways to overcome antibiotics, survive in different environmental conditions, and the ability to reproduce in many hostile environments configure them as serious health hazards. Considering the huge number of microorganisms, three bacterial representatives were selected to provide a better knowledge about the question of which one is the worst enemy for humans, from the food industry point of view, taking into consideration their multiplication specificity, virulence, and resistance. As we constantly are exposed to these pathogens in our nutritional habits, this overview aims to summarize the most relevant characteristics associated with the pathogenicity, clinical symptoms and most importantly, how deadly Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus can be in the hospital and the food industry, by comparing among them. Overall, the microbiological knowledge clearly suggests that while all three pathogens are dangerous, L. monocytogenes presents the highest risk of death due to their ability to cause severe complications in vulnerable populations as it presents a range of virulence factors that facilitate evasion of the immune system and cytological effects. Additionally, it shows great resistance to standard food processing and preservation techniques, making it one of the most difficult pathogens to control. Understanding the risks and characteristics of these foodborne pathogens is essential for implementing effective control measures to prevent their occurrence in food products and to promote public health.
Collapse
Affiliation(s)
- Vinicius B Mantovam
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - David F Dos Santos
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Luis C Giola Junior
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Mariza Landgraf
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Uelinton M Pinto
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Svetoslav D Todorov
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, FoRC, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Gomaa B, Lu J, Abdelhamed H, Banes M, Pechanova O, Pechan T, Arick MA, Karsi A, Lawrence ML. Identification of Protein Biomarkers for Differentiating Listeria monocytogenes Genetic Lineage III. Foods 2024; 13:1302. [PMID: 38731673 PMCID: PMC11083783 DOI: 10.3390/foods13091302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Listeria monocytogenes is the causative agent of listeriosis, a severe foodborne illness characterized by septicemia, meningitis, encephalitis, abortions, and occasional death in infants and immunocompromised individuals. L. monocytogenes is composed of four genetic lineages (I, II, III, and IV) and fourteen serotypes. The aim of the current study was to identify proteins that can serve as biomarkers for detection of genetic lineage III strains based on simple antibody-based methods. Liquid chromatography (LC) with electrospray ionization tandem mass spectrometry (ESI MS/MS) followed by bioinformatics and computational analysis were performed on three L. monocytogenes strains (NRRL B-33007, NRRL B-33014, and NRRL B-33077), which were used as reference strains for lineages I, II, and III, respectively. Results from ESI MS/MS revealed 42 unique proteins present in NRRL B-33077 and absent in NRRL B-33007 and NRRL B-33014 strains. BLAST analysis of the 42 proteins against a broader panel of >80 sequenced strains from lineages I and II revealed four proteins [TM2 domain-containing protein (NRRL B-33077_2770), DUF3916 domain-containing protein (NRRL B-33077_1897), DNA adenine methylase (NRRL B-33077_1926), and protein RhsA (NRRL B-33077_1129)] that have no homology with any sequenced strains in lineages I and II. The four genes that encode these proteins were expressed in Escherichia coli strain DE3 and purified. Polyclonal antibodies were prepared against purified recombinant proteins. ELISA using the polyclonal antibodies against 12 L. monocytogenes lineage I, II, and III isolates indicated that TM2 protein and DNA adenine methylase (Dam) detected all lineage III strains with no reaction to lineage I and II strains. In conclusion, two proteins including TM2 protein and Dam are potentially useful biomarkers for detection and differentiation of L. monocytogenes lineage III strains in clinical, environmental, and food processing facilities. Furthermore, these results validate the approach of using a combination of proteomics and bioinformatics to identify useful protein biomarkers.
Collapse
Affiliation(s)
- Basant Gomaa
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (B.G.); (J.L.); (H.A.); (M.B.); (A.K.)
| | - Jingjun Lu
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (B.G.); (J.L.); (H.A.); (M.B.); (A.K.)
| | - Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (B.G.); (J.L.); (H.A.); (M.B.); (A.K.)
| | - Michelle Banes
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (B.G.); (J.L.); (H.A.); (M.B.); (A.K.)
| | - Olga Pechanova
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA; (O.P.); (T.P.); (M.A.A.II)
| | - Tibor Pechan
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA; (O.P.); (T.P.); (M.A.A.II)
| | - Mark A. Arick
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA; (O.P.); (T.P.); (M.A.A.II)
| | - Attila Karsi
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (B.G.); (J.L.); (H.A.); (M.B.); (A.K.)
| | - Mark L. Lawrence
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (B.G.); (J.L.); (H.A.); (M.B.); (A.K.)
| |
Collapse
|
3
|
Ravindhiran R, Sivarajan K, Sekar JN, Murugesan R, Dhandapani K. Listeria monocytogenes an Emerging Pathogen: a Comprehensive Overview on Listeriosis, Virulence Determinants, Detection, and Anti-Listerial Interventions. MICROBIAL ECOLOGY 2023; 86:2231-2251. [PMID: 37479828 DOI: 10.1007/s00248-023-02269-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Listeria monocytogenes, the third most deleterious zoonotic pathogen, is a major causative agent of animal and human listeriosis, an infection related to the consumption of contaminated food products. Even though, this pathogen has been responsible for the outbreaks of foodborne infections in the early 1980s, the major outbreaks have been reported during the past two decades. Listeriosis infection in the host is a rare but life-threatening disease with major public health and economic implications. Extensive reports on listeriosis outbreaks are associated with milk and milk products, meat and meat products, and fresh produce. This bacterium can adapt to any environmental and stress conditions, making it a prime causative agent for major foodborne diseases. The pathogen could survive an antibiotic treatment and persist in the host cell, thereby escaping the standard diagnostic practices. The current review strives to provide concise information on the epidemiology, serotypes, and pathogenesis of the L. monocytogenes to decipher the knowledge on the endurance of the pathogen inside the host and food products as a vehicle for Listeria contaminations. In addition, various detection methods for Listeria species from food samples and frontline regimens of L. monocytogenes treatment have also been discussed.
Collapse
Affiliation(s)
- Ramya Ravindhiran
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Karthiga Sivarajan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Jothi Nayaki Sekar
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Rajeswari Murugesan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Kavitha Dhandapani
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India.
| |
Collapse
|
4
|
Abdelhamed H, Nho SW, Kim SW, Reddy JS, Park SB, Jung TS, Lawrence ML. Serotype-identifying ions in Listeria monocytogenes using matrix-associated laser desorption ionization-time of flight mass spectrometry. Heliyon 2022; 8:e11769. [DOI: 10.1016/j.heliyon.2022.e11769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/23/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022] Open
|
5
|
Real-time PCR identification of Listeria monocytogenes serotype 4c using primers for novel target genes obtained by comparative genomic analysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Li F, Ye Q, Chen M, Zhou B, Xiang X, Wang C, Shang Y, Zhang J, Pang R, Wang J, Xue L, Cai S, Ding Y, Wu Q. Mining of novel target genes through pan-genome analysis for multiplex PCR differentiation of the major Listeria monocytogenes serotypes. Int J Food Microbiol 2020; 339:109026. [PMID: 33360877 DOI: 10.1016/j.ijfoodmicro.2020.109026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
The abundant information provided by the pan-genome analysis approach reveals the diversity among Listeria monocytogenes serotypes. The objective of this study was to mine novel target genes using pan-genome analysis for multiplex PCR detection and differentiation of the major L. monocytogenes serotypes present in food. Pan-genome analysis and PCR validation revealed a total of 10 specific targets: one for lineage I, two for serogroup I.1, one for serogroup I.2, two for lineage II, one for serogroup II.1, three for lineage III. Primers for the novel targets were highly specific in individual reactions. The detection limits were 103-104 colony-forming units (CFU)/mL in pure bacterial cultures, meeting the requirements of molecular detection. Based on these novel targets, two new "lineage" multiplex PCR assays were developed to simultaneously distinguish between three lineages (I, II, and III) and five major serotypes (1/2a, 1/2b, 1/2c, 4b, and 4c) of L. monocytogenes. The detection limits of lineage I and lineage II&III mPCRs were 0.771 pg/μL and 1.76 pg/μL genomic DNA, respectively. The specificity of the mPCRs was robustly verified using other L. monocytogenes and non-L. monocytogenes serotypes. These results suggest that the two "lineage" multiplex PCRs based on novel targets offer a promising approach for accurate, sensitive, and rapid identification of L. monocytogenes serotypes.
Collapse
Affiliation(s)
- Fan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Baoqing Zhou
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinran Xiang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chufang Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuting Shang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuzhen Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou, China.
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
7
|
Zhang X, Ling L, Li Z, Wang J. Mining Listeria monocytogenes single nucleotide polymorphism sites to identify the major serotypes using allele-specific multiplex PCR. Int J Food Microbiol 2020; 335:108885. [DOI: 10.1016/j.ijfoodmicro.2020.108885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 01/17/2023]
|
8
|
Matle I, Mbatha KR, Madoroba E. A review of Listeria monocytogenes from meat and meat products: Epidemiology, virulence factors, antimicrobial resistance and diagnosis. ACTA ACUST UNITED AC 2020; 87:e1-e20. [PMID: 33054262 PMCID: PMC7565150 DOI: 10.4102/ojvr.v87i1.1869] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Listeria monocytogenes is a zoonotic food-borne pathogen that is associated with serious public health and economic implications. In animals, L. monocytogenes can be associated with clinical listeriosis, which is characterised by symptoms such as abortion, encephalitis and septicaemia. In human beings, listeriosis symptoms include encephalitis, septicaemia and meningitis. In addition, listeriosis may cause gastroenteric symptoms in human beings and still births or spontaneous abortions in pregnant women. In the last few years, a number of reported outbreaks and sporadic cases associated with consumption of contaminated meat and meat products with L. monocytogenes have increased in developing countries. A variety of virulence factors play a role in the pathogenicity of L. monocytogenes. This zoonotic pathogen can be diagnosed using both classical microbiological techniques and molecular-based methods. There is limited information about L. monocytogenes recovered from meat and meat products in African countries. This review strives to: (1) provide information on prevalence and control measures of L. monocytogenes along the meat value chain, (2) describe the epidemiology of L. monocytogenes (3) provide an overview of different methods for detection and typing of L. monocytogenes for epidemiological, regulatory and trading purposes and (4) discuss the pathogenicity, virulence traits and antimicrobial resistance profiles of L. monocytogenes.
Collapse
Affiliation(s)
- Itumeleng Matle
- Bacteriology Division, Agricultural Research Council - Onderstepoort Veterinary Research, Onderstepoort, Pretoria, South Africa; and, Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida.
| | | | | |
Collapse
|
9
|
Lee J, Seo Y, Ha J, Kim S, Choi Y, Oh H, Lee Y, Kim Y, Kang J, Park E, Yoon Y. Influence of milk microbiota on Listeria monocytogenes survival during cheese ripening. Food Sci Nutr 2020; 8:5071-5076. [PMID: 32994967 PMCID: PMC7500772 DOI: 10.1002/fsn3.1806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/03/2022] Open
Abstract
This study aimed to compare the three strains of Listeria monocytogenes survival in raw milk cheese and pasteurized milk cheese and to suggest the effect of milk microbiota on survival. L. monocytogenes cell counts decreased in all cheese as ripening time increased, and the survival rate was different for the strains of L. monocytogenes. Furthermore, L. monocytogenes survived longer in raw milk cheese than in pasteurized milk cheese. The difference of bacterial survival in each cheese was independent of Aw or the Lactobacillus spp. populations in cheeses; there was no difference in Aw or Lactobacillus spp. populations in all cheeses. The richness of microbiota in raw milk was little higher than in pasteurized milk, and five phyla (Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Lentisphaerae, and Verrucomicrobia) were present only in raw milk. Also, organic acid-producing bacteria were presented more in pasteurized milk compared with raw milk; thus, the growth of L. monocytogenes was slower in pasteurized milk. In conclusion, differences in the microbial community of milk can affect the growth of L. monocytogenes. Making cheese using raw milk is a risk of L. monocytogenes infection; thus, efforts to prevent growth of L. monocytogenes such as the use of appropriate food additives are required.
Collapse
Affiliation(s)
- Jeeyeon Lee
- Department of Food and NutritionDong Eui UniversityBusanKorea
| | - Yeongeun Seo
- Department of Food and NutritionSookmyung Women’s UniversitySeoulKorea
| | - Jimyeong Ha
- Risk Analysis Research CenterSookmyung Women’s UniversitySeoulKorea
| | - Sejeong Kim
- Risk Analysis Research CenterSookmyung Women’s UniversitySeoulKorea
| | - Yukyung Choi
- Risk Analysis Research CenterSookmyung Women’s UniversitySeoulKorea
| | - Hyemin Oh
- Department of Food and NutritionSookmyung Women’s UniversitySeoulKorea
| | - Yewon Lee
- Department of Food and NutritionSookmyung Women’s UniversitySeoulKorea
| | - Yujin Kim
- Department of Food and NutritionSookmyung Women’s UniversitySeoulKorea
| | - Joohyun Kang
- Department of Food and NutritionSookmyung Women’s UniversitySeoulKorea
| | - Eunyoung Park
- Department of Food and NutritionSookmyung Women’s UniversitySeoulKorea
| | - Yohan Yoon
- Department of Food and NutritionSookmyung Women’s UniversitySeoulKorea
- Risk Analysis Research CenterSookmyung Women’s UniversitySeoulKorea
| |
Collapse
|
10
|
Matle I, Mafuna T, Madoroba E, Mbatha KR, Magwedere K, Pierneef R. Population Structure of Non-ST6 Listeria monocytogenes Isolated in the Red Meat and Poultry Value Chain in South Africa. Microorganisms 2020; 8:microorganisms8081152. [PMID: 32751410 PMCID: PMC7464360 DOI: 10.3390/microorganisms8081152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022] Open
Abstract
Meat products have been implicated in many listeriosis outbreaks globally, however there is a dearth of information on the diversity of L. monocytogenes isolates circulating in food products in South Africa. The aim of this study was to investigate the population structure of L. monocytogenes isolated in the meat value chain within the South African market. Based on whole-genome sequence analysis, a total of 217 isolates were classified into two main lineage groupings namely lineages I (n = 97; 44.7%) and II (n = 120; 55.3%). The lineage groups were further differentiated into IIa (n = 95, 43.8%), IVb (n = 69, 31.8%), IIb (n = 28, 12.9%), and IIc (n = 25, 11.5%) sero-groups. The most abundant sequence types (STs) were ST204 (n = 32, 14.7%), ST2 (n = 30, 13.8%), ST1 (n = 25, 11.5%), ST9 (n = 24, 11.1%), and ST321 (n = 21, 9.7%). In addition, 14 clonal complex (CCs) were identified with over-representation of CC1, CC3, and CC121 in "Processed Meat-Beef", "RTE-Poultry", and "Raw-Lamb" meat categories, respectively. Listeria pathogenic islands were present in 7.4% (LIPI-1), 21.7% (LIPI-3), and 1.8% (LIPI-4) of the isolates. Mutation leading to premature stop codons was detected in inlA virulence genes across isolates identified as ST121 and ST321. The findings of this study demonstrated a high-level of genomic diversity among L. monocytogenes isolates recovered across the meat value chain control points in South Africa.
Collapse
Affiliation(s)
- Itumeleng Matle
- Bacteriology Division, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa;
- Department of Agriculture and Animal Health, Science Campus, University of South Africa, Florida 1709, South Africa;
| | - Thendo Mafuna
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa;
- Biotechnology Platform, Agricultural Research Council-Onderstepoort Veterinary Research, Private Bag X 05, Onderstepoort 0110, Pretoria, South Africa
| | - Evelyn Madoroba
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa;
| | - Khanyisile R. Mbatha
- Department of Agriculture and Animal Health, Science Campus, University of South Africa, Florida 1709, South Africa;
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Land Reform and Rural Development, Pretoria 0001, South Africa;
| | - Rian Pierneef
- Biotechnology Platform, Agricultural Research Council-Onderstepoort Veterinary Research, Private Bag X 05, Onderstepoort 0110, Pretoria, South Africa
- Correspondence: ; Tel.: +27-12-5299-356
| |
Collapse
|
11
|
Feng Y, Yao H, Chen S, Sun X, Yin Y, Jiao X. Rapid Detection of Hypervirulent Serovar 4h Listeria monocytogenes by Multiplex PCR. Front Microbiol 2020; 11:1309. [PMID: 32676058 PMCID: PMC7333235 DOI: 10.3389/fmicb.2020.01309] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/22/2020] [Indexed: 11/17/2022] Open
Abstract
Listeria monocytogenes (L. monocytogenes) is a ubiquitous foodborne pathogen that comprises 14 serotypes, of which serovar 4h is a novel serotype recently reported. Serovar 4h L. monocytogenes belonging to hybrid sub-lineage II exhibit hypervirulent features. Conventional biochemical tests and widely used PCR-based serogrouping schemes could not distinguish serovar 4h strains. In this study, we developed a new multiplex PCR assay for rapid detection of serotype 4h L. monocytogenes. Three primer pairs based on the target genes, LMxysn_1095, lmo1083, and smcL, were designed. The multiplex PCR results showed that serovar 4h strains could be specifically identified from all tested strains, including various L. monocytogenes serovars, Listeria spp., and other species. The detection limits of the multiplex PCR were 291 fg/μL for genomic DNA and 5.5 × 106 CFU/mL for bacterial suspension. Furthermore, pork meat artificially contaminated with serovar 4h L. monocytogenes in a concentration of 1.8 × 103–1.8 × 100 CFU/10 g were successfully detected within 10–16 h. These results demonstrate that the multiplex PCR with high specificity and sensitivity is applicable for the rapid detection of L. monocytogenes serotype 4h strains.
Collapse
Affiliation(s)
- Youwei Feng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Hao Yao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Sisi Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiaowen Sun
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Yuelan Yin
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xin'an Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Alía A, Andrade MJ, Rodríguez A, Martín I, Pérez-Baltar A, Medina M, Córdoba JJ. Prevalence and characterization of Listeria monocytogenes in deboning and slicing areas of Spanish dry-cured ham processing. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Alía A, Andrade MJ, Córdoba JJ, Martín I, Rodríguez A. Development of a multiplex real-time PCR to differentiate the four major Listeria monocytogenes serotypes in isolates from meat processing plants. Food Microbiol 2019; 87:103367. [PMID: 31948615 DOI: 10.1016/j.fm.2019.103367] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/01/2019] [Accepted: 11/03/2019] [Indexed: 11/18/2022]
Abstract
Listeria monocytogenes is an important foodborne pathogen, causative agent of listeriosis. The epidemiology and persistence of this bacterium in meat processing plants may be related to its serotype, so it is of utmost importance to carry out a correct differentiation of L. monocytogenes serotypes. The objective of this study was to develop a unique quadruplex real-time quantitative PCR (qPCR) method able to differentiate the four most predominant and worrying L. monocytogenes serotypes (1/2a, 1/2b, 1/2c and 4b) in isolates from meat processing plants and ready-to-eat (RTE) dry-cured meat products. The design of specific primers and probes was based on the lmo0737, lmo0308, ORFC (locus genomically equivalent to gltA-gltB) and ORF2110 genes. A qPCR based on a fragment of the 16S rRNA gene was used to ensure the amplification of Listeria spp. genomic DNA. The standard curves showed efficiency values ranging between 92.3% and 105.8% and, R2 values > 0.98. The specificity of the method was also confirmed by the comparison of the results with those obtained by a previously reported conventional multiplex PCR. In addition, none of the strains which were not ascribed to L. monocytogenes amplified any of the target genes related to the four major serotypes of this pathogenic species. The qPCR, therefore, provides a sensitive, specific and rapid tool for identifying the L. monocytogenes serotypes 1/2a, 1/2b, 1/2c and 4b. This method could be very useful for identifying sources of L. monocytogenes contamination in the meat industry or for epidemiological monitoring of persistent strains throughout the processing of RTE meat products.
Collapse
Affiliation(s)
- Alberto Alía
- Food Hygiene and Safety, Meat and Meat Products Research Institute. Faculty of Veterinary Science, University of Extremadura, Avda. de Las Ciencias, S/n, 10003, Cáceres, Spain
| | - María J Andrade
- Food Hygiene and Safety, Meat and Meat Products Research Institute. Faculty of Veterinary Science, University of Extremadura, Avda. de Las Ciencias, S/n, 10003, Cáceres, Spain
| | - Juan J Córdoba
- Food Hygiene and Safety, Meat and Meat Products Research Institute. Faculty of Veterinary Science, University of Extremadura, Avda. de Las Ciencias, S/n, 10003, Cáceres, Spain
| | - Irene Martín
- Food Hygiene and Safety, Meat and Meat Products Research Institute. Faculty of Veterinary Science, University of Extremadura, Avda. de Las Ciencias, S/n, 10003, Cáceres, Spain
| | - Alicia Rodríguez
- Food Hygiene and Safety, Meat and Meat Products Research Institute. Faculty of Veterinary Science, University of Extremadura, Avda. de Las Ciencias, S/n, 10003, Cáceres, Spain.
| |
Collapse
|
14
|
Lopez-Valladares G, Danielsson-Tham ML, Tham W. Implicated Food Products for Listeriosis and Changes in Serovars of Listeria monocytogenes Affecting Humans in Recent Decades. Foodborne Pathog Dis 2018; 15:387-397. [PMID: 29958028 DOI: 10.1089/fpd.2017.2419] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Listeriosis is a foodborne disease with a high fatality rate, and infection is mostly transmitted through ready-to-eat (RTE) foods contaminated with Listeria monocytogenes, such as gravad/smoked fish, soft cheeses, and sliced processed delicatessen (deli) meat. Food products/dishes stored in vacuum or in modified atmospheres and with extended refrigerator shelf lives provide an opportunity for L. monocytogenes to multiply to large numbers toward the end of the shelf life. Elderly, pregnant women, neonates, and immunocompromised individuals are particularly susceptible to L. monocytogenes. Listeriosis in humans manifests primarily as septicemia, meningitis, encephalitis, gastrointestinal infection, and abortion. In the mid 1990s and early 2000s a shift from L. monocytogenes serovar 4b to serovar 1/2a causing human listeriosis occurred, and serovar 1/2a is becoming more frequently linked to outbreaks of listeriosis, particularly in Europe and Northern America. Consumer lifestyle has changed, and less time is available for food preparation. Modern lifestyle has markedly changed eating habits worldwide, with a consequent increased demand for RTE foods; therefore, more RTE and take away foods are consumed. There is a concern that many Listeria outbreaks are reported from hospitals. Therefore, it is vitally important that foods (especially cooked and chilled) delivered to hospitals and residential homes for senior citizens and elderly people are reheated to at least 72°C: cold food, such as turkey deli meat and cold-smoked and gravad salmon should be free from L. monocytogenes. Several countries have zero tolerance for RTE foods that support the growth of Listeria.
Collapse
Affiliation(s)
- Gloria Lopez-Valladares
- School of Hospitality, Culinary Arts and Meal Science, Örebro University , Grythyttan, Sweden
| | | | - Wilhelm Tham
- School of Hospitality, Culinary Arts and Meal Science, Örebro University , Grythyttan, Sweden
| |
Collapse
|
15
|
A multiplex PCR detection method for milk based on novel primers specific for Listeria monocytogenes 1/2a serotype. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.11.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Comparison of oxidative stress response and biofilm formation of Listeria monocytogenes serotypes 4b and 1/2a. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Abay S, Irkin R, Aydin F, Müştak HK, Diker KS. The prevalence of major foodborne pathogens in ready-to-eat chicken meat samples sold in retail markets in Turkey and the molecular characterization of the recovered isolates. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.03.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Chen JQ, Healey S, Regan P, Laksanalamai P, Hu Z. PCR-based methodologies for detection and characterization of Listeria monocytogenes and Listeria ivanovii in foods and environmental sources. FOOD SCIENCE AND HUMAN WELLNESS 2017. [DOI: 10.1016/j.fshw.2017.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Camargo AC, Woodward JJ, Nero LA. The Continuous Challenge of Characterizing the Foodborne Pathogen Listeria monocytogenes. Foodborne Pathog Dis 2016; 13:405-16. [PMID: 27120361 DOI: 10.1089/fpd.2015.2115] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen commonly isolated from food processing environments and food products. This organism can multiply at refrigeration temperatures, form biofilms on different materials and under various conditions, resist a range of environmental stresses, and contaminate food products by cross-contamination. L. monocytogenes is recognized as the causative agent of listeriosis, a serious disease that affects mainly individuals from high-risk groups, such as pregnant women, newborns, the elderly, and immunocompromised individuals. Listeriosis can be considered a disease that has emerged along with changing eating habits and large-scale industrial food processing. This disease causes losses of billions of dollars every year with recalls of contaminated foods and patient medical treatment expenses. In addition to the immune status of the host and the infecting dose, the virulence potential of each strain is crucial for the development of disease symptoms. While many isolates are naturally virulent, other isolates are avirulent and unable to cause disease; this may vary according to the presence of molecular determinants associated with virulence. In the last decade, the characterization of genetic profiles through the use of molecular methods has helped track and demonstrate the genetic diversity among L. monocytogenes isolates obtained from various sources. The purposes of this review were to summarize the main methods used for isolation, identification, and typing of L. monocytogenes and also describe its most relevant virulence characteristics.
Collapse
Affiliation(s)
- Anderson Carlos Camargo
- 1 Departamento de Veterinária, Universidade Federal de Viçosa , Viçosa, Minas Gerais, Brazil
| | | | - Luís Augusto Nero
- 1 Departamento de Veterinária, Universidade Federal de Viçosa , Viçosa, Minas Gerais, Brazil
| |
Collapse
|