1
|
Wan Y, Huang J, Tang Q, Zhang S, Qin H, Dong Y, Wang X, Qiu C, Huang M, Zhang Z, Zhang Y, Zhou R. Characterizing the Contribution of Functional Microbiota Cultures in Pit Mud to the Metabolite Profiles of Fermented Grains. Foods 2024; 13:1597. [PMID: 38890826 PMCID: PMC11171501 DOI: 10.3390/foods13111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/20/2024] Open
Abstract
Elevating the flavor profile of strong flavors Baijiu has always been a focal point in the industry, and pit mud (PM) serves as a crucial flavor contributor in the fermentation process of the fermented grains (FG). This study investigated the influence of wheat flour and bran (MC and FC) as PM culture enrichment media on the microbiota and metabolites of FG, aiming to inform strategies for improving strong-flavor Baijiu flavor. Results showed that adding PM cultures to FG significantly altered its properties: FC enhanced starch degradation to 51.46% and elevated reducing sugar content to 1.60%, while MC increased acidity to 2.11 mmol/10 g. PM cultures also elevated FG's ester content, with increases of 0.36 times for MC-FG60d and 1.48 times for FC-FG60d compared to controls, and ethyl hexanoate rising by 0.91 times and 1.39 times, respectively. Microbial analysis revealed that Lactobacillus constituted over 95% of the Abundant bacteria community, with Kroppenstedtia or Bacillus being predominant among Rare bacteria. Abundant fungi included Rasamsonia, Pichia, and Thermomyces, while Rare fungi consisted of Rhizopus and Malassezia. Metagenomic analysis revealed bacterial dominance, primarily consisting of Lactobacillus and Acetilactobacillus (98.80-99.40%), with metabolic function predictions highlighting genes related to metabolism, especially in MC-FG60d. Predictions from PICRUSt2 suggested control over starch, cellulose degradation, and the TCA cycle by fungal subgroups, while Abundant fungi and bacteria regulated ethanol and lactic acid production. This study highlights the importance of PM cultures in the fermentation process of FG, which is significant for brewing high-quality, strong-flavor Baijiu.
Collapse
Affiliation(s)
- Yingdong Wan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.W.); (J.H.); (Q.T.); (Z.Z.); (Y.Z.)
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.W.); (J.H.); (Q.T.); (Z.Z.); (Y.Z.)
| | - Qiuxiang Tang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.W.); (J.H.); (Q.T.); (Z.Z.); (Y.Z.)
| | - Suyi Zhang
- Luzhou Lao Jiao Co., Ltd., Luzhou 646699, China; (S.Z.); (H.Q.); (Y.D.); (X.W.); (C.Q.); (M.H.)
| | - Hui Qin
- Luzhou Lao Jiao Co., Ltd., Luzhou 646699, China; (S.Z.); (H.Q.); (Y.D.); (X.W.); (C.Q.); (M.H.)
| | - Yi Dong
- Luzhou Lao Jiao Co., Ltd., Luzhou 646699, China; (S.Z.); (H.Q.); (Y.D.); (X.W.); (C.Q.); (M.H.)
| | - Xiaojun Wang
- Luzhou Lao Jiao Co., Ltd., Luzhou 646699, China; (S.Z.); (H.Q.); (Y.D.); (X.W.); (C.Q.); (M.H.)
| | - Chuanfeng Qiu
- Luzhou Lao Jiao Co., Ltd., Luzhou 646699, China; (S.Z.); (H.Q.); (Y.D.); (X.W.); (C.Q.); (M.H.)
| | - Mengyang Huang
- Luzhou Lao Jiao Co., Ltd., Luzhou 646699, China; (S.Z.); (H.Q.); (Y.D.); (X.W.); (C.Q.); (M.H.)
| | - Zhu Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.W.); (J.H.); (Q.T.); (Z.Z.); (Y.Z.)
| | - Yi Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.W.); (J.H.); (Q.T.); (Z.Z.); (Y.Z.)
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.W.); (J.H.); (Q.T.); (Z.Z.); (Y.Z.)
| |
Collapse
|
2
|
Liu Y, Li M, Hong X, Li H, Huang R, Han S, Hou J, Pan C. Screening and identification of high yield tetramethylpyrazine strains in Nongxiangxing liquor Daqu and study on the mechanism of tetramethylpyrazine production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6849-6860. [PMID: 37293782 DOI: 10.1002/jsfa.12773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND There are few reports on the breeding of high-yielding tetramethylpyrazine (TTMP) strains in strong-flavor Daqu. In addition, studies on the mechanism of TTMP production in strains are mostly based on common physiological and biochemical indicators, and there is no report on RNA level. Therefore, in this study, a strain with high production of TTMP was screened out from strong-flavor liquor, and transcriptome sequencing analysis was performed to analyze its key metabolic pathways and key genes, and to infer the mechanism of TTMP production in the strain. RESULTS In this study, a strain with a high yield of tetramethylpyrazine (TTMP) was screened out, and the yield was 29.83 μg mL-1 . The identified strain was Bacillus velezensis, which could increase the content of TTMP in liquor by about 88%. After transcriptome sequencing, a total of 1851 differentially expressed genes were screened, including 1055 up-regulated genes and 796 down-regulated genes. Three pathways related to the production of TTMP were identified by gene ontology (GO) annotation and COG annotation, including carbohydrate metabolism, cell movement and amino acid metabolism. The key genes of TTMP were analyzed, and the factors that might regulate the production of TTMP, such as the transfer of uracil phosphate ribose and glycosyltransferase, were obtained. CONCLUSIONS A strain of B. velezensis with high TTMP production was screened and identified in strong-flavor Daqu for the first time. The yield of TTMP was 29.83 μg mL-1 , which increased the TTMP content in liquor by 88%. The key metabolic pathways of TTMP production in the strain were obtained: carbohydrate metabolism, cell movement and amino acid metabolism, and the key regulatory genes of each pathway were found, which complemented the gap in gene level in the production regulation of the strain, and provided a theoretical basis for the subsequent study of TTMP in liquor. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanbo Liu
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Henan Province Brewing Special Grain Development and Application Engineering Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Mengke Li
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Henan Province Brewing Special Grain Development and Application Engineering Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xinfeng Hong
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Henan Province Brewing Special Grain Development and Application Engineering Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Haideng Li
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, China
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Runna Huang
- Henan Yangshao Distillery Co., Ltd., Mianchi, China
| | - Suna Han
- Henan Yangshao Distillery Co., Ltd., Mianchi, China
| | | | - Chunmei Pan
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Henan Province Brewing Special Grain Development and Application Engineering Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
3
|
Mao F, Huang J, Zhou R, Qin H, Zhang S, Cai X, Qiu C. Succession of microbial community of the pit mud under the impact of Daqu of Nongxiang Baijiu. J Biosci Bioeng 2023; 136:304-311. [PMID: 37563058 DOI: 10.1016/j.jbiosc.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/12/2023]
Abstract
Complex microbiomes of pit mud play significant roles in imbuing flavors and qualities of Nongxiang Baijiu during fermentation. However, pit mud microbial enrichment and succession is a long process that is also accompanied by aging. Development of high-quality artificial pit mud becomes an urgent problem. In this study, a new medium based on space (TK) Daqu was used to effectively enrich the dominant microorganisms in pit mud. The results showed that Caproiciproducens was the most preponderance in the cultures unadded Daqu, whereas Clostridium sensu stricto 12 was the most preponderance, followed by Caproiciproducens in the enrichment cultures added TK Daqu. It is worth noting that TK Daqu balanced the relative abundance of Caproiciproducens and Clostridium sensu stricto 12 in 100-year pit mud culture (S100), which was more conducive to the increase of methanogens. PICRUSt2 prediction results showed that hydrogenotrophic methanogens could promote the synthesis of caproic acid by using the product H2 as the metabolic substrate and increased significantly in the pit mud enrichment cultures with TK Daqu. The increase of lactate dehydrogenase (EC 1.1.1.27) content in S100 contributed to the degradation of lactic acid and the increase of caproic acid. Adding TK Daqu enrichment cultures is more conducive to the enrichment and metabolic balance of pit mud microorganisms.
Collapse
Affiliation(s)
- Fengjiao Mao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; National Engineering Laboratory of Clean Technology for Leather Manufacture, Sichuan University, Chengdu 610065, China; National Engineering Research Centre of Solid-state Brewing, Luzhou 646000, China.
| | - Hui Qin
- Lu Zhou Lao Jiao Co., Ltd., Luzhou 646000, China
| | - Suyi Zhang
- Lu Zhou Lao Jiao Co., Ltd., Luzhou 646000, China
| | - Xiaobo Cai
- Lu Zhou Lao Jiao Co., Ltd., Luzhou 646000, China
| | | |
Collapse
|
4
|
Shoubao Y, Jie Y, TingTing S, Jiaquan G, Cuie S. Yeast diversity in pit mud and related volatile compounds in fermented grains of chinese strong-flavour liquor. AMB Express 2023; 13:56. [PMID: 37291367 DOI: 10.1186/s13568-023-01562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Chinese strong-flavour liquor is produced via a traditional solid-state fermentation strategy facilitated by live microorganisms in pit mud-based cellars. For the present analysis, pit mud samples from different spatial locations within fermentation cellars were collected, and the yeast communities therein were assessed via culture-based and denaturing gradient gel electrophoresis (DGGE) approaches. These analyses revealed significant differences in the composition of yeast communities present in different layers of pit mud. In total, 29 different yeast species were detected, and principal component analyses revealed clear differences in microbial diversity in pit mud samples taken from different cellar locations. Culture-dependent strategies similarly detected 20 different yeast species in these samples. However, while Geotrichum silvicola, Torulaspora delbrueckii, Hanseniaspora uvarum, Saturnispora silvae, Issatchenkia orientalis, Candida mucifera, Kazachstania barnettii, Cyberlindnera jadinii, Hanseniaspora spp., Alternaria tenuissima, Cryptococcus laurentii, Metschnikowia spp., and Rhodotorula dairenensis were detected via a PCR-DGGE approach, they were not detectable in culture-dependent analyses. In contrast, culture-based approaches led to the identification of Schizosaccharomyces pombe and Debaryomyces hansenii in these pit mud samples, whereas they were not detected using DGGE fingerprints profiles. An additional HS-SPME-GC-MS-based analysis of the volatile compounds present in fermented grains samples led to the identification of 66 such compounds, with the highest levels of volatile acids, esters, and alcohols being detected in fermented grains from lower layer samples. A canonical correspondence analysis (CCA) suggested they were significant correlations between pit mud yeast communities and associated volatile compounds in fermented grains.
Collapse
Affiliation(s)
- Yan Shoubao
- Department of biology and food engineering, Huainan Normal University, Huainan, 230038, China
- Brewing Industry Microbial Resource Development and Application Engineering Research Center in Anhui Province, Huainan Normal University, Huainan, 230038, China
- Anhui Yingjia Group Co., Ltd, Luan, 237271, China
| | - Yang Jie
- Department of biology and food engineering, Huainan Normal University, Huainan, 230038, China
- Brewing Industry Microbial Resource Development and Application Engineering Research Center in Anhui Province, Huainan Normal University, Huainan, 230038, China
| | - Shen TingTing
- Department of biology and food engineering, Huainan Normal University, Huainan, 230038, China
- Brewing Industry Microbial Resource Development and Application Engineering Research Center in Anhui Province, Huainan Normal University, Huainan, 230038, China
| | | | - Shi Cuie
- Department of biology and food engineering, Huainan Normal University, Huainan, 230038, China.
- Brewing Industry Microbial Resource Development and Application Engineering Research Center in Anhui Province, Huainan Normal University, Huainan, 230038, China.
| |
Collapse
|
5
|
Tanabe K, Monguchi M, Inoue R, Zamami R, Nakanishi R, Manabe A, Oe K, Komatsuzaki N, Shima J. Lentilactobacillus buchneri domination during the fermentation of Japanese traditional fermented fish (funazushi). Food Sci Nutr 2022; 10:4073-4079. [PMID: 36348771 PMCID: PMC9632191 DOI: 10.1002/fsn3.3002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022] Open
Abstract
Funazushi is a Japanese traditional fermented fish made with boiled rice without the addition of microbial starter cultures. Isolates from various commercial funazushi products, as identified by 16S rDNA sequences, suggested that Lentilactobacillus buchneri strains are major lactic acid bacteria. Based on an analysis of the putative CRISPR (clustered regularly interspaced short palindromic repeat) region, the genetic diversity of L. buchneri strains was examined. The data suggested that the diversity of L. buchneri strains depended on the factories at which funazushi was produced. An analysis of samples during fermentation indicated that the transition of microbes occurred, and L. buchneri was the dominant species. To determine the factors associated with domination, bacteriocin production and environmental stress tolerance, including NaCl and organic acid (lactate and acetate) tolerance, were evaluated. L. buchneri isolates did not produce bacteriocin. Although the isolates did not exhibit NaCl tolerance, they displayed higher lactate tolerance than other lactic acid bacteria isolated during funazushi fermentation. Based on reports that L. buchneri can convert lactate to acetate, the previous and present results suggested that lactate tolerance and lactate conversion in L. buchneri could explain its domination in funazushi. Our study presented a model for the domination mechanisms of specific microbes in fermented foods by spontaneous fermentation.
Collapse
Affiliation(s)
- Koichi Tanabe
- Faculty of AgricultureRyukoku UniversityOtsuJapan
- Microbial Resource Center for Fermentation and BrewingRyukoku UniversityOtsuJapan
| | | | - Ryoga Inoue
- Faculty of AgricultureRyukoku UniversityOtsuJapan
| | - Rio Zamami
- Faculty of AgricultureRyukoku UniversityOtsuJapan
| | | | - Ayano Manabe
- Faculty of AgricultureRyukoku UniversityOtsuJapan
| | - Kaho Oe
- Graduate School of AgricultureRyukoku UniversityOtsuJapan
| | | | - Jun Shima
- Faculty of AgricultureRyukoku UniversityOtsuJapan
- Microbial Resource Center for Fermentation and BrewingRyukoku UniversityOtsuJapan
| |
Collapse
|
6
|
Mu Y, Huang J, Zhou R, Zhang S, Qin H, Tang H, Pan Q, Tang H. Effects of Daqu Attributes on Distribution and Assembly Patterns of Microbial Communities and Their Metabolic Function of Artificial Pit Mud. Foods 2022; 11:2922. [PMID: 36141055 PMCID: PMC9498905 DOI: 10.3390/foods11182922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Daqu provides functional microbiota and various nutrients for artificial pit mud (APM) cultivation. However, little is known about whether its attributes affect the microbiome and metabolome of APM. Here, two types of APM were manufactured by adding fortified Daqu (FD) and conventional Daqu (CD); they were comprehensively compared by polyphasic detection methods after being used for two years. The results showed that FD altered the prokaryotic communities rather than the fungal ones, resulting in increased archaea and Clostridium_sensu_stricto_12 and decreased eubacteria and Lactobacillus. Correlation analysis suggested that these variations in community structure promoted the formation of hexanoic acid, butyric acid, and the corresponding ethyl esters, whereas they inhibited that of lactic acid and ethyl lactate and thus improved the flavor quality of the APM. Notably, pH was the main driving factor for the bacterial community variation, and the total acid mediated the balance between the stochastic and the deterministic processes. Furthermore, the results of the network analysis and PICRUSt2 indicated that FD also enhanced the modularity and robustness of the co-occurrence network and the abundance of enzymes related to hexanoic acid and butyric acid production. Our study highlights the importance of Daqu attributes in APM cultivation, which are of great significance for the production of high-quality strong-flavor Baijiu.
Collapse
Affiliation(s)
- Yu Mu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China
| | - Suyi Zhang
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China
- Luzhou Laojiao Co., Ltd., Luzhou 646699, China
| | - Hui Qin
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China
- Luzhou Laojiao Co., Ltd., Luzhou 646699, China
| | - Hanlan Tang
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China
- Luzhou Laojiao Co., Ltd., Luzhou 646699, China
| | - Qianglin Pan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Huifang Tang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Mao F, Huang J, Zhou R, Qin H, Zhang S, Cai X, Qiu C. Effects of Different Daqu on Microbial Community Domestication and Metabolites in Nongxiang Baijiu Brewing Microecosystem. Front Microbiol 2022; 13:939904. [PMID: 35847071 PMCID: PMC9279870 DOI: 10.3389/fmicb.2022.939904] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022] Open
Abstract
The quality and yield of the fresh Baijiu mainly depend on the activity of pit mud (PM) and the quality of Daqu. However, the cultivation of PM is a long-term process, and high-quality Daqu can change the community structure of fermented grain (FG) and accelerate the evolution of PM communities. The present research aimed to investigate the four different types of Daqu on the FG-fermenting microbial community structure and metabolites and their interphase interactions with PM. These results show that Kroppenstedtia in the bacterial community of Taikong Daqu (TK) was positively correlated with ethyl caproate, which significantly increased the content of FG volatile metabolites, especially lipid components, and facilitated the accelerated evolution of Methanobacteriales and Methanosarcinales in PM. Bacillus has a high relative abundance in Qianghua Daqu (QH), which shows obvious advantages to improving the alcoholic strength of FG and contributing to increasing the abundance of Methanomicrobiales in PM. Qianghua and traditional-mixed Daqu (HH) have a similar bacterial composition to QH and a similar fungal composition to traditional Daqu (DZ), and thus also showed the advantage of increased yield, but the volatile flavor metabolites produced were not as dominant as DZ. β-diversity analysis showed that in TK fermentation systems, FG is more likely to domesticate the structure of PM microorganisms. These results indicated that the interaction between microbial communities in Baijiu fermentation niches was significantly influenced by different Daqu. It can not only enhance the key volatiles in FG but also accelerate the evolving direction of the community in PM. Daqu fortified by functional genera or microbiota can evolve a community structure more suitable for Baijiu fermentation. The microbiota composition and interaction between the communities in both Daqu and PM significantly impacts the yield and quality of the base liquor.
Collapse
Affiliation(s)
- Fengjiao Mao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- National Engineering Laboratory of Clean Technology for Leather Manufacture, Sichuan University, Chengdu, China
- National Engineering Research Centre of Solid-State Brewing, Luzhou, China
- *Correspondence: Rongqing Zhou,
| | - Hui Qin
- Lu Zhou Lao Jiao Co., Ltd., Luzhou, China
| | - Suyi Zhang
- Lu Zhou Lao Jiao Co., Ltd., Luzhou, China
| | - Xiaobo Cai
- Lu Zhou Lao Jiao Co., Ltd., Luzhou, China
| | | |
Collapse
|
8
|
Li J, Sun H, Wang Q, Cai Y, Shi Z, Jia J, Zheng L, Jiang R, Gao L. Microbial community spatial structures in Luzhou-flavored liquor pit muds with different brewing materials. PeerJ 2022; 10:e12987. [PMID: 35282287 PMCID: PMC8916025 DOI: 10.7717/peerj.12987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/01/2022] [Indexed: 01/11/2023] Open
Abstract
Background Although studies have shown that Bacteroidetes, Clostridiales, and Lactobacillales are the main components of the microbial community in pit mud during the brewing of Luzhou-flavored liquor, little is known about the effect of brewing materials on spatial structures of this microbiome. Methods High-throughput sequencing of the V4-V5 region of prokaryotic 16S rRNA gene was performed to analyze the microbial community diversity and spatial heterogeneity in Luzhou-flavored liquor pit muds with different brewing ingredients. The structural characteristics and heterogeneous spatial distribution of the pit mud microbial communities were examined using bioinformatics and multivariate statistical analysis methods. Results Our results showed that Euryarchaeota, Actinobacteria, Bacteroidetes, Chlorobi, Chloroflexi, Firmicutes, Proteobacteria, Synergistetes, Tenericutes, and WWE1 were the dominant phyla in the pit mud microbiome. The Shannon and Simpson indices of the pit mud microbiome with three grains (M3G) in the upper layer were significantly lower than those in middle layer and bottom, whereas those of the pit mud microbiome with five grains (M5G) in bottom were significantly lower than those in middle layer (p < 0.05). There were significant differences in the microbial community compositions between the pit muds with different brewing ingredients and locations in the same pit (p < 0.05). T78 of Anaerolinaceae, Butyrivibrio, Dehalobacter_Syntrophobotulus, Desulfosporosinus, Asteroleplasma, and vadinCA02 of Synergistaceae were significantly enriched in M3G, whereas Prevotella, Vagococcus, Caldicoprobacter, Butyrivibrio, Coprococcus, Dorea, Sporanaerobacter, Tepidimicrobium, TissierellaSoehngenia, RFN20 of Erysipelotrichaceae, Sutterella, 125ds10 of Alteromonadales, Vibrio, and Sphaerochaeta were significantly enriched in M5G. This study provides a theoretical basis for exploring the influence of brewing ingredients in pit muds on the production of Luzhou-flavored liquor and the specific influence of pit mud microorganisms in different locations on liquor production.
Collapse
Affiliation(s)
- Jinjin Li
- School of Life Sciences, Qilu Normal University, Jinan, Shandong, China
| | - Hongzhao Sun
- School of Life Sciences, Qilu Normal University, Jinan, Shandong, China
| | - Qian Wang
- Jinan High-Tech Zone Experimental Middle School, Jinan, Shandong, China
| | - Yunfei Cai
- School of Life Sciences, Qilu Normal University, Jinan, Shandong, China
| | - Zhu Shi
- School of Life Sciences, Qilu Normal University, Jinan, Shandong, China
| | - Jianlei Jia
- School of Life Sciences, Qilu Normal University, Jinan, Shandong, China
| | - Lei Zheng
- Shandong Baimai Spring Wine Co., Ltd, Jinan, Shandong, China
| | - Ru Jiang
- Shandong Yinlu Food Co., Ltd, Jinan, Shandong, China
| | - Lingmei Gao
- School of Life Sciences, Qilu Normal University, Jinan, Shandong, China
| |
Collapse
|
9
|
Flavor mystery of Chinese traditional fermented baijiu: The great contribution of ester compounds. Food Chem 2022; 369:130920. [PMID: 34461518 DOI: 10.1016/j.foodchem.2021.130920] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/08/2021] [Accepted: 08/18/2021] [Indexed: 12/22/2022]
Abstract
Chinese traditional fermented baijiu is a famous alcoholic beverage with unique flavor. Despite its consumption for millennia, the flavor mystery behind baijiu is still unclear. Studies indicate that esters are the most important flavor substances, and bring health benefits. However, the aroma contribution and formation mechanism of esters still need to be clarified to reveal the flavor profile of baijiu. This review systematically summarizes all the 510 esters and finds 9 ethyl esters contribute greatly to the flavor of baijiu. The 508 different microbial species that have been identified affect the synthesis of esters through fatty acid and amino acid metabolism. The determination of minimum functional microbial groups and the analysis of their metabolic characteristics are crucial to reveal the mechanism of formation of baijiu flavor, and ensure the reproducible formation of flavor substances.
Collapse
|
10
|
Wang Q, Liu K, Liu L, Zheng J, He C, Jiang B. The amino acids, bacterial communities, and their correlations in Wuliangye-flavour liquor production. ACTA ALIMENTARIA 2022. [DOI: 10.1556/066.2021.00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
With the enhancement of people’s awareness of drinking health, the health factors in Wuliangye-flavour liquor is worth our attention. Bacterial communities in 4 layers of Zaopei from the same fermentation pit and amino acids as major health factors in 4 liquors directly related Zaopeis were investigated by Illumina MiSeq sequencing and liquid chromatography mass spectrometry, respectively. Results indicated that 18 amino acids were detected and 8 dominant bacteria (genus level) were observed. Meanwhile, total amino acids, 11 amino acids (Glu, Asp, Val, etc), bacterial diversity, and the percentages of Lactobacillus and Pseudomonas increased with the increase of Zaopei’s depth; 5 amino acids (Pro, Ser, Phe, etc) and the percentages of Pediococcus and Bacteroides first increased and then decreased with the increase of Zaopei’s depth. Moreover, 11 amino acids were significantly (P < 0.01) and strongly (|ρ| > 0.8) positively correlated with Lactobacillus and Pseudomonas numbers.
Collapse
Affiliation(s)
- Q. Wang
- College of Wuliangye Technology and Food Engineering, Yibin Vocational and Technical College, Xincun 74, 644003, Yibin, China
- College of Food Science and Technology, Yunnan Agricultural University, Fengyuan Road 452, 650201, Kunming, China
| | - K.Y. Liu
- College of Wuliangye Technology and Food Engineering, Yibin Vocational and Technical College, Xincun 74, 644003, Yibin, China
- College of Food Science and Technology, Yunnan Agricultural University, Fengyuan Road 452, 650201, Kunming, China
| | - L.L. Liu
- College of Suzi Education and College of Modern Agriculture, Yibin Vocational and Technical College, Xincun 74, 644003, Yibin, China
| | - J. Zheng
- Technology Research Center, Wuliangye Yibin Co., Ltd., Minjiang West Road 150, 644000, Yibin, China
| | - C.R. He
- Sichuan Research Institute of Alcoholic Drinks, Yusha Road 144, 610017, Chengdu, China
| | - B. Jiang
- College of Suzi Education and College of Modern Agriculture, Yibin Vocational and Technical College, Xincun 74, 644003, Yibin, China
| |
Collapse
|
11
|
Chen S, Huang J, Qin H, Zhou R, Yang Y, Qiu C, Zhang S. Characterizing the interaction relationship of the microbial communities between Zaopei and pit mud disturbing by Daqu. Food Sci Biotechnol 2021; 30:1357-1367. [PMID: 34691804 PMCID: PMC8521565 DOI: 10.1007/s10068-021-00975-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/25/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022] Open
Abstract
The differences of interaction between interphase microbial communities were evaluated caused by two kinds of Daqu, including conventional Daqu (CDQ) and fortified Daqu (FDQ). The community diversity, functional genera and metabolites in pit mud (PM) and Zaopei (ZP) were investigated by polyphasic detecting approaches. FDQ evolved the core microbial community fitting Baijiu brewing faster than CDQ. Compared with CPM, the abundance of Aspergillus, Hyphopichia, and Penicillium in FPM were 1.54, 14.75, and 1.68 times, while that of Lactobacillus, Bacillus, Methanobrevibacter, and Methanosaeta were 2.13, 1.85, 6.35, and 3.36 times, respectively. Furthermore, the content of key flavor components was increased in ZP using FDQ. These results suggested the interaction between interphase microbial communities in various phases of Baijiu fermentation niches was significant influenced by Daqu. It can not only enhance the key volatiles in ZP but also evolve the community to fit Baijiu fermentation by introducing functional genera to Daqu. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10068-021-00975-z.
Collapse
Affiliation(s)
- Suqi Chen
- College of Biomass Science and Engineering, Fermentation Engineering, Sichuan University, Chengdu, 610065 China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065 China
| | - Jun Huang
- College of Biomass Science and Engineering, Fermentation Engineering, Sichuan University, Chengdu, 610065 China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065 China
| | - Hui Qin
- National Engineering Research Center of Solid-State Manufacturing, Luzhou, 646000 China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Fermentation Engineering, Sichuan University, Chengdu, 610065 China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065 China
| | - Yan Yang
- National Engineering Research Center of Solid-State Manufacturing, Luzhou, 646000 China
| | - Chuanfeng Qiu
- National Engineering Research Center of Solid-State Manufacturing, Luzhou, 646000 China
| | - Suyi Zhang
- National Engineering Research Center of Solid-State Manufacturing, Luzhou, 646000 China
| |
Collapse
|
12
|
Wu N, Li Z, Tang M. Impact of salt and exogenous AM inoculation on indigenous microbial community structure in the rhizosphere of dioecious plant, Populus cathayana. Sci Rep 2021; 11:18403. [PMID: 34526541 PMCID: PMC8443550 DOI: 10.1038/s41598-021-97674-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/27/2021] [Indexed: 12/03/2022] Open
Abstract
The sex-specific physical and biochemical responses in dioecious plants to abiotic stresses could result in gender imbalance, and how to ease the current situation by microorganisms is still unclear. Using native soil where poplars were grown, growth parameters, soil physicochemical properties in the rhizosphere soil of different sexes of Populus cathayana exposed to salt stress and exogenous arbuscular mycorrhizal (AM) inoculation were tested. Besides, the sex-specific microbial community structures in the rhizosphere soil of different sexes of Populus cathayana were compared under salt stress. To identify the sex-specific microbial community characteristics related to salinity and AM symbiosis, a combined qPCR and DGGE method was used to monitor microbial community diversity. Seedlings suffered severe pressure by salt stress, reflected in limited growth, biomass, and nutrient element accumulation, especially on females. Exogenous AM inoculation treatment alleviated these negative effects, especially under salt treatment of 75 mM. Compared with salt effect, exogenous AM inoculation treatment showed a greater effect on soil physical-chemical properties of both sexes. Based on DGGE results, salt stress negatively affected fungal richness but positively affected fungal Simpson diversity index, while exogenous AM inoculation treatment showed the opposite effect. Structural equation modeling (SEM) was performed to show the causal relationships between salt and exogenous AM inoculation treatments with biomass accumulation and microbial community: salt and exogenous AM inoculation treatment showed complicated effects on elementary concentrations, soil properties, which resulted in different relationship with biomass accumulation and microbial community. Salt stress had a negative effect on soil properties and microbial community structure in the rhizosphere soil of P. cathayana, whereas exogenous AM inoculation showed positive impacts on most of the soil physical-chemical properties and microbial community status.
Collapse
Affiliation(s)
- Na Wu
- Institute of Applied Biotechnology, School of Life Science, Shanxi Datong University, Datong, 037009, Shanxi, China
| | - Zhen Li
- Institute of Applied Biotechnology, School of Life Science, Shanxi Datong University, Datong, 037009, Shanxi, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
13
|
Fu J, Chen L, Yang S, Li Y, Jin L, He X, He L, Ao X, Liu S, Liu A, Yang Y, Ma B, Cui X, Chen S, Zou L. Metagenome and analysis of metabolic potential of the microbial community in pit mud used for Chinese strong-flavor liquor production. Food Res Int 2021; 143:110294. [PMID: 33992393 DOI: 10.1016/j.foodres.2021.110294] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/29/2021] [Accepted: 03/03/2021] [Indexed: 12/31/2022]
Abstract
Complex microbiomes of pit mud (PM) play significant roles in imbuing flavors and qualities of Chinese strong-flavor liquor (CSFL) during fermentation. However, understanding both of the taxonomic and functional diversity of the whole microorganisms in PM still remain a major challenge. Here, PM microbiomes were investigated based on metagenomic sequencing, assembly and binning. Metagenomic data revealed that Euryarchaeota was the predominant phylum, followed by Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria. For further functional exploration, 703 metagenome-assembled genomes (MAGs), including 304 novel strains, 197 novel species, and 94 novel genera were reconstructed. Three primary groups of Firmicutes (n = 406), Euryarchaeota (n = 130) and Bacteroidetes (n = 74), particularly genus of them Syntrophomonas, Thermacetogenium and Clostridium, methanogens (Methanobacterium, Methanoculleus, and Methanosarcina), Proteiniphilum and Prevotella, contained most of metabolic potential genes. Additionally, Chloroflexi was firstly reported to have potential to be involved in the caproic acid (CA) production. Bacteroidetes could be the key phylum to synthesize terpenes, and Armatimonadetes, Firmicutes, Ignavibacteriae and Verrucomicrobia may possess the same metabolic potential as well. Overall, this study will significantly improve our understanding of the diverse PM microbiome and help guide the future exploration of microbial resources for modifying PM fermentation processes.
Collapse
Affiliation(s)
- Jingxia Fu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Li Chen
- Yibin Products Quality Supervision and Inspection Institute, Yibin, Sichuan 644000, PR China
| | - Shengzhi Yang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuzhu Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Lei Jin
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xueping He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Xiaoling Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Bingcun Ma
- Microbiological Inspection Center, Sichuan Institute for Food and Drug Control, Chengdu 611731, PR China
| | - Xuewen Cui
- Microbiological Inspection Center, Sichuan Institute for Food and Drug Control, Chengdu 611731, PR China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China.
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
14
|
Chen S, Huang J, Qin H, He G, Zhou R, Yang Y, Qiu C, Zhang S. Evolving the core microbial community in pit mud based on bioturbation of fortified Daqu. Can J Microbiol 2020; 67:396-405. [PMID: 33064956 DOI: 10.1139/cjm-2020-0290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Directional stress is an effective measure to change the community structure and improve the bioactivity of pit mud (PM). In this study, the addition of fortified Daqu to artificial PM (APM) was intended to disturb the microbial community and further affect metabolites. To evaluate the effect of fortified Daqu on culturing APM, the microbial communities of APM with or without the addition of fortified Daqu were investigated by fluorescence in situ hybridization and Illumina MiSeq. The results indicated that microbes (Clostridium sp., Clostridium kluyveri, hydrogenotrophic methanogens, and acetotrophic methanogens) related to the production of key aroma compounds increased notably when fortified Daqu was added. In particular, the hydrogenotrophic and acetotrophic methanogens increased by 6.19- and 4.63-fold after 30 days of culture. Subsequently, metabolites (organic acids, volatile compounds) were also analyzed by HPLC (high-performance liquid chromatography) and HS-SPME-GC-MS (headspace solid phase microextraction - gas chromatography - mass spectrometry). The results showed that the content of butyric acid and hexanoic acid was significantly higher when fortified Daqu was added to APM. In addition, the proportion of esters and phenols was also higher than in APM without fortified Daqu. A survey of the microbial compositions of APMs with or without added fortified Daqu indicated that the microbial community evolves into a functional community favoring liquor brewing. We have developed a novel process by disturbing the community diversity.
Collapse
Affiliation(s)
- Suqi Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Hui Qin
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China
| | - Guiqiang He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yan Yang
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China
| | - Chuanfeng Qiu
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China
| | - Suyi Zhang
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China
| |
Collapse
|
15
|
Zheng Y, Hu X, Jia Z, Bodelier PLE, Guo Z, Zhang Y, Li F, He P. Co-occurrence patterns among prokaryotes across an age gradient in pit mud of Chinese strong-flavor liquor. Can J Microbiol 2020; 66:495-504. [PMID: 32233983 DOI: 10.1139/cjm-2020-0012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is widely believed that the quality and characteristics of Chinese strong-flavor liquor (CSFL) are closely related to the age of the pit mud; CSFL produced from older pit mud tastes better. This study aimed to investigate the alteration and interaction of prokaryotic communities across an age gradient in pit mud. Prokaryotic microbes in different-aged pit mud (1, 6, and 10 years old) were analyzed by Illumina MiSeq sequencing of the 16S rRNA gene. Analysis of the 16S rRNA gene indicated that the prokaryotic community was significantly altered with pit mud age. There was a significant increase in the genera Methanosarcina, Methanobacterium, and Aminobacterium with increased age of pit mud, while the genus Lactobacillus showed a significant decreasing trend. Network analysis demonstrated that both synergetic co-occurrence and niche competition were dominated by 68 prokaryotic genera. These genera formed 10 hubs of co-occurrence patterns, mainly under the phyla Firmicutes, Euryarchaeota, and Bacteroidetes, playing important roles on ecosystem stability of the pit mud. Environmental variables (pH, NH4+, available P, available K, and Ca2+) correlated significantly with prokaryotic community assembly. The interaction of prokaryotic communities in the pit mud ecosystem and the relationship among prokaryotic communities and environmental factors contribute to the higher quality of the pit mud in older fermentation pits.
Collapse
Affiliation(s)
- Yan Zheng
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan Province, People's Republic of China
| | - Xiaolong Hu
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan Province, People's Republic of China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Paul L E Bodelier
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | - Zhiying Guo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Yong Zhang
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan Province, People's Republic of China
| | - Fangli Li
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan Province, People's Republic of China
| | - Peixin He
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan Province, People's Republic of China
| |
Collapse
|
16
|
Structural and Functional Changes in Prokaryotic Communities in Artificial Pit Mud during Chinese Baijiu Production. mSystems 2020; 5:5/2/e00829-19. [PMID: 32209718 PMCID: PMC7093824 DOI: 10.1128/msystems.00829-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Strong-flavor baijiu (SFB) accounts for more than 70% of all Chinese liquor production. In the Chinese baijiu brewing industry, artificial pit mud (APM) has been widely used since the 1960s to construct fermentation cellars for production of high-quality SFB. To gain insights at the systems level into the mechanisms driving APM prokaryotic taxonomic and functional dynamics and into how this variation is connected with high-quality SFB production, we performed the first combined metagenomic, metaproteomic, and metabolomic analyses of this brewing microecosystem. Together, the multi-omics approach enabled us to develop a more complete picture of the changing metabolic processes occurring in APM microbial communities during high-quality SFB production, which will be helpful for further optimization of APM culture technique and improvement of SFB quality. The Chinese alcoholic beverage strong-flavor baijiu (SFB) gets its characteristic flavor during fermentation in cellars lined with pit mud. Microbes in the pit mud produce key precursors of flavor esters. The maturation time of natural pit mud of over 20 years has promoted attempts to produce artificial pit mud (APM) with a shorter maturation time. However, knowledge about the molecular basis of APM microbial dynamics and associated functional variation during SFB brewing is limited, and the role of this variability in high-quality SFB production remains poorly understood. We studied APM maturation in new cellars until the fourth brewing batch using 16S rRNA gene amplicon sequencing, quantitative PCR, metaproteomics, and metabolomics techniques. A total of 36 prokaryotic classes and 195 genera were detected. Bacilli and Clostridia dominated consistently, and the relative abundance of Bacilli decreased along with the APM maturation. Even though both amplicon sequencing and quantitative PCR showed increased abundance of Clostridia, the levels of most of the Clostridium proteins were similar in both the first- and fourth-batch APM samples. Six genera correlated with eight or more major flavor compounds in SFB samples. Functional prediction suggested that the prokaryotic communities in the fourth-batch APM samples were actively engaged in organic acid metabolism, and the detected higher concentrations of proteins and metabolites in the corresponding metabolic pathways supported the prediction. This multi-omics approach captured changes in the abundances of specific microbial species, proteins, and metabolites during APM maturation, which are of great significance for the optimization of APM culture technique. IMPORTANCE Strong-flavor baijiu (SFB) accounts for more than 70% of all Chinese liquor production. In the Chinese baijiu brewing industry, artificial pit mud (APM) has been widely used since the 1960s to construct fermentation cellars for production of high-quality SFB. To gain insights at the systems level into the mechanisms driving APM prokaryotic taxonomic and functional dynamics and into how this variation is connected with high-quality SFB production, we performed the first combined metagenomic, metaproteomic, and metabolomic analyses of this brewing microecosystem. Together, the multi-omics approach enabled us to develop a more complete picture of the changing metabolic processes occurring in APM microbial communities during high-quality SFB production, which will be helpful for further optimization of APM culture technique and improvement of SFB quality.
Collapse
|
17
|
Prokaryotic communities in multidimensional bottom-pit-mud from old and young pits used for the production of Chinese Strong-Flavor Baijiu. Food Chem 2019; 312:126084. [PMID: 31901820 DOI: 10.1016/j.foodchem.2019.126084] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 01/21/2023]
Abstract
The pit mud (PM) prokaryotic communities with obvious difference between old and young PM is essential for solid-fermentation of Chinese Strong-Flavor Baijiu. The bottom-PM (BPM) is considered more important. In this study, the multidimensional prokaryotic communities of old and young BPMs were investigated. The old BPM presented stratified difference within the depth of 0-7 cm, especially, the surface 0-1 cm was characteristic of dominant Caproiciproducens (34.79%). The young BPM showed significant difference between quarter/center and deep corner (1-7 cm), the former were characteristic of abundant Lactobacillus (12.80%-42.72%), while the deep corner was distinctive of dominant Caproiciproducens (17.85%-64.45%). The lactic acid, pH and soluble Ca2+ were considered as the 3 most significant environmental factors through redundancy analysis (RDA). This study may help illuminate the BPM aging process, and allow the future artificial regulation of young BPM.
Collapse
|
18
|
Guo MY, Hou CJ, Bian MH, Shen CH, Zhang SY, Huo DQ, Ma Y. Characterization of microbial community profiles associated with quality of Chinese strong-aromatic liquor through metagenomics. J Appl Microbiol 2019; 127:750-762. [PMID: 30989782 DOI: 10.1111/jam.14279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 11/30/2022]
Abstract
AIMS Microorganisms in fermentation pits (FPs) play key roles for Chinese-strong-aromatic-liquor (CSAL) production. However, the microbial community in the FPs is still poorly understood. Here, the aim of this study was to reveal the diversity and potential functions of microbiota in FPs. METHODS AND RESULTS Sequencing-by-synthesis-based metagenomic sequencing and annotation results revealed that the microbiota of FPs was primarily composed of Firmicutes (54·6%), Euryarchaeota (15·3%), Bacteroidetes (10·1%), Gammaproteobacteria (5·8%), Opisthokonta (5·7%) and Unclassified_Bacteria (2·3%). And 133 genera were identified as the dominant genera of this fermentative food. Lactobacillus, Sedimentibacter, Syntrophomonas, Methanoculleus, Methanobacterium, Bacillus, Clostridium, Galactomyces, Candida, Pichia, Penicillium and Aspergillus were defined as active populations for biosynthesizing the characteristic volatile compounds of CSAL. The study also revealed that the microbial community structures changed significantly with different cellar ages and over different geographical regions. (i) The presence of Bacteroidetes was the most distinctive feature that characterized the different FPs ages. (ii) Distinct contents of Gammaproteobacteria and Euryarchaeota were observed at different positions in the FPs. (iii) Euryarchaeota markedly contributed to the generation of the character of the liquors with distinct geographical associations. CONCLUSIONS This study demonstrated that the changes of microbial communities determined the different quality characteristics of CSAL. SIGNIFICANCE AND IMPACT OF THE STUDY This research contributes to a deeper understanding of the FPs microbial composition and shows a new microbial resource for biotechnological applications.
Collapse
Affiliation(s)
- M Y Guo
- College of Bioengineering, Chongqing University, Chongqing, P.R. China
| | - C J Hou
- College of Bioengineering, Chongqing University, Chongqing, P.R. China
| | - M H Bian
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong, P.R. China
| | - C H Shen
- College of Bioengineering, Chongqing University, Chongqing, P.R. China.,National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Group Co. Ltd., Luzhou, P.R. China
| | - S Y Zhang
- College of Bioengineering, Chongqing University, Chongqing, P.R. China.,National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Group Co. Ltd., Luzhou, P.R. China
| | - D Q Huo
- College of Bioengineering, Chongqing University, Chongqing, P.R. China
| | - Y Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong, P.R. China
| |
Collapse
|
19
|
Contrasting bacterial community structure in artificial pit mud-starter cultures of different qualities: a complex biological mixture for Chinese strong-flavor Baijiu production. 3 Biotech 2019; 9:89. [PMID: 30800600 DOI: 10.1007/s13205-019-1622-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 02/08/2019] [Indexed: 10/27/2022] Open
Abstract
The complex starter culture for artificial pit mud (APMSC) hosts a wide variety of microbial communities that play a crucial role in Chinese strong-flavor Baijiu production. Based on its organoleptic properties, the quality of APMSC can be divided into normal and inferior quality grades. However, the relationship between the APMSC microbial community and APMSC quality is poorly understood. In this study, the bacterial community structure in normal and inferior APMSC derived from two different production batches was analyzed using denaturing gradient gel electrophoresis and Illumina MiSeq sequencing. Highly similar patterns of bacterial diversity and community structure were observed in the APMSC samples of the same quality, and a significant higher bacterial species diversity (Shannon index and Chao1) was detected in the normal compared to the inferior APMSC samples. Fifteen genera were detected in the APMSC samples, and seven (Caproiciproducens, Clostridium, Lactobacillus, Bacillus, Pediococcus, Rummeliibacillus, and Sporolactobacillus) were dominant, accounting for 92.12-99.89% of total abundance. Furthermore, the bacterial communities in the normal and inferior APMSC had significantly different structure and function. The normal APMSC was characterized by abundant Caproiciproducens and Clostridium and high caproic and butyric acid contents. In contrast, the inferior APMSC was overrepresented by Lactobacillus and Bacillus and lactic and acetic acids. This study may help clarify the key microbes sustaining APMSC ecosystem stability and functionality, and guide future improvements in APMSC production.
Collapse
|
20
|
He G, Huang J, Zhou R, Wu C, Jin Y. Effect of Fortified Daqu on the Microbial Community and Flavor in Chinese Strong-Flavor Liquor Brewing Process. Front Microbiol 2019; 10:56. [PMID: 30761106 PMCID: PMC6361764 DOI: 10.3389/fmicb.2019.00056] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/14/2019] [Indexed: 02/01/2023] Open
Abstract
Daqu, an important fermentation starter for the production of Chinese liquor, as used in the current study included traditional Daqu and fortified Daqu inoculated with Bacillus velezensis and Bacillus subtilis. To evaluate the effect of fortified Daqu on strong-flavor liquor production, the differences of microbial communities among three inoculation patterns of fermented grains (FG) were analyzed by the Illumina MiSeq platform. A higher relative abundance of dominant genera including Bacillus, Lactococcus, Aspergillus, and Candida, and lower relative abundance of Lactobacillus, were observed in FG50, in which mixed Daqu (traditional: fortified Daqu = 1: 1, w/w, 50% fortified Daqu) was used as the starter. Then, volatile compounds of their distillations were also examined by HS-SPME-GC-MS. The results showed that the contents of skeleton flavor components, mainly including important esters and aromatic compounds, were higher in the corresponding liquor L50, which distillated from FG50. Moreover, most esters mainly positively correlated with Lactobacillus and Candida in the bottom layer of FG fermented with 50% fortified Daqu (FG50-B). Aromatic compounds were strongly positively correlated with Bacillus and Aspergillus in the middle layer of FG with 50% fortified Daqu used (FG50-M). In particular, hexyl hexanoate showed a positive correlation with higher abundances of Ruminococcus in the FG with addition of 100% fortified Daqu (FG100). This study observed microbial compositions in the FG with fortified Daqu addition, and it further revealed the correlations between pivotal microbes and main flavor compounds. These results may help to develop effective strategies to regulate microbes for the brewing process and further improve the flavors of Chinese liquor.
Collapse
Affiliation(s)
- Guiqiang He
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Jun Huang
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China.,National Engineering Research Center of Solid-State Manufacturing, Luzhou, China
| | - Chongde Wu
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Yao Jin
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Zou W, Zhao C, Luo H. Diversity and Function of Microbial Community in Chinese Strong-Flavor Baijiu Ecosystem: A Review. Front Microbiol 2018; 9:671. [PMID: 29686656 PMCID: PMC5900010 DOI: 10.3389/fmicb.2018.00671] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/21/2018] [Indexed: 11/13/2022] Open
Abstract
Strong flavor baijiu (SFB), also called Luzhou-flavor liquor, is the most popular Chinese baijiu. It is manufactured via solid fermentation, with daqu as the starter. Microbial diversity of the SFB ecosystem and the synergistic effects of the enzymes and compounds produced by them are responsible for the special flavor and mouthfeel of SFB. The present review covers research studies focused on microbial community analysis of the SFB ecosystem, including the culturable microorganisms, their metabolic functions, microbial community diversity and their interactions. The review specifically emphasizes on the most recently conducted culture-independent analysis of SFB microbial community diversity. Furthermore, the possible application of systems biology approaches for elucidating the molecular mechanisms of SFB production were also reviewed and prospected.
Collapse
Affiliation(s)
- Wei Zou
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | | | - Huibo Luo
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| |
Collapse
|
22
|
Sun Z, Chen C, Hou X, Zhang J, Tian F, Li C. Prokaryotic diversity and biochemical properties in aging artificial pit mud used for the production of Chinese strong flavor liquor. 3 Biotech 2017; 7:335. [PMID: 28955632 DOI: 10.1007/s13205-017-0978-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022] Open
Abstract
At present, artificial pit mud (APM) is widely used in Chinese liquor-making industry and plays a particular role in the production of Chinese strong flavor liquor (CSFL). However, APM frequently ages during fermentation, thus becoming unsuitable for sustainable use due to its low-quality. The reasons behind, and results of, APM aging during the production of CSFL are not yet understood. Sequencing the V4 region of the 16S rRNA gene shows that prokaryotic diversity is significantly decreased (Shannon's diversity index, P < 0.01) and community composition is distinctly changed (from 1197 to 865 OTUs) in aging APM. On the phylum level, the increase of Firmicutes and decrease of Proteobacteria are the main consequences of APM aging during the production of CSFL. The counting of cultivatable bacteria confirmed that there was a large increase in Lactobacilli and aerobic spore-forming bacteria in aging low-quality APM (more than twofold). Unexpectedly, the total number of caproic acid-producing bacteria, mainly Clostridia, did not change significantly between the two kinds of APM. Furthermore, biochemical analysis indicates that the pH and the levels of NH4+ and K+ are decreased in aging low-quality APM (P < 0.01). The results obtained in this study support the possibility that environmental factors (pH, nutrients) induce the decrease of prokaryotic diversity, and the changed community composition influences the environmental properties. Therefore, through interfering with the cycle, APM aging can be controlled potentially by adjustment of environmental factors and/or supplementation of diminished or missed microorganisms.
Collapse
|
23
|
Zhang L, Huang J, Zhou R, Wu C. Evaluating the feasibility of fermentation starter inoculated with Bacillus amyloliquefaciens for improving acetoin and tetramethylpyrazine in Baoning bran vinegar. Int J Food Microbiol 2017; 255:42-50. [DOI: 10.1016/j.ijfoodmicro.2017.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/24/2017] [Accepted: 05/27/2017] [Indexed: 10/19/2022]
|
24
|
Chen G, Chen C, Lei Z. Meta-omics insights in the microbial community profiling and functional characterization of fermented foods. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.05.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Zhang L, Zhou R, Cui R, Huang J, Wu C. Characterizing Soy Sauce Moromi Manufactured by High-Salt Dilute-State and Low-Salt Solid-State Fermentation Using Multiphase Analyzing Methods. J Food Sci 2016; 81:C2639-C2646. [DOI: 10.1111/1750-3841.13516] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/30/2016] [Accepted: 09/03/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Liqiang Zhang
- College of Light Industry, Textile & Food Engineering; Sichuan Univ; Chengdu 610065 China
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry; Sichuan Univ; Chengdu 610065 China
| | - Rongqing Zhou
- College of Light Industry, Textile & Food Engineering; Sichuan Univ; Chengdu 610065 China
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry; Sichuan Univ; Chengdu 610065 China
- National Engineering Research Centre of Solid-State Brewing; Luzhou 646000 China
| | - Ruiying Cui
- College of Light Industry, Textile & Food Engineering; Sichuan Univ; Chengdu 610065 China
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry; Sichuan Univ; Chengdu 610065 China
| | - Jun Huang
- College of Light Industry, Textile & Food Engineering; Sichuan Univ; Chengdu 610065 China
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry; Sichuan Univ; Chengdu 610065 China
| | - Chongde Wu
- College of Light Industry, Textile & Food Engineering; Sichuan Univ; Chengdu 610065 China
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry; Sichuan Univ; Chengdu 610065 China
| |
Collapse
|