1
|
Zhang Y, Liang Y, Pan D, Bai S, Wen D, Tang M, Song H, Guo X, Han H. Enhancing Escherichia coli Inactivation: Synergistic Mechanism of Ultraviolet Light and High-Voltage Electric Field. Foods 2024; 13:1343. [PMID: 38731714 PMCID: PMC11083544 DOI: 10.3390/foods13091343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
This study investigated the bactericidal effects of ultraviolet (UV) radiation, a high-voltage electric field (HVEF), and their combination on Escherichia coli. The results indicated that UV and combined disinfection were more effective with longer exposure, leading to significant reductions in microbial activity. Specifically, the single UV disinfection alone reduced activity by 3.3 log after 5 min, while combined disinfection achieved a 4.2 log reduction. In contrast, short-term HVEF treatment did not exhibit significant bactericidal effects, only achieving a reduction of 0.17 log in 5 min. Furthermore, prolonged exposure to both UV disinfection and an HVEF was found to damage cell membranes, ultimately causing cell death, while shorter durations did not. Despite rapid cell count decreases, flow cytometry did not detect apoptotic or necrotic cells, likely due to rapid cell rupture. This study suggests that combining UV radiation and an HVEF could be a promising approach for inhibiting bacterial reproduction, with HVEF enhancing UV effects. These findings provide insights for using combined HVEF and UV disinfection in food safety and preservation.
Collapse
Affiliation(s)
- Yihan Zhang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (Y.L.)
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (D.P.); (S.B.); (D.W.); (X.G.); (H.H.)
| | - Yun Liang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (Y.L.)
| | - Di Pan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (D.P.); (S.B.); (D.W.); (X.G.); (H.H.)
| | - Shupei Bai
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (D.P.); (S.B.); (D.W.); (X.G.); (H.H.)
| | - Diya Wen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (D.P.); (S.B.); (D.W.); (X.G.); (H.H.)
| | - Min Tang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (Y.L.)
| | - Hua Song
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (D.P.); (S.B.); (D.W.); (X.G.); (H.H.)
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (D.P.); (S.B.); (D.W.); (X.G.); (H.H.)
| | - Hao Han
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (D.P.); (S.B.); (D.W.); (X.G.); (H.H.)
| |
Collapse
|
2
|
Pulsed electric field processing as an alternative to sulfites (SO 2) for controlling saccharomyces cerevisiae involved in the fermentation of Chardonnay white wine. Food Res Int 2023; 165:112525. [PMID: 36869525 DOI: 10.1016/j.foodres.2023.112525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
The use of sulfites (SO2) for microbial control in the winemaking process is currently being questioned due to its potential toxicity. Pulsed Electric Fields (PEF) are capable of inactivating microorganisms at low temperatures, thus avoiding the negative effects of heat on food properties. In this study, the capacity of PEF technology for the decontamination of yeasts involved in the fermentation process of Chardonnay wine from a winery was evaluated. PEF treatments at 15 kV/cm of low (65 µs, 35 kJ/kg) and higher intensity (177 µs 97 kJ/kg) were selected for evaluating the microbial stability, physicochemical and volatile composition of wine. Even with the least intense PEF-treatment, Chardonnay wine remained yeast-free during 4 months of storage without sulfites. PEF-treatments did not affect the wine's oenological parameters or its aroma during storage. This study, therefore, reveals the potential of PEF technology as an alternative to sulfites for the microbiological stabilization of wine.
Collapse
|
3
|
Delso C, Berzosa A, Sanz J, Álvarez I, Raso J. Microbial Decontamination of Red Wine by Pulsed Electric Fields (PEF) after Alcoholic and Malolactic Fermentation: Effect on Saccharomyces cerevisiae, Oenococcus oeni, and Oenological Parameters during Storage. Foods 2023; 12:foods12020278. [PMID: 36673367 PMCID: PMC9858141 DOI: 10.3390/foods12020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
New techniques are required to replace the use of sulfur dioxide (SO2) or of sterilizing filtration in wineries, due to those methods' drawbacks. Pulsed electric fields (PEF) is a technology capable of inactivating microorganisms at low temperatures in a continuous flow with no detrimental effect on food properties. In the present study, PEF technology was evaluated for purposes of microbial decontamination of red wines after alcoholic and malolactic fermentation, respectively. PEF combined with SO2 was evaluated in terms of microbial stability and physicochemical parameters over a period of four months. Furthermore, the effect of PEF on the sensory properties of red wine was compared with the sterilizing filtration method. Results showed that up to 4.0 Log10 cycles of S. cerevisiae and O. oeni could be eradicated by PEF and sublethal damages and a synergetic effect with SO2 were also observed, respectively. After 4 months, wine treated by PEF after alcoholic fermentation was free of viable yeasts; and less than 100 CFU/mL of O. oeni cells were viable in PEF-treated wine added with 20 ppm of SO2 after malolactic fermentation. No detrimental qualities were found, neither in terms of oenological parameters, nor in the sensory parameters of wines subjected to PEF after storage time.
Collapse
Affiliation(s)
| | | | | | | | - Javier Raso
- Correspondence: ; Tel.: +34-976762675; Fax: +34-976761590
| |
Collapse
|
4
|
Pulsed Electric Field Processing of Red Wine: Effect on Wine Quality and Microbial Inactivation. BEVERAGES 2022. [DOI: 10.3390/beverages8040078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pulsed electric field (PEF) treatment of red wine samples with energies changing from 2.4 to 13.2 kJ to inactivate Saccharomyces cerevisiae, Hansenula anomala, Candida lipolytica, Lactobacillus delbrueckii ssp. bulgaricus, and Escherichia coli O157:H7 with the determination of the changes in the quality and sensory properties in addition to metal ion concentration (Na, Mg, K, and Mn) were explored. Increased applied energy resulted in a significant increase in pH, conductivity, lightness (L*), yellowness (b*), and total phenolic substance content with significant inactivation of all microorganisms with no significant change in metal ion concentration. Sensory properties of particle status, sour taste, and aftertaste were significantly decreased, whereas the other measured properties were significantly increased by 13.2 kJ PEF treatment (p < 0.05). Joint optimization studies for the most optimal processing parameters for the measured properties were 488 s, 0.13 kJ, and 0.22 kV; 488 s, 13.2 kJ, and 31 kV; 348 s, 9.39 kJ, and 31 kV/cm; and 488 s, 13.2 kJ, and 0 kV EFS, with 0.79, 0.69, 1.00, and 0.72 composite desirability, respectively.
Collapse
|
5
|
Effects of extremely low frequency pulsed electric field (ELF-PEF) on the quality and microstructure of tilapia during cold storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Chen X, Ma Y, Diao T, Leng Y, Lai X, Wei X. Pulsed electric field technology for the manufacturing processes of wine: A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaojiao Chen
- School of Biological Engineering Sichuan University of Science and Engineering Sichuan Province Zigong City China
- Sichuan Engineering Technology Research Center for Liquor‐Making Grains Sichuan Province Yibin City China
| | - Yi Ma
- School of Biological Engineering Sichuan University of Science and Engineering Sichuan Province Zigong City China
- Sichuan Engineering Technology Research Center for Liquor‐Making Grains Sichuan Province Yibin City China
| | - Tiwei Diao
- School of Biological Engineering Sichuan University of Science and Engineering Sichuan Province Zigong City China
| | - Yinjiang Leng
- School of Biological Engineering Sichuan University of Science and Engineering Sichuan Province Zigong City China
| | - Xiaoqin Lai
- School of Biological Engineering Sichuan University of Science and Engineering Sichuan Province Zigong City China
| | - Xin Wei
- School of Biological Engineering Sichuan University of Science and Engineering Sichuan Province Zigong City China
| |
Collapse
|
7
|
Shinde GP, Kumar R, Reddy KR, Nadanasabhapathi S, Dutt Semwal A. Effect of pulsed electric field processing on reduction of sulfamethazine residue content in milk. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1931-1938. [PMID: 35531413 PMCID: PMC9046518 DOI: 10.1007/s13197-021-05207-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/16/2021] [Accepted: 07/05/2021] [Indexed: 05/03/2023]
Abstract
The whole milk spiked with sulfamethazine was treated under thermal and pulsed electric field processing for maximum reduction. The low-temperature long-time (LTLT, 62.5 °C for 30 min), high-temperature short time (HTST, 72 °C for 15 s) pasteurization and ultra-high temperature processing (UHT, 138 °C for 2 s) resulted in the reduction of sulfamethazine 7.3, 5.2 and 4.6% respectively. PEF and combination treatment (thermal + PEF) were found to reduce sulfamethazine content in milk by 67-72% and 73-76% respectively. Combined treatment of milk resulted in a higher percentage of reduction. Similar predicted and actual values proved that they fit the linear regression model and successful application of pulsed electric field technology in reducing antibiotic residues. PEF and mild thermal treatment can be a promising technology to reduce the antibiotic residues with ensuring minimal negative impact on the nutritional quality of food.
Collapse
Affiliation(s)
-
Gokul Pandharinath Shinde
- Food Engineering and Packaging Technology Division, DRDO-Defence Food Research Laboratory (DFRL), Siddhartha Nagar, Mysore, Karnataka 570011 India
| | - Ranganathan Kumar
- Food Engineering and Packaging Technology Division, DRDO-Defence Food Research Laboratory (DFRL), Siddhartha Nagar, Mysore, Karnataka 570011 India
| | - K. Rajeswara Reddy
- Food Engineering and Packaging Technology Division, DRDO-Defence Food Research Laboratory (DFRL), Siddhartha Nagar, Mysore, Karnataka 570011 India
| | - Shanmugam Nadanasabhapathi
- Food Engineering and Packaging Technology Division, DRDO-Defence Food Research Laboratory (DFRL), Siddhartha Nagar, Mysore, Karnataka 570011 India
| | - Anil Dutt Semwal
- Food Engineering and Packaging Technology Division, DRDO-Defence Food Research Laboratory (DFRL), Siddhartha Nagar, Mysore, Karnataka 570011 India
| |
Collapse
|
8
|
High voltage electrical treatments can eco-efficiently promote the production of high added value peptides during chymotryptic hydrolysis of β-lactoglobulin. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Non-Thermal High Pressure Processing, Pulsed Electric Fields and Ultrasound Preservation of Five Different Table Wines. BEVERAGES 2021. [DOI: 10.3390/beverages7040069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wine preservation by alternative non-thermal and physical methods including high pressure processing (HPP), pulsed electric fields (PEF) and power ultrasound (US) technologies was investigated. The effect of these technologies on some quality parameters of five table wines was determined directly after processing and two months storage. For each wine, the pH, colour density, total phenolic content and antioxidant activity quality parameters were determined and the different treatments were compared. The pH of the untreated and treated wines generally remained unchanged after processing and storage. The antioxidant activity of the wines decreased after processing and storage. Generally, non-thermal processing did not affect the wine quality parameters during the 2 months storage. Overall, this study demonstrated that HPP had the smallest effect on the quality parameters assessed in five different wines.
Collapse
|
10
|
Emerging Non-Thermal Technologies as Alternative to SO 2 for the Production of Wine. Foods 2021; 10:foods10092175. [PMID: 34574285 PMCID: PMC8469166 DOI: 10.3390/foods10092175] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
SO2 is an antioxidant and selective antimicrobial additive, inhibiting the growth of molds in the must during the early stages of wine production, as well as undesirable bacteria and yeasts during fermentation, thus avoiding microbial spoilage during wine production and storage. The addition of SO2 is regulated to a maximum of 150–350 ppm, as this chemical preservative can cause adverse effects in consumers such as allergic reactions. Therefore, the wine industry is interested in finding alternative strategies to reduce SO2 levels, while maintaining wine quality. The use of non-thermal or cold pasteurization technologies for wine preservation was reviewed. The effect of pulsed electric fields (PEF), high pressure processing (HPP), power ultrasound (US), ultraviolet irradiation (UV), high pressure homogenization (HPH), filtration and low electric current (LEC) on wine quality and microbial inactivation was explored and the technologies were compared. PEF and HPP proved to be effective wine pasteurization technologies as they inactivate key wine spoilage yeasts, including Brettanomyces, and bacteria in short periods of time, while retaining the characteristic flavor and aroma of the wine produced. PEF is a promising technology for the beverage industry as it is a continuous process, requiring only microseconds of processing time for the inactivation of undesirable microbes in wines, with commercial scale, higher throughput production potential.
Collapse
|
11
|
Rodríguez-Méndez BG, Hernández-Arias AN, Gutiérrez-León DG, López-Callejas R, Mercado-Cabrera A, Jaramillo-Sierra B, Peña-Eguiluz R, Valencia-Alvarado R, Alcántara-Díaz D. Effect of voltage and oxygen on inactivation of E. coli and S. typhi using pulsed dielectric barrier discharge. Bioelectrochemistry 2021; 141:107879. [PMID: 34217098 DOI: 10.1016/j.bioelechem.2021.107879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022]
Abstract
This work presents the study of the voltage and oxygen effect on bacterial inactivation in water using a pulsed dielectric barrier discharge (DBD) under atmospheric pressure, where Escherichia coli (E. coli) and Salmonella typhi (S. typhi) bacteria were used as model microorganisms. A cylindrical DBD reactor was developed and tested in applications to assay the efficiency of bacterial inactivation in water on a volume of 500 mL flowing continuously throughout the system assisted with a peristaltic pump at 4.4 ± 0.1 mL/s. The efficiency of the treatment reached a 6-log10 reduction for both E. coli and S. typhi bacteria at 106 CFU/mL of concentration at the end of the first cycle of treatment at a minimum voltage of 12 kV with oxygen bubbling gas, concluding that there was a minimum voltage to produce inactivation of E. coli and S. typhi samples. Bacterial inactivation without the oxygen condition contrasted with the high rate of inactivation with oxygen at relatively low voltage discharges.
Collapse
Affiliation(s)
- B G Rodríguez-Méndez
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México C.P. 52750, Mexico.
| | - A N Hernández-Arias
- Tecnológico de Estudios Superiores de Tianguistenco, Carretera Tenango, Santiago-La Marquesa 22, Santiago Tilapa, Estado de México C.P. 52650, Mexico
| | - D G Gutiérrez-León
- Universidad Politécnica de Guanajuato, Avenida Universidad Sur 1001, Comunidad Juan Alonso, Cortázar, Guanajuato C.P. 38496, Mexico
| | - R López-Callejas
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México C.P. 52750, Mexico
| | - A Mercado-Cabrera
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México C.P. 52750, Mexico
| | - B Jaramillo-Sierra
- Tecnológico de Estudios Superiores de Tianguistenco, Carretera Tenango, Santiago-La Marquesa 22, Santiago Tilapa, Estado de México C.P. 52650, Mexico
| | - R Peña-Eguiluz
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México C.P. 52750, Mexico
| | - R Valencia-Alvarado
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México C.P. 52750, Mexico
| | - D Alcántara-Díaz
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México C.P. 52750, Mexico
| |
Collapse
|
12
|
Shinde GP, Kumar R, Reddy KR, Nadanasabhapathi S, Semwal AD. Impact of pulsed electric field processing on reduction of benzylpenicillin residue in milk. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1143-1151. [PMID: 34150301 PMCID: PMC8172718 DOI: 10.1007/s40201-021-00680-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
PURPOSE The presence of residues of veterinary drugs in animal-derived food is one of the major problems for food safety. The consumption of milk containing antibiotic residues can evoke allergic reactions in hypersensitive individuals, disorders of intestinal flora and produces the risk of emerging antibiotic resistance microorganism. METHODS In this study, the effect of the thermal treatments and pulsed electric field (PEF) on the reduction of benzylpenicillin (PNG) spiked artificially in milk was evaluated quantitatively by calculating the loss of the concentration using HPLC. Fresh raw milk was subjected to a high-temperature short-time (72 °C for 15 s, HTST), low-temperature long- time (62.5 °C for 30 min, LTLT) and ultrahigh-temperature processing (138 °C for 2 s, UHT). The PEF process factors output voltage (20-65%) and pulse width (10-26 μs) were optimized for maximum reduction of PNG by employing the statistical tool response surface methodology (RSM). RESULTS HTST, LTLT, and UHT have resulted in the reduction of PNG 13.5%, 6.1%, 1.2% respectively. The optimized parameters of the PEF treatment had reduction efficiency in the range of 79-86%. The saddle response surface obtained from RSM showed that the center was neither at maximum point nor at the minimum point. The predicted and experimental values of the response were nearly similar which proved the suitability of the fitted quadratic model. Combined thermal and PEF treatment has a significant synergistic effect in reducing the PNG. CONCLUSIONS PEF induced reduction efficiency achieved was 79-86%. The reduction percentages were observed higher in the combined pasteurization and PEF treatment of milk. The pulsed electric field can be adopted as a unique processing tool for degradation of antibiotic residues whilst retaining nutritional quality parameters.
Collapse
Affiliation(s)
- Gokul Pandharinath Shinde
- Food Engineering and Packaging Technology Division, Defence Food Research Laboratory (DFRL), Defence Research and Development Organization (DRDO), Siddarthanagar, Mysuru, Karnataka 570011 India
| | - Ranganathan Kumar
- Food Engineering and Packaging Technology Division, Defence Food Research Laboratory (DFRL), Defence Research and Development Organization (DRDO), Siddarthanagar, Mysuru, Karnataka 570011 India
| | - K Rajeswara Reddy
- Food Engineering and Packaging Technology Division, Defence Food Research Laboratory (DFRL), Defence Research and Development Organization (DRDO), Siddarthanagar, Mysuru, Karnataka 570011 India
| | - Shanmugam Nadanasabhapathi
- Food Engineering and Packaging Technology Division, Defence Food Research Laboratory (DFRL), Defence Research and Development Organization (DRDO), Siddarthanagar, Mysuru, Karnataka 570011 India
| | - Anil Dutt Semwal
- Food Engineering and Packaging Technology Division, Defence Food Research Laboratory (DFRL), Defence Research and Development Organization (DRDO), Siddarthanagar, Mysuru, Karnataka 570011 India
| |
Collapse
|
13
|
Casquete R, Benito MJ, Pérez-Nevado F, Martínez A, Martín A, de Guía Córdoba M. Addition of Grape Skin and Stems Extracts in Wines during the Storage to Reduce the Sulfur Dioxide: Impact on Red Wine Quality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2783. [PMID: 33803386 PMCID: PMC7967275 DOI: 10.3390/ijerph18052783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022]
Abstract
This study aimed to evaluate the usefulness of bioactive extracts obtained from red wine by-products, such as grape skins and stems, for reducing or eliminating the use of SO2 in red wine production. Special attention was focused on guaranteeing the microbiological stability of the red wines and protecting them against oxidation. Therefore, the antioxidant and antimicrobial activities of the extracts and red wines were studied. Red grape stems and skins, by-products of the wine industry, from six types of monovarietal wines, were used. Extracts obtained from stems displayed higher concentrations of total phenolic compounds and higher in vitro antioxidant activity. Both stem and skin extracts demonstrated higher antimicrobial activity against pathogenic bacteria and lower activity against yeasts. In the wines produced, higher antimicrobial and antioxidant activities were observed, mainly in the skin extract batches. This study highlights that bioactive extracts obtained from by-products of wine making could be used to reduce or eliminate the use of SO2 in wine production. In this way, healthier red wines could be obtained while guaranteeing their microbiological stability and protecting them from oxidation. Furthermore, the use of these by-products is strongly associated with the circular economy, as they could help to reduce the environmental impact of the wine industry.
Collapse
Affiliation(s)
- Rocío Casquete
- School of Agricultural Engineering, University of Extremadura, Avda, Adolfo Suárez s/n, 06071 Badajoz, Spain; (R.C.); (F.P.-N.); (A.M.); (A.M.); (M.d.G.C.)
- Avda. de la Investigación s/n, Campus Universitario, University of Research Institute of Agro-Food Resources (INURA), 06006 Badajoz, Spain
| | - María José Benito
- School of Agricultural Engineering, University of Extremadura, Avda, Adolfo Suárez s/n, 06071 Badajoz, Spain; (R.C.); (F.P.-N.); (A.M.); (A.M.); (M.d.G.C.)
- Avda. de la Investigación s/n, Campus Universitario, University of Research Institute of Agro-Food Resources (INURA), 06006 Badajoz, Spain
| | - Francisco Pérez-Nevado
- School of Agricultural Engineering, University of Extremadura, Avda, Adolfo Suárez s/n, 06071 Badajoz, Spain; (R.C.); (F.P.-N.); (A.M.); (A.M.); (M.d.G.C.)
- Avda. de la Investigación s/n, Campus Universitario, University of Research Institute of Agro-Food Resources (INURA), 06006 Badajoz, Spain
| | - Ana Martínez
- School of Agricultural Engineering, University of Extremadura, Avda, Adolfo Suárez s/n, 06071 Badajoz, Spain; (R.C.); (F.P.-N.); (A.M.); (A.M.); (M.d.G.C.)
- Avda. de la Investigación s/n, Campus Universitario, University of Research Institute of Agro-Food Resources (INURA), 06006 Badajoz, Spain
| | - Alberto Martín
- School of Agricultural Engineering, University of Extremadura, Avda, Adolfo Suárez s/n, 06071 Badajoz, Spain; (R.C.); (F.P.-N.); (A.M.); (A.M.); (M.d.G.C.)
- Avda. de la Investigación s/n, Campus Universitario, University of Research Institute of Agro-Food Resources (INURA), 06006 Badajoz, Spain
| | - María de Guía Córdoba
- School of Agricultural Engineering, University of Extremadura, Avda, Adolfo Suárez s/n, 06071 Badajoz, Spain; (R.C.); (F.P.-N.); (A.M.); (A.M.); (M.d.G.C.)
- Avda. de la Investigación s/n, Campus Universitario, University of Research Institute of Agro-Food Resources (INURA), 06006 Badajoz, Spain
| |
Collapse
|
14
|
Peng K, Koubaa M, Bals O, Vorobiev E. Recent insights in the impact of emerging technologies on lactic acid bacteria: A review. Food Res Int 2020; 137:109544. [DOI: 10.1016/j.foodres.2020.109544] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
|
15
|
Barišić V, Flanjak I, Kopjar M, Benšić M, Jozinović A, Babić J, Šubarić D, Miličević B, Doko K, Jašić M, Ačkar Đ. Does High Voltage Electrical Discharge Treatment Induce Changes in Tannin and Fiber Properties of Cocoa Shell? Foods 2020; 9:E810. [PMID: 32575607 PMCID: PMC7353560 DOI: 10.3390/foods9060810] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 02/05/2023] Open
Abstract
Cocoa shell is a by-product of the chocolate industry that is rich in dietary fiber and bioactive components. In this research, the influence of high voltage electric discharge (HVED) treatment on chemical and physical characteristics of the cocoa shell, i.e., the effects of applied time and frequencies on grinding ability, water binding capacity (WBC), dietary fibers and tannin content was investigated. HVED had a significant influence on the chemical and physical properties of cocoa shell, all of which could be linked to changes in fiber properties. Along with the fiber content, grinding ability and water binding capacity were increased. These properties have already been linked to fiber content and soluble/insoluble fiber ratio. However, this research implies that change in fiber properties could be linked to tannin formation via complexation of other polyphenolic components. Additional research is needed to verify this effect and to establish mechanisms of tannin formation induced by HVED and its influence on fiber quantification.
Collapse
Affiliation(s)
- Veronika Barišić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (V.B.); (M.K.); (A.J.); (J.B.); (D.Š.); (B.M.); (Đ.A.)
| | - Ivana Flanjak
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (V.B.); (M.K.); (A.J.); (J.B.); (D.Š.); (B.M.); (Đ.A.)
| | - Mirela Kopjar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (V.B.); (M.K.); (A.J.); (J.B.); (D.Š.); (B.M.); (Đ.A.)
| | - Mirta Benšić
- Department of Mathematics, Josip Juraj Strossmayer University of Osijek, Trg Ljudevita Gaja 6, 31000 Osijek, Croatia;
| | - Antun Jozinović
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (V.B.); (M.K.); (A.J.); (J.B.); (D.Š.); (B.M.); (Đ.A.)
| | - Jurislav Babić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (V.B.); (M.K.); (A.J.); (J.B.); (D.Š.); (B.M.); (Đ.A.)
| | - Drago Šubarić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (V.B.); (M.K.); (A.J.); (J.B.); (D.Š.); (B.M.); (Đ.A.)
| | - Borislav Miličević
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (V.B.); (M.K.); (A.J.); (J.B.); (D.Š.); (B.M.); (Đ.A.)
- Polytechnic in Požega, Vukovarska 17, 34000 Požega, Croatia
| | - Kristina Doko
- Federal Agro Mediterranean Institute, Biskupa Čule 10, 88000 Mostar, Bosnia and Herzegovina;
| | - Midhat Jašić
- Faculty of Technology Tuzla, Univerzitetska 8, 75000 Tuzla, Bosnia and Herzegovina;
| | - Đurđica Ačkar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (V.B.); (M.K.); (A.J.); (J.B.); (D.Š.); (B.M.); (Đ.A.)
| |
Collapse
|
16
|
Christofi S, Malliaris D, Katsaros G, Panagou E, Kallithraka S. Limit SO2 content of wines by applying High Hydrostatic Pressure. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Ntourtoglou G, Tsapou EA, Drosou F, Bozinou E, Lalas S, Tataridis P, Dourtoglou V. Pulsed Electric Field Extraction of α and β-Acids From Pellets of Humulus lupulus (Hop). Front Bioeng Biotechnol 2020; 8:297. [PMID: 32363185 PMCID: PMC7180209 DOI: 10.3389/fbioe.2020.00297] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/20/2020] [Indexed: 11/25/2022] Open
Abstract
This paper investigates the process of extracting hop pellets (hops) utilizing the pulsed electric field (PEF) technique and the contrasting effects of the technique between two distinct hop varieties (one bitter and one aromatic). The effect of PEF on the extraction was evaluated by measuring the concentration of α-acids and β-acids (humulones and lupulones). Regarding the aromatic character, the hop’s volatile caryophyllene, humulene and β-myrcene were analyzed both with and without employing the PEF treatment. In order to analyze the acids and the volatile fraction, the analytical method of UV–vis spectrophotometry was applied followed by gas chromatography coupled with mass spectrometry. For the second technique, the extracts were previously purified through a Graphitized Carbon Black syringe for Solid Phase Extraction. The results revealed that PEF had a positive impact on the alpha acids of bitter hops by increasing the extraction rate of these acids by 20%, while the volatiles demonstrated an increase of 5.6 and 7.4% for humulene and caryophyllene, respectively. Concerning the aromatic variety of hops, the PEF treatment appeared to have no noteworthy effects.
Collapse
Affiliation(s)
- George Ntourtoglou
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Athens, Greece
| | | | - Fotini Drosou
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Athens, Greece
| | - Eleni Bozinou
- Department of Food Science and Nutrition, University of Thessaly, Karditsa, Greece
| | - Stavros Lalas
- Department of Food Science and Nutrition, University of Thessaly, Karditsa, Greece
| | - Panagiotis Tataridis
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Athens, Greece
| | - Vassilis Dourtoglou
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Athens, Greece
| |
Collapse
|
18
|
Comuzzo P, Voce S, Grazioli C, Tubaro F, Marconi M, Zanella G, Querzè M. Pulsed Electric Field Processing of Red Grapes (cv. Rondinella): Modifications of Phenolic Fraction and Effects on Wine Evolution. Foods 2020; 9:E414. [PMID: 32252247 PMCID: PMC7230476 DOI: 10.3390/foods9040414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 11/16/2022] Open
Abstract
Pulsed electric field (PEF) is a non-thermal technology able to promote color and polyphenols extraction from grape skins. Most of the publications about PEF in winemaking report data concerning international varieties, poorly considering minor cultivars and the medium/long-term effects of the treatment on wine composition during storage. PEF was applied at different specific energies (2, 10, and 20 kJ kg-1) on grapes of the low-color red cv. Rondinella, after crushing-destemming. Pressing yield, the evolution of color, and total phenolic index (TPI) were measured during skin maceration. Moreover, the wines were characterized for basic compositional parameters, color, anthocyanin profile, phenolic composition (glories indices), metal content (Fe, Cr, and Ni), and sensory characters, two and twelve months after the processing, in comparison with untreated samples and pectolytic enzymes (PE). PEF did not affect fermentation evolution, nor did it modify wine basic composition or metal content. Treatments at 10 and 20 kJ kg-1 led to higher color and TPI in wines, in comparison to PE, because of increased content of anthocyanins and tannins. The sensory evaluation confirmed these findings. Modifications remained stable in wines after twelve months. Glories indices and vitisin A content highlighted greater potential stability of wine color in PEF-treated wines.
Collapse
Affiliation(s)
- Piergiorgio Comuzzo
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy; (S.V.); (C.G.); (F.T.)
| | - Sabrina Voce
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy; (S.V.); (C.G.); (F.T.)
| | - Cristian Grazioli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy; (S.V.); (C.G.); (F.T.)
| | - Franco Tubaro
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy; (S.V.); (C.G.); (F.T.)
| | - Marco Marconi
- JU.CLA.S. S.r.l., Vason Group, via Mirandola 49/A, 37026 Settimo di Pescantina (VR), Italy;
| | - Gianmaria Zanella
- Enologica Vason S.p.A., Vason Group, via Nassar 37, 37029 San Pietro in Cariano (VR), Italy;
| | - Marco Querzè
- Alintel S.r.l., via Mascarino 12/N, 40066 Pieve di Cento (BO), Italy;
| |
Collapse
|
19
|
Križanović S, Tomašević M, Režek Jambrak A, Ćurko N, Gracin L, Lukić K, Kovačević Ganić K. Effect of Thermosonication and Physicochemical Properties of Wine on Culturability, Viability, and Metabolic Activity of Brettanomyces bruxellensis Yeast in Red Wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3302-3311. [PMID: 31515992 DOI: 10.1021/acs.jafc.9b03661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The aim of this research was to investigate the short- and long-term effects of thermosonication and different physicochemical properties of wine on culturability, viability, and metabolic activity of Brettanomyces bruxellensis yeast. Thermosonication was conducted at 43 °C during 1, 2, and 3 min, while wine variations included several pH, alcohol, and sugar levels. Cell culturability and viability were determined immediately after treatment and during 90 days of storage, while metabolic activity was determined after 90 days of storage. Results showed that, although culturability was not confirmed in dry wines immediately after 3 min of treatment, thermosonication did not result in complete inactivation of the B. bruxellensis population. Herein, the first evidence of a viable but not culturable (VBNC) state of B. bruxellensis after thermosonication exposure was observed. Moreover, thermosonication reduced the production of volatile phenols. Obtained results suggest application of thermosonication for reduction of the B. bruxellensis population only in early stages of wine contamination.
Collapse
Affiliation(s)
- Stela Križanović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Marina Tomašević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Natka Ćurko
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Leo Gracin
- University Department of Marine Studies, University of Split, Ulica Ruđera Boškovića 37, 21000 Split, Croatia
| | - Katarina Lukić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Karin Kovačević Ganić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
20
|
Dimopoulou M, Renault M, Dols-Lafargue M, Albertin W, Herry JM, Bellon-Fontaine MN, Masneuf-Pomarede I. Microbiological, biochemical, physicochemical surface properties and biofilm forming ability of Brettanomyces bruxellensis. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01503-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
21
|
Xu L, Tang Z, Wen Q, Zeng X, Brennan C, Niu D. Effects of pulsed electric fields pretreatment on the quality of jujube wine. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ling‐Fang Xu
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), South China University of Technology Guangzhou China
| | - Zhong‐Sheng Tang
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), South China University of Technology Guangzhou China
| | - Qing‐Hui Wen
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), South China University of Technology Guangzhou China
| | - Xin‐An Zeng
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), South China University of Technology Guangzhou China
| | - Charles Brennan
- Department of Wine, Food and Molecular Biosciences Lincoln University Lincoln, Canterbury New Zealand
| | - Debao Niu
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), South China University of Technology Guangzhou China
| |
Collapse
|
22
|
van Wyk S, Silva FV, Farid MM. Pulsed electric field treatment of red wine: Inactivation of Brettanomyces and potential hazard caused by metal ion dissolution. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Continuous pulsed electric field treatments’ impact on the microbiota of red Tempranillo wines aged in oak barrels. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2018.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Bursać Kovačević D, Maras M, Barba FJ, Granato D, Roohinejad S, Mallikarjunan K, Montesano D, Lorenzo JM, Putnik P. Innovative technologies for the recovery of phytochemicals from Stevia rebaudiana Bertoni leaves: A review. Food Chem 2018; 268:513-521. [DOI: 10.1016/j.foodchem.2018.06.091] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 01/01/2023]
|
25
|
SO2, high pressure processing and pulsed electric field treatments of red wine: Effect on sensory, Brettanomyces inactivation and other quality parameters during one year storage. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Two Decades of “Horse Sweat” Taint and Brettanomyces Yeasts in Wine: Where do We Stand Now? BEVERAGES 2018. [DOI: 10.3390/beverages4020032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Guzzon R, Larcher R, Guarcello R, Francesca N, Settanni L, Moschetti G. Spoilage potential of brettanomyces bruxellensis strains isolated from Italian wines. Food Res Int 2018; 105:668-677. [DOI: 10.1016/j.foodres.2017.11.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
|
28
|
Gabrić D, Barba F, Roohinejad S, Gharibzahedi SMT, Radojčin M, Putnik P, Bursać Kovačević D. Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: A review. J FOOD PROCESS ENG 2017. [DOI: 10.1111/jfpe.12638] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Domagoj Gabrić
- Faculty of Food Technology and Biotechnology; University of Zagreb, Pierottijeva 6; Zagreb 10000 Croatia
| | - Francisco Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy; Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot; València Spain
| | - Shahin Roohinejad
- Department of Food Technology and Bioprocess Engineering; Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9; Karlsruhe 76131 Germany
- Burn and Wound Healing Research Center, Division of Food and Nutrition; Shiraz University of Medical Sciences; Shiraz Iran
| | | | - Milivoj Radojčin
- University of Novi Sad, Trg Dositeja Obradovića 8; Novi Sad 21000 Republic of Serbia
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology; University of Zagreb, Pierottijeva 6; Zagreb 10000 Croatia
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology; University of Zagreb, Pierottijeva 6; Zagreb 10000 Croatia
| |
Collapse
|
29
|
Bevilacqua A, Petruzzi L, Perricone M, Speranza B, Campaniello D, Sinigaglia M, Corbo MR. Nonthermal Technologies for Fruit and Vegetable Juices and Beverages: Overview and Advances. Compr Rev Food Sci Food Saf 2017; 17:2-62. [DOI: 10.1111/1541-4337.12299] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Antonio Bevilacqua
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Leonardo Petruzzi
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Marianne Perricone
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Barbara Speranza
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Daniela Campaniello
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Milena Sinigaglia
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Maria Rosaria Corbo
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| |
Collapse
|
30
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Girones R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Cocconcelli PS, Klein G, Prieto Maradona M, Querol A, Peixe L, Suarez JE, Sundh I, Vlak JM, Aguilera-Gómez M, Barizzone F, Brozzi R, Correia S, Heng L, Istace F, Lythgo C, Fernández Escámez PS. Scientific Opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA. EFSA J 2017; 15:e04664. [PMID: 32625421 PMCID: PMC7010101 DOI: 10.2903/j.efsa.2017.4664] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
EFSA is requested to assess the safety of a broad range of biological agents in the context of notification for market authorisation as sources of food and feed additives, food enzymes and plant protection products. The qualified presumption of safety (QPS) assessment was developed to provide a harmonised generic pre-assessment to support safety risk assessments performed by EFSA's scientific Panels. The safety of unambiguously defined biological agents (at the highest taxonomic unit appropriate for the purpose for which an application is intended), and the completeness of the body of knowledge are assessed. Identified safety concerns for a taxonomic unit are, where possible and reasonable in number, reflected as 'qualifications' in connection with a recommendation for a QPS status. The list of QPS recommended biological agents was reviewed and updated in the current opinion and therefore becomes the valid list. The 2016 update reviews previously assessed microorganisms including bacteria, yeasts and viruses used for plant protection purposes following an Extensive Literature Search strategy. The taxonomic units related to the new notifications received since the 2013 QPS opinion, were periodically evaluated for a QPS status and the results published as Statements of the BIOHAZ Panel. Carnobacterium divergens, Lactobacillus diolivorans, Microbacterium imperiale, Pasteuria nishizawae, Pediococcus parvulus, Bacillus flexus, Bacillus smithii, Xanthomonas campestris and Candida cylindracea were recommended for the QPS list. All taxonomic units previously recommended for the 2013 QPS list had their status reconfirmed as well their qualifications with the exception of Pasteuria nishizawae for which the qualification was removed. The exclusion of filamentous fungi and enterococci from the QPS evaluations was reconsidered but monitoring will be maintained and the status will be re-evaluated in the next QPS Opinion update. Evaluation of bacteriophages should remain as a case-by-case procedure and should not be considered for QPS status.
Collapse
|
31
|
Update of the list of QPS‐recommended biological agents intentionally added to food or feed as notified to EFSA 4: suitability of taxonomic units notified to EFSA until March 2016. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4522] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|