1
|
Heckler C, do Prado-Silva L, Santana MFSE, Sant'Ana AS. Foodborne spore-forming bacteria: Challenges and opportunities for their control through the food production chain. ADVANCES IN FOOD AND NUTRITION RESEARCH 2025; 113:563-635. [PMID: 40023568 DOI: 10.1016/bs.afnr.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Foodborne spore-forming bacteria represent a significant challenge within the food production chain due to their widespread occurrence and resistance to various processing methods. In addition to their role in food spoilage, these bacteria exhibit pathogenic properties, posing risks to public health. A comprehensive understanding of the impact of unit operations along the food production continuum, from farm or field to fork, is essential for ensuring both the safety and quality of food products. This chapter explores the factors influencing the growth, inactivation, and persistence of these bacteria, as well as the challenges and opportunities for their control. The discussion encompasses preventive measures, control strategies at the farm and field levels, and processing operations, including both thermal and non-thermal methods. Post-processing controls, such as storage and distribution practices, are also addressed. Furthermore, consumer behavior, education, and lessons learned from past outbreaks and product recalls contribute to a broader understanding of how to manage spore-forming bacteria within the food production chain. By assessing and quantifying the effects of each processing step, it becomes possible to implement effective control measures, thereby ensuring microbiological safety and enhancing the quality of food products.
Collapse
Affiliation(s)
- Caroline Heckler
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Leonardo do Prado-Silva
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
2
|
O'Connell J, Pentakota K, Villeareal D, Faz J, Li X, Trinh A, Beddard R, Jones S, Srinivasan A. Development of a sterilization process for amniotic membrane allograft tissue using supercritical carbon dioxide and NovaKill. Cell Tissue Bank 2024; 26:4. [PMID: 39680266 PMCID: PMC11649788 DOI: 10.1007/s10561-024-10152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 11/20/2024] [Indexed: 12/17/2024]
Abstract
Amniotic membrane is arguably one of the most popular biological wound dressings on the market today. Various growth factors and cytokines inherent to amniotic membrane tissue have been recognized as key mediators in wound healing and tissue regeneration, giving the tissue its clinical utility. Sterilization methodologies using irradiation are recognized as the gold standard in the field and routinely used to prepare tissue allografts, including amniotic membrane for transplantation. However, irradiation is not always compatible in preserving the physical structure or biochemical factors of biological materials and can potentially result in detrimental effects to the critical quality attributes of allograft tissues. Alternatively, a novel sterilization technique involving supercritical carbon dioxide (SCCO2) has been shown to have minimal effect on the inherent biophysical properties of sensitive biological tissues and tissue-derived products. At BioBridge Global, we have developed a process utilizing SCCO2 technology for the sterilization of an amniotic membrane tissue allograft product. This process, first and foremost, meets industry standards for sterilization while simultaneously maintaining the biochemical composition of the tissue. Our results show that upon SCCO2 sterilization, most of the growth factors tested were conserved, with many at quantities significantly greater than commercially available gamma and electron beam irradiated tissue. The SCCO2-sterilized amniotic membrane allograft is unique in that it is designed to overcome limitations associated with traditional tissue sterilization methodologies, namely, the conservation of key biological factors inherent to native amniotic membrane tissue. It is anticipated that by retaining these biological factors, clinical outcomes associated with the use of SCCO2-sterilized amniotic membrane will be improved.
Collapse
Affiliation(s)
| | | | - Donny Villeareal
- BioBridge Global, Research and Development, San Antonio, TX, USA
| | - Jose Faz
- BioBridge Global, Research and Development, San Antonio, TX, USA
| | - Xiaoli Li
- BioBridge Global, Research and Development, San Antonio, TX, USA
| | - Anthony Trinh
- BioBridge Global, Research and Development, San Antonio, TX, USA
| | - Rachel Beddard
- BioBridge Global, Research and Development, San Antonio, TX, USA
| | - Scott Jones
- BioBridge Global, Research and Development, San Antonio, TX, USA
| | | |
Collapse
|
3
|
Wang S, Xu J, Yue F, Zhang L, Bi N, Gou J, Li Y, Huang Y, Zhao T, Jia L. Smartphone-assisted mobile fluorescence sensor for self-calibrated detection of anthrax biomarker, Cu 2+, and cysteine in food analysis. Food Chem 2024; 451:139410. [PMID: 38670024 DOI: 10.1016/j.foodchem.2024.139410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Dipicolinic acid (DPA), as a biomarker for Bacillus anthracis, is highly toxic at trace levels. Rapid and on-site quantitative detection of DPA is essential for maintaining food safety and public health. This work develops a dual-channel self-calibrated fluorescence sensor constructed by the YVO4:Eu and Tb-β-diketone complex for rapid visual detection of DPA. This sensor exhibits high selectivity, fast response time, excellent detection sensitivity, and the detection limit is as low as 4.5 nM in the linear range of 0-16 μM. A smartphone APP and portable ultraviolet lamp can assemble a mobile fluorescence sensor for on-site analysis. Interestingly, adding Cu2+ ions can quench the fluorescence intensity of Tb3+. In contrast, the addition of cysteine can restore the fluorescence, allowing the accurate detection of Cu2+ ions and cysteine in environmental water and food samples. This work provides a portable sensor that facilitates real-time analysis of multiple targets in food and the environment.
Collapse
Affiliation(s)
- Sheng Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Jun Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China.
| | - Fengzhi Yue
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Lina Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Ning Bi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Jian Gou
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Yongxin Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Yuanyuan Huang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Tongqian Zhao
- Institute of Resources & Environment, Henan Polytechnic University, Jiaozuo, Henan 454000, China.
| | - Lei Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China.
| |
Collapse
|
4
|
Ren Z, Han J, Zhang X, Yan Z, Wei Q. Effective of different industrial disinfection in subzero cold-chain environment. Sci Rep 2024; 14:12651. [PMID: 38825618 PMCID: PMC11144690 DOI: 10.1038/s41598-024-62204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/14/2024] [Indexed: 06/04/2024] Open
Abstract
Effective disinfection methods are crucial in the cold chain transportation process of food due to the specificity of temperature and the diversity of contaminated flora. The objective of this study was to investigate the sanitizing effect of different disinfectants on various fungi at - 20 °C to achieve accurate disinfection of diverse bacterial populations. Peracetic acid, hydrogen peroxide, and potassium bisulfate were selected as low-temperature disinfectants and were combined with antifreeze. The sanitizing effect of these cryogenic disinfectants on pathogens such as Bacillus subtilis black variant spores (ATCC9372), Staphylococcus aureus (ATCC 6538), Candida albicans (ATCC 10231), Escherichia coli (8099), and poliovirus (PV-1) was sequentially verified by bactericidal and virus inactivation experiments. After a specified time of disinfection, a neutralizing agent was used to halt the sanitizing process. The study demonstrates that different disinfectants exhibit selective effects during the low-temperature disinfection process. Peracetic acid, hydrogen peroxide, and potassium monopersulfate are suitable for the low-temperature environmental disinfection of bacterial propagules, viruses, and fungal contaminants. However, for microorganisms with strong resistance to spores, a low-temperature disinfectant based on peracetic acid should be chosen for effective disinfection treatment. Our results provide a valuable reference for selecting appropriate disinfectants to sanitize various potential pathogens in the future.
Collapse
Affiliation(s)
- Zhe Ren
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jie Han
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xue Zhang
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Zheng Yan
- Tianjin Medical University, Tianjin, China
| | - QiuHua Wei
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
5
|
Penoy N, Delma KL, Homkar N, Karim Sakira A, Egrek S, Sacheli R, Sacré PY, Grignard B, Hayette MP, Somé TI, Semdé R, Evrard B, Piel G. Development and optimization of a one step process for the production and sterilization of liposomes using supercritical CO 2. Int J Pharm 2024; 651:123769. [PMID: 38181994 DOI: 10.1016/j.ijpharm.2024.123769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Liposomes are very interesting drug delivery systems for pharmaceutical and therapeutic purposes. However, liposome sterilization as well as their industrial manufacturing remain challenging. Supercritical carbon dioxide is an innovative technology that can potentially overcome these limitations. The aim of this study was to optimize a one-step process for producing and sterilizing liposomes using supercritical CO2. For this purpose, a design of experiment was conducted. The analysis of the experimental design showed that the temperature is the most influential parameter to achieve the sterility assurance level (SAL) required for liposomes (≤10-6). Optimal conditions (80 °C, 240 bar, 30 min) were identified to obtain the fixed critical quality attributes of liposomes. The conditions for preparing and sterilizing empty liposomes of various compositions, as well as liposomes containing the poorly water-soluble drug budesonide, were validated. The results indicate that the liposomes have appropriate physicochemical characteristics for drug delivery, with a size of 200 nm or less and a PdI of 0.35 or less. Additionally, all liposome formulations demonstrated the required SAL and sterility at concentrations of 5 and 45 mM, with high encapsulation efficiency.
Collapse
Affiliation(s)
- Noémie Penoy
- Laboratory of Pharmaceutical Technology and Biopharmacy, Development of Nanomedicine, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium; FRITCO(2)T (Federation of Researchers in Innovative Technologies for CO(2) Transformation), University of Liege, Sart-Tilman B6a, Liege 4000, Belgium
| | - Kouka Luc Delma
- Laboratory of Pharmaceutical Technology and Biopharmacy, Development of Nanomedicine, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium; Laboratory of Drug Development, Doctoral School of Sciences and Health, University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Nirmayi Homkar
- Laboratory of Pharmaceutical Technology and Biopharmacy, Development of Nanomedicine, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Abdoul Karim Sakira
- Laboratoire de Toxicologie, Environnement et Santé (LATES), Ecole Doctorale des Sciences de La Santé (ED2S), Université Joseph KI-ZERBO, 03 BP 7021 03 Ouagadougou, Burkina Faso
| | - Sabrina Egrek
- Laboratory of Clinical Microbiology, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Rosalie Sacheli
- Laboratory of Clinical Microbiology, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Pierre-Yves Sacré
- Research Support Unit in Chemometrics, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Bruno Grignard
- FRITCO(2)T (Federation of Researchers in Innovative Technologies for CO(2) Transformation), University of Liege, Sart-Tilman B6a, Liege 4000, Belgium
| | - Marie-Pierre Hayette
- Laboratory of Clinical Microbiology, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Touridomon Issa Somé
- Laboratoire de Toxicologie, Environnement et Santé (LATES), Ecole Doctorale des Sciences de La Santé (ED2S), Université Joseph KI-ZERBO, 03 BP 7021 03 Ouagadougou, Burkina Faso
| | - Rasmané Semdé
- Laboratory of Drug Development, Doctoral School of Sciences and Health, University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Development of Nanomedicine, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, Development of Nanomedicine, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium.
| |
Collapse
|
6
|
Setlow P, Christie G. New Thoughts on an Old Topic: Secrets of Bacterial Spore Resistance Slowly Being Revealed. Microbiol Mol Biol Rev 2023; 87:e0008022. [PMID: 36927044 PMCID: PMC10304885 DOI: 10.1128/mmbr.00080-22] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The quest for bacterial survival is exemplified by spores formed by some Firmicutes members. They turn up everywhere one looks, and their ubiquity reflects adaptations to the stresses bacteria face. Spores are impactful in public health, food safety, and biowarfare. Heat resistance is the hallmark of spores and is countered principally by a mineralized gel-like protoplast, termed the spore core, with reduced water which minimizes macromolecular movement/denaturation/aggregation. Dry heat, however, introduces mutations into spore DNA. Spores have countermeasures to extreme conditions that are multifactorial, but the fact that spore DNA is in a crystalline-like nucleoid in the spore core, likely due to DNA saturation with small acid-soluble spore proteins (SASPs), suggests that reduced macromolecular motion is also critical in spore dry heat resistance. SASPs are also central in the radiation resistance characteristic of spores, where the contributions of four spore features-SASP; Ca2+, with pyridine-2,6-dicarboxylic acid (CaDPA); photoproduct lyase; and low water content-minimize DNA damage. Notably, the spore environment steers UV photochemistry toward a product that germinated spores can repair without significant mutagenesis. This resistance extends to chemicals and macromolecules that could damage spores. Macromolecules are excluded by the spore coat which impedes the passage of moieties of ≥10 kDa. Additionally, damaging chemicals may be degraded or neutralized by coat enzymes/proteins. However, the principal protective mechanism here is the inner membrane, a compressed structure lacking lipid fluidity and presenting a barrier to the diffusion of chemicals into the spore core; SASP saturation of DNA also protects against genotoxic chemicals. Spores are also resistant to other stresses, including high pressure and abrasion. Regardless, overarching mechanisms associated with resistance seem to revolve around reduced molecular motion, a fine balance between rigidity and flexibility, and perhaps efficient repair.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Lin X, Wu H, Zeng S, Peng T, Zhang P, Wan X, Lang Y, Zhang B, Jia Y, Shen R, Yin B. A self-designed device integrated with a Fermat spiral microfluidic chip for ratiometric and automated point-of-care testing of anthrax biomarker in real samples. Biosens Bioelectron 2023; 230:115283. [PMID: 37019031 DOI: 10.1016/j.bios.2023.115283] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/12/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
A desirable lanthanide-based ratiometric fluorescent probe was designed and integrated into a self-designed Fermat spiral microfluidic chip (FS-MC) for the automated determination of a unique bacterial endospore biomarker, dipicolinic acid (DPA), with high selectivity and sensitivity. Here, a blue emission wavelength at 425 nm was generated in the Fermat spiral structure by mixing the europium (Eu3+) and luminol to form the Eu3+/Luminol sensing probe. DPA in the reservoir can be used to specifically bind to Eu3+ under the negative pressure and transfer energy from DPA to Eu3+ sequentially via an antenna effect, thus resulting in a significant increase in the red fluorescence emission peak at 615 nm. According to the fluorescence intensity ratio (F615/F425), a good linearity can be obtained with increasing the concentration of DPA from 0 to 200 μM with a limit of detection as low as 10.11 nM. Interestingly, the designed FS-MC can achieve rapid detection of DPA in only 1 min, reducing detection time and improving sensitivity. Furthermore, a self-designed device integrated with the FS-MC and a smartphone color picker APP was employed for the rapid automatic point-of-care testing (POCT) of DPA in the field, simplifying complex processes and reducing testing times, thus confirming the great promise of this ready-to-use measurement platform for in situ inspection.
Collapse
|
8
|
Delma KL, Penoy N, Sakira AK, Egrek S, Sacheli R, Grignard B, Hayette MP, Issa Somé T, Evrard B, Semdé R, Piel G. Use of supercritical CO 2 for the sterilization of liposomes: Study of the influence of sterilization conditions on the chemical and physical stability of phospholipids and liposomes. Eur J Pharm Biopharm 2023; 183:112-118. [PMID: 36638849 DOI: 10.1016/j.ejpb.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023]
Abstract
The effects of four potential supercritical carbon dioxide (ScCO2) sterilization conditions on the chemical stability of 9 phospholipids and on the physicochemical characteristics of liposomes consisting of stable phospholipids, as well as their sterilization efficiency were evaluated. These conditions were : C1 (ScCO2/70 °C/150 bar/240 min), C2 (ScCO2/0.25 % water/ 0.15% H2O2/ 0.5% acetic anhydride/38° C/85 bar/45 min), C3 (ScCO2/0.08 % peracetic acid/35° C/104 bar/180 min) and C4 (ScCO2/200 ppm H2O2/40 °C/270 bar/90 min). The results showed for phospholipids, a significant increase in hydrolysis products of 3.77 to 14.50 % and an increase in oxidation index of 6.10 to 430.50 % with unsaturated phospholipids for all tested conditions while with saturated phospholipids, no significant degradation was observed. Concerning the liposome formulation, no change in dispersion color and no phospholipid degradation were observed. However, a decrease in liposome size from 126.90 nm to 111.80 nm, 96.27 nm, 99.60 nm and 109.13 nm and an increase in the PdI from 0.208 to 0.271, 0.233, 0.285, and 0.298 were found with conditions C1, C2, C3 and C4 respectively. For the sterilization efficiency, conditions C1, C2 and C3 achieved the required sterility assurance level (SAL) of 10-6 for liposomes.
Collapse
Affiliation(s)
- Kouka Luc Delma
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium; Laboratory of Drug Development, Doctoral School of Sciences and Health, University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso.
| | - Noémie Penoy
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - Abdoul Karim Sakira
- Laboratoire de Toxicologie, Environnement et Santé (LATES), Ecole Doctorale Sciences et Santé (ED2S), Université Joseph KI-ZERBO, 03 BP 7021 03, Ouagadougou, Burkina Faso
| | - Sabrina Egrek
- Laboratory of Clinical Microbiology, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - Rosalie Sacheli
- Laboratory of Clinical Microbiology, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - Bruno Grignard
- FRITCO(2)T Platform, CESAM Research Unit, University of Liege, Sart-Tilman B6a, 4000 Liege, Belgium
| | - Marie-Pierre Hayette
- Laboratory of Clinical Microbiology, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - Touridomon Issa Somé
- Laboratoire de Toxicologie, Environnement et Santé (LATES), Ecole Doctorale Sciences et Santé (ED2S), Université Joseph KI-ZERBO, 03 BP 7021 03, Ouagadougou, Burkina Faso
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - Rasmané Semdé
- Laboratory of Drug Development, Doctoral School of Sciences and Health, University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| |
Collapse
|
9
|
Korza G, Goulet M, DeMarco A, Wicander J, Setlow P. Role of Bacillus subtilis Spore Core Water Content and pH in the Accumulation and Utilization of Spores' Large 3-Phosphoglyceric Acid Depot, and the Crucial Role of This Depot in Generating ATP Early during Spore Germination. Microorganisms 2023; 11:microorganisms11010195. [PMID: 36677488 PMCID: PMC9864370 DOI: 10.3390/microorganisms11010195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
The development of Bacillus spore cores involves the accumulation of 3-phosphoglycerate (3PGA) during sporulation, following core acidification to ~6.4, and before decreases in core water content occur due to Ca-dipicolinc acid (CaDPA) uptake. This core acidification inhibits phosphoglycerate mutase (PGM) at pH 6.4, allowing 3PGA accumulation, although PGM is active at pH 7.4. Spores’ 3PGA is stable for months at 4 °C and weeks at 37 °C. However, in wild-type spore germination, increases in core pH to 7.5−8 and in core water content upon CaDPA release and cortex peptidoglycan hydrolysis allow for rapid 3PGA catabolism, generating ATP; indeed, the earliest ATP generated following germination is from 3PGA catabolism. The current work found no 3PGA in those Bacillus subtilis spores that do not accumulate CaDPA during sporulation and have a core pH of ~7.4. The ATP production in the germination of 3PGA-less spores in a poor medium was minimal, and the germinated spores were >99% dead. However, the 3PGA-replete spores that germinated in the poor medium accumulated >30 times more ATP, and >70% of the germinated spores were found to be alive. These findings indicate why 3PGA accumulation during sporulation (and utilization during germination) in all the Firmicute spores studied can be crucial for spore revival due to the generation of essential ATP. The latter finding further suggests that targeting PGM activity during germination could be a novel way to minimize the damaging effects of spores.
Collapse
|
10
|
Wu J, Chen P, Chen J, Ye X, Cao S, Sun C, Jin Y, Zhang L, Du S. Integrated ratiometric fluorescence probe-based acoustofluidic platform for visual detection of anthrax biomarker. Biosens Bioelectron 2022; 214:114538. [PMID: 35820251 DOI: 10.1016/j.bios.2022.114538] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
The sensitive detection of dipicolinic acid (DPA) as an excellent biomarker of Bacillus anthracis, especially through visual point-of-care testing, is significant for accurate and rapid diagnosis of anthrax to timely prevent anthrax disease or biological terrorist attack. Herein, an acoustofluidics-based colorimetric platform with the integrated ratiometric fluorescence probe (INT-probe) was fabricated, which improved the sensitivity of visual detection for DPA and overcame the poor reproducibility of the existing acoustofluidics-assisted colorimetric analysis. For the design of INT-probe, Eu3+-EDTA complex as sensing moiety was grafted onto the surface of blue organosilane-functionalized carbon dots (SiCDs)-doped SiO2 nanoparticles (NPs). Upon exposure to DPA, Eu3+ was sensitized by DPA to emit red luminescence, while the SiCDs as reference inside the SiO2 NPs still kept the blue fluorescence unchanged. Attributed to the acoustic radiation force-driven enrichment of the INT-probe, slight color changes caused by low concentration of DPA could be amplified and distinguished by naked-eyes/smartphone. With the increase of DPA concentration, obvious color variations of INT-probe/DPA aggregates from blue to pink could be observed, and the color information of the fluorescent aggregates was converted to red, green and blue values for quantitative analysis, whose lowest detectable concentration reached 100 nM that is about 2-3 orders of magnitude lower than the infectious dosage of Bacillus anthracis spores (60 μM). Importantly, benefiting from the great color signal enhancement by acoustofluidic sensing platform, the usage of Eu3+ reduced to as low as 0.273 μmol per gram of SiO2 NPs, providing a meaningful way to utilize lanthanide resource efficiently.
Collapse
Affiliation(s)
- Jiafeng Wu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Panpan Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jie Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiangxue Ye
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Shurui Cao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Chuqiang Sun
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yang Jin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Liying Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Shuhu Du
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
11
|
Mok JH, Sun Y, Pyatkovskyy T, Hu X, Sastry SK. Mechanisms of Bacillus subtilis spore inactivation by single- and multi-pulse high hydrostatic pressure (MP-HHP). INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Inactivation mechanism of slightly acidic electrolyzed water on Bacillus cereus spores. Food Microbiol 2022; 103:103951. [DOI: 10.1016/j.fm.2021.103951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/11/2021] [Accepted: 11/19/2021] [Indexed: 01/18/2023]
|
13
|
Duarte MM, Silva IV, Eisenhut AR, Bionda N, Duarte ARC, Oliveira AL. Contributions of supercritical fluid technology for advancing decellularization and postprocessing of viable biological materials. MATERIALS HORIZONS 2022; 9:864-891. [PMID: 34931632 DOI: 10.1039/d1mh01720a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The demand for tissue and organ transplantation worldwide has led to an increased interest in the development of new therapies to restore normal tissue function through transplantation of injured tissue with biomedically engineered matrices. Among these developments is decellularization, a process that focuses on the removal of immunogenic cellular material from a tissue or organ. However, decellularization is a complex and often harsh process that frequently employs techniques that can negatively impact the properties of the materials subjected to it. The need for a more benign alternative has driven research on supercritical carbon dioxide (scCO2) assisted decellularization. scCO2 can achieve its critical point at relatively low temperature and pressure conditions, and for its high transfer rate and permeability. These properties make scCO2 an appealing methodology that can replace or diminish the exposure of harsh chemicals to sensitive materials, which in turn could lead to better preservation of their biochemical and mechanical properties. The presented review covers relevant literature over the last years where scCO2-assisted decellularization is employed, as well as discussing major topics such as the mechanism of action behind scCO2-assisted decellularization, CO2 and cosolvents' solvent properties, effect of the operational parameters on decellularization efficacy and on the material's properties.
Collapse
Affiliation(s)
- Marta M Duarte
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Inês V Silva
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | | | - Nina Bionda
- iFyber, LLC, 950 Danby Road, Ithaca, NY 14850, USA
| | - Ana Rita C Duarte
- LAQV/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Ana L Oliveira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
14
|
Hart A, Anumudu C, Onyeaka H, Miri T. Application of supercritical fluid carbon dioxide in improving food shelf-life and safety by inactivating spores: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:417-428. [PMID: 35185167 PMCID: PMC8814202 DOI: 10.1007/s13197-021-05022-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 02/03/2023]
Abstract
Extending shelf-life of food, ensuring it is safe for consumers and meeting regulatory standards is the food industry's governing principle. Food safety is an essential aspect of food processing. Spores-forming microbes such as Bacillus spp. and Clostridium spp. are problematic in the food industry because of their ability to form endospores and survive processing conditions. Hence, their germination in food poses a threat to both shelf-life and safety of food. This paper reports on the current state of supercritical fluid carbon dioxide (SF-CO2) application in the inactivation of spores-forming microbes in food. Unlike high hydrostatic pressure and thermal processes which struggle to deactivate and destroy spores, and if they do, it impacts adversely on the food nutritional and quality attributes. This technique is viable to inactivate spores and maintain the foods structural and nutritional characteristics. The mechanisms of inactivation can be grouped into: (1) release of cellular content due to rupture of the cell wall, coat and cortex, and disruption of membranes, (2) degradation of proteins as a result of interaction with permeated and penetrated SF-CO2 and (3) deactivation of enzymatic activities. It was discovered that the synergistic effect of ultrasound another non-thermal technique or addition of co-solvent such as water, hydrogen peroxide and ethanol or antimicrobial peptide greatly enhanced inactivation of spores. This work harmonizes published perspectives on spores' inactivation mechanisms, and will help inform further research into the application of SF-CO2 in the sterilization of food products.
Collapse
Affiliation(s)
- Abarasi Hart
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Christian Anumudu
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
15
|
Malyshev D, Öberg R, Dahlberg T, Wiklund K, Landström L, Andersson PO, Andersson M. Laser induced degradation of bacterial spores during micro-Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120381. [PMID: 34562861 DOI: 10.1016/j.saa.2021.120381] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Micro-Raman spectroscopy combined with optical tweezers is a powerful method to analyze how the biochemical composition and molecular structures of individual biological objects change with time. In this work we investigate laser induced effects in the trapped object. Bacillus thuringiensis spores, which are robust organisms known for their resilience to light, heat, and chemicals are used for this study. We trap spores and monitor the Raman peak from CaDPA (calcium dipicolinic acid), which is a chemical protecting the spore core. We see a correlation between the amount of laser power used in the trap and the release of CaDPA from the spore. At a laser power of 5 mW, the CaDPA from spores in water suspension remain intact over the 90 min experiment, however, at higher laser powers an induced effect could be observed. SEM images of laser exposed spores (after loss of CaDPA Raman peak was confirmed) show a notable alteration of the spores' structure. Our Raman data indicates that the median dose exposure to lose the CaDPA peak was ∼60 J at 808 nm. For decontaminated/deactivated spores, i.e., treated in sodium hypochlorite or peracetic acid solutions, the sensitivity on laser power is even more pronounced and different behavior could be observed on spores treated by the two chemicals. Importantly, the observed effect is most likely photochemical since the increase of the spore temperature is in the order of 0.1 K as suggested by our numerical multiphysics model. Our results show that care must be taken when using micro-Raman spectroscopy on biological objects since photoinduced effects may substantially affect the results.
Collapse
Affiliation(s)
| | - Rasmus Öberg
- Dept of Physics, Umeå University, 901 87 Umeå, Sweden
| | | | | | | | - Per Ola Andersson
- Swedish Defence Research Agency (FOI), Umeå, Sweden; Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Magnus Andersson
- Dept of Physics, Umeå University, 901 87 Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå, Sweden.
| |
Collapse
|
16
|
Abstract
Spores of many species of the orders Bacillales and Clostridiales can be vectors for food spoilage, human diseases and intoxications, and biological warfare. Many agents are used for spore killing, including moist heat in an autoclave, dry heat at elevated temperatures, UV radiation at 254 and more recently 222 and 400 nm, ionizing radiation of various types, high hydrostatic pressures and a host of chemical decontaminants. An alternative strategy is to trigger spore germination, as germinated spores are much easier to kill than the highly resistant dormant spores—the so called “germinate to eradicate” strategy. Factors important to consider in choosing methods for spore killing include the: (1) cost; (2) killing efficacy and kinetics; (3) ability to decontaminate large areas in buildings or outside; and (4) compatibility of killing regimens with the: (i) presence of people; (ii) food quality; (iii) presence of significant amounts of organic matter; and (iv) minimal damage to equipment in the decontamination zone. This review will summarize research on spore killing and point out some common flaws which can make results from spore killing research questionable.
Collapse
|
17
|
Bennet D, Harris AF, Lacombe J, Brooks C, Bionda N, Strickland AD, Eisenhut T, Zenhausern F. Evaluation of supercritical CO 2 sterilization efficacy for sanitizing personal protective equipment from the coronavirus SARS-CoV-2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146519. [PMID: 33774282 PMCID: PMC7969838 DOI: 10.1016/j.scitotenv.2021.146519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 05/08/2023]
Abstract
The purpose of this research is to evaluate the supercritical carbon dioxide (scCO2) sterilization-based NovaClean process for decontamination and reprocessing of personal protective equipment (PPE) such as surgical masks, cloth masks, and N95 respirators. Preliminarily, Bacillus atrophaeus were inoculated into different environments (dry, hydrated, and saliva) to imitate coughing and sneezing and serve as a "worst-case" regarding challenged PPE. The inactivation of the microbes by scCO2 sterilization with NovaKill or H2O2 sterilant was investigated as a function of exposure times ranging from 5 to 90 min with a goal of elucidating possible mechanisms. Also, human coronavirus SARS-CoV-2 and HCoV-NL63 were inoculated on the respirator material, and viral activity was determined post-treatment. Moreover, we investigated the reprocessing ability of scCO2-based decontamination using wettability testing and surface mapping. Different inactivation mechanisms have been identified in scCO2 sanitization, such as membrane damage, germination defect, and dipicolinic acid leaks. Moreover, the viral sanitization results showed a complete inactivation of both coronavirus HCoV-NL63 and SARS-CoV-2. We did not observe changes in PPE morphology, topographical structure, or material integrity, and in accordance with the WHO recommendation, maintained wettability post-processing. These experiments establish a foundational understanding of critical elements for the decontamination and reuse of PPE in any setting and provide a direction for future research in the field.
Collapse
Affiliation(s)
- Devasier Bennet
- Center for Applied NanoBioscience and Medicine, The University of Arizona, College of Medicine, 475 N Fifth Street, AZ 85004, Phoenix, USA.
| | - Ashlee F Harris
- Center for Applied NanoBioscience and Medicine, The University of Arizona, College of Medicine, 475 N Fifth Street, AZ 85004, Phoenix, USA
| | - Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, The University of Arizona, College of Medicine, 475 N Fifth Street, AZ 85004, Phoenix, USA; Department of Basic Medical Sciences, The University of Arizona, College of Medicine, 475 N 5th St., Phoenix, AZ 85004, USA
| | - Carla Brooks
- Center for Applied NanoBioscience and Medicine, The University of Arizona, College of Medicine, 475 N Fifth Street, AZ 85004, Phoenix, USA
| | | | | | | | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, The University of Arizona, College of Medicine, 475 N Fifth Street, AZ 85004, Phoenix, USA; Department of Basic Medical Sciences, The University of Arizona, College of Medicine, 475 N 5th St., Phoenix, AZ 85004, USA; School of Pharmaceutical Sciences, University of Geneva, 1 rue Michel Servet, 1211, Geneva 4, Switzerland.
| |
Collapse
|
18
|
DeMarco AM, Korza G, Granados MR, Mok WWK, Setlow P. Dodecylamine rapidly kills of spores of multiple Firmicute species: properties of the killed spores and the mechanism of the killing. J Appl Microbiol 2021; 131:2612-2625. [PMID: 33998749 DOI: 10.1111/jam.15137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/28/2021] [Accepted: 05/09/2021] [Indexed: 01/07/2023]
Abstract
AIMS Previous work showed that Bacillus subtilis dormant spore killing and germination by dodecylamine take place by different mechanisms. This new work aimed to optimize killing of B. subtilis and other Firmicutes spores and to determine the mechanism of the killing. METHODS AND RESULTS Spores of seven Firmicute species were killed rapidly by dodecylamine under optimal conditions and more slowly by decylamine or tetradecylamine. The killed spores were not recovered by additions to recovery media, and some of the killed spores subsequently germinated, all indicating that dodecylamine-killed spores truly are dead. Spores of two species treated with dodecylamine were more sensitive to killing by a subsequent heat treatment, and spore killing of at least one species was faster with chemically decoated spores. The cores of dodecylamine-killed spores were stained by the nucleic acid stain propidium iodide, and dodecylamine-killed wild-type and germination-deficient spores released their stores of phosphate-containing small molecules. CONCLUSIONS This work indicates that dodecylamine is likely a universal sporicide for Firmicute species, and it kills spores by damaging their inner membrane, with attendant loss of this membrane as a permeability barrier. SIGNIFICANCE AND IMPACT OF THE STUDY There is a significant need for agents that can effectively kill spores of a number of Firmicute species, especially in wide area decontamination. Dodecylamine appears to be a universal sporicide with a novel mechanism of action, and this or some comparable molecule could be useful in wide area spore decontamination.
Collapse
Affiliation(s)
- A M DeMarco
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - G Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - M R Granados
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - W W K Mok
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - P Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| |
Collapse
|
19
|
Buszewski B, Wrona O, Mayya RP, Zakharenko AM, Kalenik TK, Golokhvast KS, Piekoszewski W, Rafińska K. The potential application of supercritical CO 2 in microbial inactivation of food raw materials and products. Crit Rev Food Sci Nutr 2021; 62:6535-6548. [PMID: 33938772 DOI: 10.1080/10408398.2021.1902939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The purpose of this study was to review the possibility of using supercritical CO2 as a green and sustainable technology for microbial inactivation of raw material for further application in the food industry. The history of the development of supercritical CO2 microbial inactivation has been widely described in this article. The fundamental scientific part of the process like mechanism of bactericidal action of CO2 or inactivation of key enzymes were characterized in detail. In summary, this study provides an overview of the latest literature on the use of supercritical carbon dioxide in microbial inactivation of food raw materials and products.
Collapse
Affiliation(s)
- Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Olga Wrona
- Łukasiewicz Research Network - New Chemical Synthesis Institute, Puławy, Poland
| | - Razgonova P Mayya
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Sankt-Petersburg, Russia.,Far-Eastern Federal University, Vladivostok, Russia
| | - Alexander Mikhailovich Zakharenko
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Sankt-Petersburg, Russia.,Far-Eastern Federal University, Vladivostok, Russia
| | | | - Kirill Sergeevich Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Sankt-Petersburg, Russia.,Far-Eastern Federal University, Vladivostok, Russia.,Pacific Geographical Institute, Far-Eastern Branch of the Russian Academy of Sciences, Centralnaya, Presidium, Krasnoobsk, Russia.,Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, Krasnoobsk, Russia
| | - Wojciech Piekoszewski
- Far-Eastern Federal University, Vladivostok, Russia.,Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonien University, Gronostajowa, Kraków, Poland
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
20
|
Delma KL, Lechanteur A, Evrard B, Semdé R, Piel G. Sterilization methods of liposomes: Drawbacks of conventional methods and perspectives. Int J Pharm 2021; 597:120271. [PMID: 33548365 DOI: 10.1016/j.ijpharm.2021.120271] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 01/15/2023]
Abstract
Liposomes are targeted drug delivery systems that are of great pharmaceutical and therapeutic interest. Parenteral route is the main way used for liposome administration. In this case, their sterility is a requirement. However, due to the particular sensitivity of liposomes and their tendency to physicochemical alterations, their sterilization remains a real challenge. Conventional sterilization methods such as heat, ethylene oxide, ultraviolet and gamma irradiations are considered as unsuitable for liposome sterilization and the recommended methods for obtaining sterility of liposomes are filtration and aseptic manufacturing. Unfortunately, these recommended methods are not without limitations. This review outlines the difficulties associated with the use of these different classical methods for obtaining liposome sterility. The effects on liposome physicochemical and biopharmaceutical characteristics as well as efficacy, toxicity and practical problems of these sterilization techniques have been discussed. The search for an alternative method being therefore necessary, the applicability of supercritical carbon dioxide (ScCO2) technology, which is nowadays a promising strategy for the sterilization of sensitive products such as liposomes, is also examined. It appears from this analysis that ScCO2 could effectively be an interesting alternative to achieve sterility of liposomes, but for this, sterilization assays including challenge tests and optimization studies are needed.
Collapse
Affiliation(s)
- Kouka Luc Delma
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Developments, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium; Laboratory of Drug Development, Doctoral School of Sciences and Health, University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Developments, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Developments, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - Rasmané Semdé
- Laboratory of Drug Development, Doctoral School of Sciences and Health, University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Developments, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium.
| |
Collapse
|
21
|
Zhao X, Zheng H, Zhen J, Shu W, Yang S, Xu J, Song H, Ma Y. Multiplex genetic engineering improves endogenous expression of mesophilic α-amylase gene in a wild strain Bacillus amyloliquefaciens 205. Int J Biol Macromol 2020; 165:609-618. [PMID: 33010275 DOI: 10.1016/j.ijbiomac.2020.09.210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022]
Abstract
A wild strain Bacillus amyloliquefaciens 205 was screened for its high activity of α-amylase. A mesophilic α-amylase encoding gene amyE-205 was revealed and analyzed by genome sequencing. In order to facilitate plasmid transformation to strain 205, an interspecific plasmid transformation method was improved with 5-13 times higher in transformants than that of electronic transformation. A series of CRISPR genome editing tools have been successfully constructed for gene knockout, transcript repression and activation in 205 genome. At this basis, sporulation related genes spo0A and spoIIAC were knockout and suppressed with CRISPR/Cas9 and CRISPR/dCas9 respectively. The double knockout strain 205spo- was eliminated sporulation with 22.8% increasing of α-amylase activity. The optimal binding site G8 for dCas9-ω has been confirmed in the transcript activation. When amyE-205 was over-expressed with high copy plasmid pUC980-2, its whole upstream sequences containing G8 were also cloned. Whereafter, dCas9-ω was used to activate amyE-205 expression both at genome and plasmid. The final engineered strain 205PG8spo- achieved 784.3% promotion on α-amylase activity than the starting strain 205. The novel genetic tool box containing an efficient interspecific transformation method and functional CRISPR systems, superadded the multiplex regulation strategies used in strain modification would be also applicative in many Bacillus species.
Collapse
Affiliation(s)
- Xingya Zhao
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hongchen Zheng
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Jie Zhen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wenju Shu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Shibin Yang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jianyong Xu
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hui Song
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Yanhe Ma
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
22
|
|
23
|
McEvoy B, Lynch M, Rowan NJ. Opportunities for the application of real-time bacterial cell analysis using flow cytometry for the advancement of sterilization microbiology. J Appl Microbiol 2020; 130:1794-1812. [PMID: 33155740 DOI: 10.1111/jam.14876] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 01/11/2023]
Abstract
Medical devices provide critical care and diagnostic applications through patient contact. Sterility assurance level (SAL) may be defined as the probability of a single viable micro-organism occurring on an item after a sterilization process. Sterilization microbiology often relies upon using an overkill validation method where a 12-log reduction in recalcitrant bacterial endospore population occurs during the process that exploits conventional laboratory-based culture media for enumeration. This timely review explores key assumptions underpinning use of conventional culture-based methods in sterilization microbiology. Consideration is given to how such methods may limit the ability to fully appreciate the inactivation kinetics of a sterilization process such as vaporized hydrogen peroxide (VH2O2) sterilization, and consequently design efficient sterilization processes. Specific use of the real-time flow cytometry (FCM) is described by way of elucidating the practical relevance of these limitation factors with implications and opportunities for the sterilization industry discussed. Application of FCM to address these culture-based limitation factors will inform real-time kinetic inactivation modelling and unlock potential to embrace emerging opportunities for pharma, medical device and sterilization industries including potentially disruptive applications that may involve reduced usage of sterilant.
Collapse
Affiliation(s)
- B McEvoy
- STERIS Applied Sterilization Technologies, IDA Business and Technology Park, Tullamore, Ireland
| | - M Lynch
- Centre for Disinfection, Sterilization and Biosecurity, Athlone Institute of Technology, Athlone, Ireland
| | - N J Rowan
- Centre for Disinfection, Sterilization and Biosecurity, Athlone Institute of Technology, Athlone, Ireland
| |
Collapse
|
24
|
Mokashi S, Kanaan J, Craft D, Byrd B, Zenick B, Laue M, Korza G, Mok W, Setlow P. Killing of bacterial spores by dodecylamine and its effects on spore inner membrane properties. J Appl Microbiol 2020; 129:1511-1522. [DOI: 10.1111/jam.14732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/30/2020] [Accepted: 05/26/2020] [Indexed: 11/29/2022]
Affiliation(s)
- S. Mokashi
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - J. Kanaan
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - D.L. Craft
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - B. Byrd
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - B. Zenick
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - M. Laue
- Advanced Light and Electron Microscopy (ZBS 4) Robert Koch Institute Berlin Germany
| | - G. Korza
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - W.W.K. Mok
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - P. Setlow
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| |
Collapse
|
25
|
Wang LH, Pyatkovskyy T, Yousef A, Zeng XA, Sastry SK. Mechanism of Bacillus subtilis spore inactivation induced by moderate electric fields. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Kang JW, Hong HN, Kang DH. Application of a Krypton-Chlorine Excilamp To Control Alicyclobacillus acidoterrestris Spores in Apple Juice and Identification of Its Sporicidal Mechanism. Appl Environ Microbiol 2020; 86:e00159-20. [PMID: 32220842 PMCID: PMC7237776 DOI: 10.1128/aem.00159-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to investigate the sporicidal effect of a krypton-chlorine (KrCl) excilamp against Alicyclobacillus acidoterrestris spores and to compare its inactivation mechanism to that of a conventional UV lamp containing mercury (Hg). The inactivation effect of the KrCl excilamp was not significantly different from that of the Hg UV lamp for A. acidoterrestris spores in apple juice despite the 222-nm wavelength of the KrCl excilamp having a higher absorption coefficient in apple juice than the 254-nm wavelength of the Hg UV lamp; this is because KrCl excilamps have a fundamentally greater inactivation effect than Hg UV lamps, which is confirmed under ideal conditions (phosphate-buffered saline). The inactivation mechanism analysis revealed that the DNA damage induced by the KrCl excilamp was not significantly different (P > 0.05) from that induced by the Hg UV lamp, while the KrCl excilamp caused significantly higher (P < 0.05) lipid peroxidation incidence and permeability change in the inner membrane of A. acidoterrestris spores than did the Hg UV lamp. Meanwhile, the KrCl excilamp did not generate significant (P > 0.05) intracellular reactive oxygen species, indicating that the KrCl excilamp causes damage only through the direct absorption of UV light. In addition, after KrCl excilamp treatment with a dose of 2,011 mJ/cm2 to reduce A. acidoterrestris spores in apple juice by 5 logs, there were no significant (P > 0.05) changes in quality parameters such as color (L*, a*, and b*), total phenolic compounds, and DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging activity.IMPORTANCEAlicyclobacillus acidoterrestris spores, which have high resistance to thermal treatment and can germinate even at low pH, are very troublesome in the juice industry. UV technology, a nonthermal treatment, can be an excellent means to control heat-resistant A. acidoterrestris spores in place of thermal treatment. However, the traditionally applied UV sources are lamps that contain mercury (Hg), which is harmful to humans and the environment; thus, there is a need to apply novel UV technology without the use of Hg. In response to this issue, excilamps, an Hg-free UV source, have been actively studied. However, no studies have been conducted applying this technique to control A. acidoterrestris spores. Therefore, the results of this study, which applied a KrCl excilamp for the control of A. acidoterrestris spores and elucidated the inactivation principle, are expected to be utilized as important basic data for application to actual industry or conducting further studies.
Collapse
Affiliation(s)
- Jun-Won Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hak-Nyeong Hong
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea
| |
Collapse
|
27
|
Li X, Luo J, Deng L, Ma F, Yang M. In Situ Incorporation of Fluorophores in Zeolitic Imidazolate Framework-8 (ZIF-8) for Ratio-Dependent Detecting a Biomarker of Anthrax Spores. Anal Chem 2020; 92:7114-7122. [DOI: 10.1021/acs.analchem.0c00499] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaoqing Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Junjun Luo
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Fanghui Ma
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
28
|
Clair G, Esbelin J, Malléa S, Bornard I, Carlin F. The spore coat is essential for Bacillus subtilis spore resistance to pulsed light, and pulsed light treatment eliminates some spore coat proteins. Int J Food Microbiol 2020; 323:108592. [PMID: 32315871 DOI: 10.1016/j.ijfoodmicro.2020.108592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/11/2019] [Accepted: 03/15/2020] [Indexed: 01/26/2023]
Abstract
Microbial surface contamination of equipment or of food contact material is a recurring problem in the food industry. Spore-forming bacteria are far more resistant to a wide variety of treatments than their vegetative forms. Understanding the mechanisms underlying decontamination processes is needed to improve surface decontamination strategies against endospores potentially at the source of foodborne diseases or food-spoilage. Pulsed light (PL) with xenon lamps delivers high-energy short-time pulses of light with wavelengths in the range 200 nm-1100 nm and a high UV-C fraction. Bacillus subtilis spores were exposed to either PL or to continuous UV-C. Gel electrophoresis and western blotting revealed elimination of various proteins of the spore coat, an essential outer structure that protects spores from a wide variety of environmental conditions and inactivation treatments. Proteomic analysis confirmed the elimination of some spore coat proteins after PL treatment. Transmission electron microscopy of PL treated spores revealed a gap between the lamellar inner spore coat and the outer spore coat. Overall, spores of mutant strains with defects in genes coding for spore coat proteins were more sensitive to PL than to continuous UV-C. This study demonstrates that radiations delivered by PL contribute to specific damage to the spore coat, and overall to spore inactivation.
Collapse
Affiliation(s)
- Gérémy Clair
- INRAE, Avignon Université, UMR SQPOV, F-84000, Avignon, France; Integrative Omics, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA
| | - Julia Esbelin
- INRAE, Avignon Université, UMR SQPOV, F-84000, Avignon, France
| | - Sabine Malléa
- INRAE, Avignon Université, UMR SQPOV, F-84000, Avignon, France
| | | | - Frédéric Carlin
- INRAE, Avignon Université, UMR SQPOV, F-84000, Avignon, France.
| |
Collapse
|
29
|
Rao L, Wang Y, Chen F, Hu X, Liao X, Zhao L. High pressure CO2 reduces the wet heat resistance of Bacillus subtilis spores by perturbing the inner membrane. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Camilleri E, Korza G, Huesca‐Espita L, Setlow B, Stamatis D, Setlow P. Mechanisms of killing of
Bacillus thuringiensis
Al Hakam spores in a blast environment with and without iodic acid. J Appl Microbiol 2020; 128:1378-1389. [DOI: 10.1111/jam.14573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/11/2019] [Accepted: 01/06/2020] [Indexed: 11/27/2022]
Affiliation(s)
- E. Camilleri
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - G. Korza
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - L.d.C. Huesca‐Espita
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
- Departamento de Ingenieria Quimica Alimentos y Ambiental Universidad de las Americas Puebla Mexico
| | - B. Setlow
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - D. Stamatis
- Indian Head EODTD Naval Surface Warfare Center Indian Head MD USA
| | - P. Setlow
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| |
Collapse
|
31
|
Kim SS, Kim SH, Park SH, Kang DH. Inactivation of Bacillus cereus Spores on Stainless Steel by Combined Superheated Steam and UV-C Irradiation Treatment. J Food Prot 2020; 83:13-16. [PMID: 31804873 DOI: 10.4315/0362-028x.jfp-19-133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacillus cereus spore contamination on food contact surfaces is of great concern in the food industry. Thus, in the present study, superheated steam (SHS) was used alone or combined with UV-C irradiation for inactivation of B. cereus spores inoculated on stainless steel coupons. Temperatures higher than 250°C were needed to effectively inactivate B. cereus spores by SHS treatment alone, while a synergistic bactericidal effect resulted from the sequential treatment of SHS before or after UV-C irradiation. The increased dipicolinic acid ratio obtained by the combined treatment had a significant role in the synergistic bactericidal effect. Therefore, the combined treatment of SHS and UV-C could be used effectively to inactivate B. cereus on stainless steel. It is recommended to use hurdle technology with reduced energy consumption to ensure microbiological safety on food contact surfaces.
Collapse
Affiliation(s)
- Sang-Soon Kim
- Department of Food Engineering, Dankook University, Cheonan, Chungnam 31116, Republic of Korea
| | - Soo-Hwan Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Hyun Park
- Department of Food Science and Technology, Kongju National University, Yesan, Chungnam 32439, Republic of Korea
| | - Dong-Hyun Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.,Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon do, 25354, Republic of Korea
| |
Collapse
|
32
|
Bednarski DM, Lantz EE, Bobst CE, Eisenhut AR, Eyles SJ, Fey JP. Sterilization of epidermal growth factor with supercritical carbon dioxide and peracetic acid; analysis of changes at the amino acid and protein level. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140334. [PMID: 31786473 DOI: 10.1016/j.bbapap.2019.140334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/05/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022]
Abstract
Aseptic processing and terminal sterilization become increasingly challenging as medical devices become more complex and include active biologics. Terminal sterilization is preferred for patient safety and production costs. We aimed to determine how sterilization using supercritical CO2 (scCO2) with low levels of peracetic acid (PAA) affects amino acids and human epidermal growth factor (EGF) as a model protein. In a benchtop reactivity test, the amino acids methionine, tryptophan, arginine and lysine reacted with low levels of PAA in solution. At PAA levels used for scCO2 sterilization, however, mass spectrometry only identified oxidative adducts on methionine and tryptophan. Mass spectrometry analysis of EGF exposed to scCO2/PAA identified oxidative adducts on residues Met21, Trp49 and Trp50, as well as a low level of truncations after residues Trp49 and Trp50. Importantly, processing of EGF in solution with scCO2 did not affect its native conformation, and sterilized EGF maintained its activity in cell proliferation assays. When processing samples in lyophilized form with scCO2/PAA, amino acids did not react with PAA and the presence of adducts was strongly reduced on methionine and tryptophan, both as single amino acids and in EGF. Truncation after tryptophan residues did not occur. EGF sterilized in the lyophilized form retained its activity when processing occurred with added moisture. These results have significant implications for the maintenance of biological function in sterilized decellularized scaffolds and the ability to manufacture terminally sterilized combination devices containing therapeutic peptides or proteins.
Collapse
Affiliation(s)
| | - Ellen E Lantz
- iFyber LLC, 950 Danby Rd Suite 198, Ithaca, NY 14850, USA
| | - Cedric E Bobst
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | | | - Stephen J Eyles
- Department of Biochemistry and Molecular Biology & Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Julien P Fey
- NovaSterilis Inc., 3109 N Triphammer Road, Lansing, NY 14882, USA.
| |
Collapse
|
33
|
Fan L, Ismail BB, Hou F, Muhammad AI, Zou M, Ding T, Liu D. Thermosonication damages the inner membrane of Bacillus subtilis spores and impels their inactivation. Food Res Int 2019; 125:108514. [DOI: 10.1016/j.foodres.2019.108514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/25/2019] [Accepted: 06/21/2019] [Indexed: 02/02/2023]
|
34
|
McEvoy B, Rowan NJ. Terminal sterilization of medical devices using vaporized hydrogen peroxide: a review of current methods and emerging opportunities. J Appl Microbiol 2019; 127:1403-1420. [PMID: 31410952 DOI: 10.1111/jam.14412] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/03/2019] [Accepted: 07/25/2019] [Indexed: 01/08/2023]
Abstract
Medical devices are an important and growing aspect of healthcare provision and are increasing in complexity to meet established and emerging patient needs. Terminal sterilization plays a vital role in the provision of safe medical devices. While terminal sterilization technologies for medical devices include multiple radiation options, ethylene oxide remains the predominant nonthermal gaseous option, sterilizing c. 50% of all manufactured devices. Vaporized hydrogen peroxide (abbreviated VH2O2 by the International Organization for Standardization) is currently deployed for clinical sterilization applications, where its performance characteristics appear aligned to requirements, constituting a viable alternative low-temperature process for terminal processing of medical devices. However, VH2O2 has operational limitations that create technical challenges for industrial-scale adoption. This timely review provides a succinct overview of VH2O2 in gaseous sterilization and addresses its applicability for terminal sterilization of medical devices. It also describes underappreciated factors such as the occurrence of nonlinear microbial inactivation kinetic plots that may dictate a need to develop a new standard approach to validate VH2O2 for terminal sterilization of medical devices.
Collapse
Affiliation(s)
- B McEvoy
- STERIS Applied Sterilization Technologies, IDA Business and Technology Park, Tullamore, Ireland
| | - N J Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| |
Collapse
|
35
|
Ghosh S, Joseph G, Korza G, He L, Yuan J, Dong W, Setlow B, Li Y, Savage P, Setlow P. Effects of the microbicide ceragenin CSA‐13 on and properties ofBacillus subtilisspores prepared on two very different media. J Appl Microbiol 2019; 127:109-120. [DOI: 10.1111/jam.14300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 03/23/2019] [Accepted: 04/30/2019] [Indexed: 12/25/2022]
Affiliation(s)
- S. Ghosh
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
- Department of Science and Mathematics Capital Community College Hartford CT USA
| | - G. Joseph
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - G. Korza
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - L. He
- Department of Physics East Carolina University Greenville NC USA
- School of Electronic Engineering Dongguan University of Technology Dongguan People’s Republic of China
| | - J.‐H. Yuan
- Department of Physics East Carolina University Greenville NC USA
| | - W. Dong
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
- School of Resource and Environmental Engineering Jiangxi University of Science and Technology Ganzhou China
| | - B. Setlow
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - Y.‐Q. Li
- Department of Physics East Carolina University Greenville NC USA
- School of Electronic Engineering Dongguan University of Technology Dongguan People’s Republic of China
| | - P.B. Savage
- Department of Chemistry and Biochemistry Brigham Young University Provo UT USA
| | - P. Setlow
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| |
Collapse
|
36
|
Dong W, Green J, Korza G, Setlow P. Killing of spores ofBacillusspecies by cetyltrimethylammonium bromide. J Appl Microbiol 2019; 126:1391-1401. [DOI: 10.1111/jam.14242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 12/23/2022]
Affiliation(s)
- W. Dong
- School of Resource and Environmental Engineering Jiangxi University of Science and Technology Ganzhou China
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - J. Green
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - G. Korza
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - P. Setlow
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| |
Collapse
|
37
|
Yu T, Chen Y. Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:865-879. [PMID: 30481713 DOI: 10.1016/j.scitotenv.2018.11.301] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 05/24/2023]
Abstract
Before the industrial revolution, the atmospheric CO2 concentration was 180-330 ppm; however, fossil-fuel combustion and forest destruction have led to increased atmospheric CO2 concentration. CO2 capture and storage is regarded as a promising strategy to prevent global warming and ocean acidification and to alleviate elevated atmospheric CO2 concentration, but the leakage of CO2 from storage system can lead to rapid acidification of the surrounding circumstance, which might cause negative influence on environmental microbes. The effects of elevated CO2 on microbes have been reported extensively, but the review regarding CO2 affecting different environmental microorganisms has never been done previously. Also, the mechanisms of CO2 affecting environmental microorganisms are usually contributed to the change of pH values, while the direct influences of CO2 on microorganisms were often neglected. This paper aimed to provide a systematic review of elevated CO2 affecting environmental microbes and its mechanisms. Firstly, the influences of elevated CO2 and potential leakage of CO2 from storage sites on community structures and diversity of different surrounding environmental microbes were assessed and compared. Secondly, the adverse impacts of CO2 on microbial growth, cell morphology and membranes, bacterial spores, and microbial metabolism were introduced. Then, based on biochemical principles and knowledge of microbiology and molecular biology, the fundamental mechanisms of the influences of carbon dioxide on environmental microbes were discussed from the aspects of enzyme activity, electron generation and transfer, and key gene and protein expressions. Finally, key questions relevant to the environmental effect of CO2 that need to be answered in the future were addressed.
Collapse
Affiliation(s)
- Tong Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
38
|
Setlow P. Observations on research with spores of Bacillales and Clostridiales species. J Appl Microbiol 2019; 126:348-358. [PMID: 30106202 PMCID: PMC6329651 DOI: 10.1111/jam.14067] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/06/2023]
Abstract
The purpose of this article is to highlight some areas of research with spores of bacteria of Firmicute species in which the methodology too commonly used is not optimal and generates misleading results. As a consequence, conclusions drawn from data obtained are often flawed or not appropriate. Topics covered in the article include the following: (i) the importance of using well-purified bacterial spores in studies on spore resistance, composition, killing, disinfection and germination; (ii) methods for obtaining good purification of spores of various species; (iii) appropriate experimental approaches to determine mechanisms of spore resistance and spore killing by a variety of agents, as well as known mechanisms of spore resistance and killing; (iv) common errors made in drawing conclusions about spore killing by various agents, including failure to neutralize chemical agents before plating for viable spore enumeration, and equating correlations between changes in spore properties accompanying spore killing with causation. It is hoped that a consideration of these topics will improve the quality of spore research going forward.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305 USA
| |
Collapse
|
39
|
Soares GC, Learmonth DA, Vallejo MC, Davila SP, González P, Sousa RA, Oliveira AL. Supercritical CO 2 technology: The next standard sterilization technique? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:520-540. [PMID: 30889727 DOI: 10.1016/j.msec.2019.01.121] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/26/2018] [Accepted: 01/25/2019] [Indexed: 02/03/2023]
Abstract
Sterilization of implantable medical devices is of most importance to avoid surgery related complications such as infection and rejection. Advances in biotechnology fields, such as tissue engineering, have led to the development of more sophisticated and complex biomedical devices that are often composed of natural biomaterials. This complexity poses a challenge to current sterilization techniques which frequently damage materials upon sterilization. The need for an effective alternative has driven research on supercritical carbon dioxide (scCO2) technology. This technology is characterized by using low temperatures and for being inert and non-toxic. The herein presented paper reviews the most relevant studies over the last 15 years which cover the use of scCO2 for sterilization and in which effective terminal sterilization is reported. The major topics discussed here are: microorganisms effectively sterilized by scCO2, inactivation mechanisms, operating parameters, materials sterilized by scCO2 and major requirements for validation of such technique according to medical devices' standards.
Collapse
Affiliation(s)
- Gonçalo C Soares
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - David A Learmonth
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, Guimarães, Portugal
| | - Mariana C Vallejo
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, Guimarães, Portugal
| | - Sara Perez Davila
- New Materials Group, Applied Physics Department, IIS-GS, University of Vigo, Vigo, Spain
| | - Pío González
- New Materials Group, Applied Physics Department, IIS-GS, University of Vigo, Vigo, Spain
| | - Rui A Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, Guimarães, Portugal
| | - Ana L Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal.
| |
Collapse
|
40
|
Rao L, Zhao L, Wang Y, Chen F, Hu X, Setlow P, Liao X. Mechanism of inactivation of Bacillus subtilis spores by high pressure CO 2 at high temperature. Food Microbiol 2019; 82:36-45. [PMID: 31027794 DOI: 10.1016/j.fm.2019.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 11/26/2022]
Abstract
Spores of wild-type Bacillus subtilis and some isogenic mutant strains were treated by high pressure CO2 (HPCD) at high temperature (HT) (HPCD + HT) at 20 MPa and 84-86 °C for 0-60 min, and centrifuged on a high density solution to obtain pelleted spores that retained CaDPA and light spores that lost CaDPA. All treated spores were analyzed for viability, and tested for germination, outgrowth, core protein damage, mutagenesis and inner membrane (IM) properties. The results showed that (i) with HPCD + HT treated spores, most pelleted spores and all light spores were dead; ii) a significant amount of dead HPCD + HT-treated spores that retained CaDPA germinated, but outgrowth was blocked; (iii) minimal mutants were generated in survivors of HPCD + HT treatment; (iv) the GFP fluorescence decrease in HPCD + HT-treated spores with high GFP levels was slower than spore inactivation; (v) the IM of HPCD + HT-treated spores that retained CaDPA lost its ability to retain CaDPA at 85 °C, and almost all of these spores' outgrowth in high salt was blocked; and (vi) HPCD + HT-treated spores that retained CaDPA germinated with l-valine or AGFK were almost all stained with propidium iodide. These results indicated that HPCD + HT inactivated B. subtilis spores by damaging spores' IM, thus blocking spore outgrowth after germination.
Collapse
Affiliation(s)
- Lei Rao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Beijing Key Laboratory for Food Nonthermal Processing, National Engineering Research Center for Fruit & Vegetable Processing, Beijing, 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing, 100083, China
| | - Liang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Beijing Key Laboratory for Food Nonthermal Processing, National Engineering Research Center for Fruit & Vegetable Processing, Beijing, 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing, 100083, China
| | - Yongtao Wang
- Beijing Key Laboratory for Food Nonthermal Processing, National Engineering Research Center for Fruit & Vegetable Processing, Beijing, 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing, 100083, China
| | - Fang Chen
- Beijing Key Laboratory for Food Nonthermal Processing, National Engineering Research Center for Fruit & Vegetable Processing, Beijing, 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing, 100083, China
| | - Xiaosong Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Beijing Key Laboratory for Food Nonthermal Processing, National Engineering Research Center for Fruit & Vegetable Processing, Beijing, 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing, 100083, China
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, 06030-3305, USA
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Beijing Key Laboratory for Food Nonthermal Processing, National Engineering Research Center for Fruit & Vegetable Processing, Beijing, 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing, 100083, China.
| |
Collapse
|
41
|
Tovar N, Witek L, Neiva R, Marão HF, Gil LF, Atria P, Jimbo R, Caceres EA, Coelho PG. In vivo
evaluation of resorbable supercritical CO
2
‐treated collagen membranes for class III furcation‐guided tissue regeneration. J Biomed Mater Res B Appl Biomater 2018; 107:1320-1328. [DOI: 10.1002/jbm.b.34225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 07/26/2018] [Accepted: 08/02/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Nick Tovar
- Department of Biomaterials and BiomimeticsNew York University College of Dentistry New York New York
| | - Lukasz Witek
- Department of Biomaterials and BiomimeticsNew York University College of Dentistry New York New York
| | - Rodrigo Neiva
- Department of PeriodontologyUniversity of Florida in Gainesville Gainesville Florida
| | - Heloisa F. Marão
- Department of Biomaterials and BiomimeticsNew York University College of Dentistry New York New York
| | - Luiz F. Gil
- Department of Morphological SciencesUniversidade Federal de Santa Catarina Florianopolis Brazil
| | - Pablo Atria
- Biomaterials DepartmentUniversidad de los Andes Santiago Chile
| | - Ryo Jimbo
- Department of Applied ProsthodonticsNagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Eduardo A. Caceres
- Deparment of BiomaterialsUniversidad Andes Bello, Faculty of Dentistry Vina del Mar Chile
| | - Paulo G. Coelho
- Department of Biomaterials and BiomimeticsNew York University College of Dentistry New York New York
- Hansjörg Wyss Department of Plastic SurgeryNew York University Langone Medical Center New York New York
| |
Collapse
|
42
|
Trunet C, Mtimet N, Mathot AG, Postollec F, Leguérinel I, Couvert O, Carlin F, Coroller L. Effect of incubation temperature and pH on the recovery of Bacillus weihenstephanensis spores after exposure to a peracetic acid-based disinfectant or to pulsed light. Int J Food Microbiol 2018; 278:81-87. [DOI: 10.1016/j.ijfoodmicro.2018.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/16/2018] [Accepted: 04/10/2018] [Indexed: 12/01/2022]
|
43
|
Calvo L, Casas J. Sterilization of Biological Weapons in Technical Clothing and Sensitive Material by High-Pressure CO2 and Water. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lourdes Calvo
- Departamento de Ingeniería Química, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Javier Casas
- Departamento de Ingeniería Química, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| |
Collapse
|
44
|
Aurora A, Wrice N, Walters TJ, Christy RJ, Natesan S. A PEGylated platelet free plasma hydrogel based composite scaffold enables stable vascularization and targeted cell delivery for volumetric muscle loss. Acta Biomater 2018; 65:150-162. [PMID: 29128541 DOI: 10.1016/j.actbio.2017.11.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 10/26/2017] [Accepted: 11/07/2017] [Indexed: 12/18/2022]
Abstract
Extracellular matrix (ECM) scaffolds are being used for the clinical repair of soft tissue injuries. Although improved functional outcomes have been reported, ECM scaffolds show limited tissue specific remodeling response with concomitant deposition of fibrotic tissue. One plausible explanation is the regression of blood vessels which may be limiting the diffusion of oxygen and nutrients across the scaffold. Herein we develop a composite scaffold as a vasculo-inductive platform by integrating PEGylated platelet free plasma (PFP) hydrogel with a muscle derived ECM scaffold (m-ECM). In vitro, adipose derived stem cells (ASCs) seeded onto the composite scaffold differentiated into two distinct morphologies, a tubular network in the hydrogel, and elongated structures along the m-ECM scaffold. The composite scaffold showed a high expression of ITGA5, ITGB1, and FN and a synergistic up-regulation of ang1 and tie-2 transcripts. The in vitro ability of the composite scaffold to provide extracellular milieu for cell adhesion and molecular cues to support vessel formation was investigated in a rodent volumetric muscle loss (VML) model. The composite scaffold delivered with ASCs supported robust and stable vascularization. Additionally, the composite scaffold supported increased localization of ASCs in the defect demonstrating its ability for localized cell delivery. Interestingly, ASCs were observed homing in the injured muscle and around the perivascular space possibly to stabilize the host vasculature. In conclusion, the composite scaffold delivered with ASCs presents a promising approach for scaffold vascularization. The versatile nature of the composite scaffold also makes it easily adaptable for the repair of soft tissue injuries. STATEMENT OF SIGNIFICANCE Decellularized extracellular matrix (ECM) scaffolds when used for soft tissue repair is often accompanied by deposition of fibrotic tissue possibly due to limited scaffold vascularization, which limits the diffusion of oxygen and nutrients across the scaffold. Although a variety of scaffold vascularization strategies has been investigated, their limitations preclude rapid clinical translation. In this study we have developed a composite scaffold by integrating bi-functional polyethylene glycol modified platelet free plasma (PEGylated PFP) with adipose derived stem cells (ASCs) along with a muscle derived ECM scaffold (m-ECM). The composite scaffold provides a vasculo-inductive and an effective cell delivery platform for volumetric muscle loss.
Collapse
|
45
|
Hirokado R, Noma S, Soh N, Igura N, Shimoda M, Hayashi N. Inactivation of <i>Bacillus subtilis</i> Spores by Carbonation with Glycerin Fatty Acid Esters. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | - Noriyuki Igura
- Division of Bioresource and Bioenvironmental Sciences, Kyushu University
| | - Mitsuya Shimoda
- Division of Bioresource and Bioenvironmental Sciences, Kyushu University
| | | |
Collapse
|
46
|
Ghosh S, Niu S, Yankova M, Mecklenburg M, King SM, Ravichandran J, Kalia RK, Nakano A, Vashishta P, Setlow P. Analysis of killing of growing cells and dormant and germinated spores of Bacillus species by black silicon nanopillars. Sci Rep 2017; 7:17768. [PMID: 29259282 PMCID: PMC5736721 DOI: 10.1038/s41598-017-18125-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 12/01/2017] [Indexed: 12/20/2022] Open
Abstract
Black silicon (bSi) wafers with a high density of high-aspect ratio nanopillars have recently been suggested to have mechanical bactericidal activity. However, it remains unclear whether bSi with the nanopillars can kill only growing bacterial cells or also dormant spores that are harder to kill. We have reexamined the cidal activity of bSi on growing cells, dormant and germinated spores of B. subtilis, and dormant spores of several other Bacillus species by incubation on bSi wafers with and without nanopillars. We found that the bSi wafers with nanopillars were indeed very effective in rupturing and killing the growing bacterial cells, while wafers without nanopillars had no bactericidal effect. However, bSi wafers with or without nanopillars gave no killing or rupture of dormant spores of B. subtilis, Bacillus cereus or Bacillus megaterium, although germinated B. subtilis spores were rapidly killed. This work lays a foundation for novel bactericidal applications of bSi by elucidating the limits of mechanical bactericidal approaches.
Collapse
Affiliation(s)
- Sonali Ghosh
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, 06030-3305, USA.,Department of Chemistry, School of Health and Natural Sciences, University of Saint Joseph, West Hartford, CT, 06117-2791, USA
| | - Shanyuan Niu
- Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA, 90089-0241, USA
| | - Maya Yankova
- Central Electron Microscopy Facility, UConn Health, Farmington, CT, 06030-1610, USA
| | - Matthew Mecklenburg
- Center for Electron Microscopy and Microanalysis, University of Southern California, Los Angeles, CA, 90089-0101, USA
| | - Stephen M King
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, 06030-3305, USA.,Central Electron Microscopy Facility, UConn Health, Farmington, CT, 06030-1610, USA
| | - Jayakanth Ravichandran
- Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA, 90089-0241, USA
| | - Rajiv K Kalia
- Collaboratory for Advanced Computing and Simulations and Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA, 90089-0242, USA
| | - Aiichiro Nakano
- Collaboratory for Advanced Computing and Simulations and Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA, 90089-0242, USA
| | - Priya Vashishta
- Collaboratory for Advanced Computing and Simulations and Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA, 90089-0242, USA.
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, 06030-3305, USA.
| |
Collapse
|
47
|
Xu F, Feng X, Sui X, Lin H, Han Y. Inactivation mechanism of Vibrio parahaemolyticus via supercritical carbon dioxide treatment. Food Res Int 2017; 100:282-288. [DOI: 10.1016/j.foodres.2017.08.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/04/2017] [Accepted: 08/16/2017] [Indexed: 10/19/2022]
|
48
|
Porębska I, Sokołowska B, Skąpska S, Rzoska SJ. Treatment with high hydrostatic pressure and supercritical carbon dioxide to control Alicyclobacillus acidoterrestris spores in apple juice. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Cowger TA, Yang Y, Rink DE, Todd T, Chen H, Shen Y, Yan Y, Xie J. Protein-Adsorbed Magnetic-Nanoparticle-Mediated Assay for Rapid Detection of Bacterial Antibiotic Resistance. Bioconjug Chem 2017; 28:890-896. [PMID: 28192992 DOI: 10.1021/acs.bioconjchem.7b00016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antibiotic susceptibility tests have been used for years as a crucial diagnostic tool against antibiotic-resistant bacteria. However, due to a lack of biomarkers specific to resistant types, these approaches are often time-consuming, inaccurate, and inflexible in drug selections. Here, we present a novel susceptibility test method named protein-adsorbed nanoparticle-mediated matrix-assisted laser desorption-ionization mass spectrometry, or PANMS. Briefly, we adsorb five different proteins (β-casein, α-lactalbumin, human serum albumin, fibrinogen, and avidin) onto the surface of Fe3O4. Upon interaction with bacteria surface, proteins were displaced from the nanoparticle surface, the amounts of which were quantified by matrix-assisted laser desorption ionization mass spectrometry. We find that the protein displacement profile was different distinctive among different bacteria strains and, in particular, between wild-type and drug-resistant strains. More excitingly, we observe bacteria resistant to drugs of the same mechanisms share similar displacement profiles on a linear discriminant analysis (LDA) map. This suggests the possibility of using PANMS to identify the type of mechanism behind antibiotic resistance, which was confirmed in a blind test. Given that PANMS is free of drug incubation and the whole procedure takes less than 50 min, it holds great potential as a high-throughput, low-cost, and accurate drug susceptibility test in the clinic.
Collapse
Affiliation(s)
- Taku A Cowger
- Department of Chemistry and Bio-Imaging Research Center, ‡College of Engineering, and §Department of Epidemiology and Biostatistics, University of Georgia , Athens, Georgia 30602, United States
| | - Yaping Yang
- Department of Chemistry and Bio-Imaging Research Center, ‡College of Engineering, and §Department of Epidemiology and Biostatistics, University of Georgia , Athens, Georgia 30602, United States
| | - David E Rink
- Department of Chemistry and Bio-Imaging Research Center, ‡College of Engineering, and §Department of Epidemiology and Biostatistics, University of Georgia , Athens, Georgia 30602, United States
| | - Trever Todd
- Department of Chemistry and Bio-Imaging Research Center, ‡College of Engineering, and §Department of Epidemiology and Biostatistics, University of Georgia , Athens, Georgia 30602, United States
| | - Hongmin Chen
- Department of Chemistry and Bio-Imaging Research Center, ‡College of Engineering, and §Department of Epidemiology and Biostatistics, University of Georgia , Athens, Georgia 30602, United States
| | - Ye Shen
- Department of Chemistry and Bio-Imaging Research Center, ‡College of Engineering, and §Department of Epidemiology and Biostatistics, University of Georgia , Athens, Georgia 30602, United States
| | - Yajun Yan
- Department of Chemistry and Bio-Imaging Research Center, ‡College of Engineering, and §Department of Epidemiology and Biostatistics, University of Georgia , Athens, Georgia 30602, United States
| | - Jin Xie
- Department of Chemistry and Bio-Imaging Research Center, ‡College of Engineering, and §Department of Epidemiology and Biostatistics, University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
50
|
Hennessy RS, Jana S, Tefft BJ, Helder MR, Young MD, Hennessy RR, Stoyles NJ, Lerman A. Supercritical Carbon Dioxide–Based Sterilization of Decellularized Heart Valves. JACC Basic Transl Sci 2017; 2:71-84. [PMID: 28337488 PMCID: PMC5358672 DOI: 10.1016/j.jacbts.2016.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sterilization of a decellularized aortic valve was investigated. Various sterilization techniques including EOW, gamma radiation, ETPA, LHD, and scCO2 were applied. Brown and Brenn staining, Periodic acid-Schiff staining, and aerobic broth culturing were used to characterize sterility. Differential scanning calorimetry was used to determine tissue matrix cross-linking. Scanning electron microscopy was used to characterize tissue matrix damage, at the structural level. EOW sterilization, which is done with electrolyzed water, could not sterilize efficiently. Gamma sterilization damaged the tissue matrix. Ethanol and peracetic acid–treated samples were cross-linked. Hydrogen peroxide sterilization damaged the tissue matrix. Supercritical carbon dioxide sterilization method was found efficient to provide 100% sterility of the sample. It neither damages nor cross-links the tissue.
Sterilization of grafts is essential. Supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide techniques were compared for impact on sterility and mechanical integrity of porcine decellularized aortic valves. Ethanol-peracetic acid– and supercritical carbon dioxide–treated valves were found to be sterile using histology, microbe culture, and electron microscopy assays. The cusp tensile properties of supercritical carbon dioxide–treated valves were higher compared with valves treated with other techniques. Superior sterility and integrity was found in the decellularized valves treated with supercritical carbon dioxide sterilization. This sterilization technique may hold promise for other decellularized soft tissues.
Collapse
Affiliation(s)
- Ryan S. Hennessy
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Soumen Jana
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Brandon J. Tefft
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Meghana R. Helder
- Division of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota
| | - Melissa D. Young
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | | | | | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
- Address for correspondence: Dr. Amir Lerman, Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905.
| |
Collapse
|