1
|
Qiao W, Liu F, Wan X, Qiao Y, Li R, Wu Z, Saris PEJ, Xu H, Qiao M. Genomic Features and Construction of Streamlined Genome Chassis of Nisin Z Producer Lactococcus lactis N8. Microorganisms 2021; 10:microorganisms10010047. [PMID: 35056496 PMCID: PMC8779420 DOI: 10.3390/microorganisms10010047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Lactococcus lactis is a commonly used fermenting bacteria in cheese, beverages and meat products. Due to the lack of simplified chassis strains, it has not been widely used in the fields of synthetic biology. Thus, the construction of lactic acid bacteria chassis strains becomes more and more important. In this study, we performed whole genome sequencing, annotation and analysis of L. lactis N8. Based on the genome analysis, we found that L. lactis N8 contains two large plasmids, and the function prediction of the plasmids shows that some regions are related to carbohydrate transport/metabolism, multi-stress resistance and amino acid uptake. L. lactis N8 contains a total of seven prophage-related fragments and twelve genomic islands. A gene cluster encoding a hybrid NRPS–PKS system that was found in L. lactis N8 reveals that the strain has the potential to synthesize novel secondary metabolites. Furthermore, we have constructed a simplified genome chassis of L. lactis N8 and achieved the largest amount of deletion of L. lactis so far. Taken together, the present study offers further insights into the function and potential role of L. lactis N8 as a model strain of lactic acid bacteria and lays the foundation for its application in the field of synthetic biology.
Collapse
Affiliation(s)
- Wanjin Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (W.Q.); (F.L.); (Y.Q.)
| | - Fulu Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (W.Q.); (F.L.); (Y.Q.)
| | - Xing Wan
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (X.W.); (R.L.); (P.E.J.S.)
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Yu Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (W.Q.); (F.L.); (Y.Q.)
| | - Ran Li
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (X.W.); (R.L.); (P.E.J.S.)
| | - Zhenzhou Wu
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China;
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (X.W.); (R.L.); (P.E.J.S.)
| | - Haijin Xu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (W.Q.); (F.L.); (Y.Q.)
- Correspondence: (H.X.); (M.Q.)
| | - Mingqiang Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (W.Q.); (F.L.); (Y.Q.)
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
- Correspondence: (H.X.); (M.Q.)
| |
Collapse
|
2
|
Pérez-Ramos A, Madi-Moussa D, Coucheney F, Drider D. Current Knowledge of the Mode of Action and Immunity Mechanisms of LAB-Bacteriocins. Microorganisms 2021; 9:2107. [PMID: 34683428 PMCID: PMC8538875 DOI: 10.3390/microorganisms9102107] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/31/2022] Open
Abstract
Bacteriocins produced by lactic acid bacteria (LAB-bacteriocins) may serve as alternatives for aging antibiotics. LAB-bacteriocins can be used alone, or in some cases as potentiating agents to treat bacterial infections. This approach could meet the different calls and politics, which aim to reduce the use of traditional antibiotics and develop novel therapeutic options. Considering the clinical applications of LAB-bacteriocins as a reasonable and desirable therapeutic approach, it is therefore important to assess the advances achieved in understanding their modes of action, and the resistance mechanisms developed by the producing bacteria to their own bacteriocins. Most LAB-bacteriocins act by disturbing the cytoplasmic membrane through forming pores, or by cell wall degradation. Nevertheless, some of these peptides still have unknown modes of action, especially those that are active against Gram-negative bacteria. Regarding immunity, most bacteriocin-producing strains have an immunity mechanism involving an immunity protein and a dedicated ABC transporter system. However, these immunity mechanisms vary from one bacteriocin to another.
Collapse
Affiliation(s)
| | | | | | - Djamel Drider
- UMR Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France; (A.P.-R.); (D.M.-M.); (F.C.)
| |
Collapse
|
3
|
Yu Z, Peng C, Kwok LY, Zhang H. The Bacterial Diversity of Spontaneously Fermented Dairy Products Collected in Northeast Asia. Foods 2021; 10:foods10102321. [PMID: 34681370 PMCID: PMC8535065 DOI: 10.3390/foods10102321] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022] Open
Abstract
Spontaneously fermented dairy products have a long history, and present diverse microorganisms and unique flavors. To provide insight into the bacterial diversity, 80 different types of spontaneously fermented dairy product samples’ sequence data that were downloaded from MG-RAST and NCBI and 8 koumiss and 4 shubat were sequenced by the PacBio SMRT sequencing platform. All samples including butter, sour cream, cottage cheese, yogurt, koumiss, shubat, and cheese, were collected from various regions in Russia, Kazakhstan, Mongolia and Inner Mongolia (China). The results revealed that Firmicutes and Proteobacteria were the most dominant phyla (>99%), and 11 species were identified with a relative abundance exceeding 1%. Furthermore, Streptococcus salivarius, Lactobacillus helveticus, Lactobacillus delbrueckii, Enterobacter xiangfangensis, and Acinetobacter baumannii were the primary bacterial species in the fermented dairy product samples. Principal coordinates analysis showed that koumiss and shubat stood out from the other samples. Moreover, permutational ANOVA tests revealed that the types of fermented dairy products and geographical origin significantly affected microbial diversity. However, different processing techniques did not affect microbial diversity. In addition, results of hierarchical clustering and canonical analysis of the principal coordinates were consistent. In conclusion, geographical origin and types of fermented dairy products determined the bacterial diversity in spontaneously fermented dairy product samples.
Collapse
Affiliation(s)
- Zhongjie Yu
- Key Laboratory of Dairy Biotechnology and Engineering (Inner Mongolia Agricultural University), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.Y.); (C.P.); (L.-y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chuantao Peng
- Key Laboratory of Dairy Biotechnology and Engineering (Inner Mongolia Agricultural University), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.Y.); (C.P.); (L.-y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering (Inner Mongolia Agricultural University), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.Y.); (C.P.); (L.-y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering (Inner Mongolia Agricultural University), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.Y.); (C.P.); (L.-y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Correspondence:
| |
Collapse
|
4
|
Barbosa AAT, de Melo MR, da Silva CMR, Jain S, Dolabella SS. Nisin resistance in Gram-positive bacteria and approaches to circumvent resistance for successful therapeutic use. Crit Rev Microbiol 2021; 47:376-385. [PMID: 33689548 DOI: 10.1080/1040841x.2021.1893264] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Antibiotic resistance among bacterial pathogens is one of the most worrying problems in health systems today. To solve this problem, bacteriocins from lactic acid bacteria, especially nisin, have been proposed as an alternative for controlling multidrug-resistant bacteria. Bacteriocins are antimicrobial peptides that have activity mainly against Gram-positive strains. Nisin is one of the most studied bacteriocins and is already approved for use in food preservation. Nisin is still not approved for human clinical use, but many in vitro studies have shown its therapeutic effectiveness, especially for the control of antibiotic-resistant strains. Results from in vitro studies show the emergence of nisin-resistant bacteria after exposure to nisin. Considering that nisin has shown promising results for clinical use, studies to elucidate nisin-resistant mechanisms and the development of approaches to circumvent nisin-resistance are important. Thus, the objectives of this review are to identify the Gram-positive bacterial strains that have shown resistance to nisin, describe their resistance mechanisms and propose ways to overcome the development of nisin-resistance for its successful clinical application.
Collapse
Affiliation(s)
| | | | | | - Sona Jain
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Sergipe, Brasil
| | - Silvio Santana Dolabella
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão, Brasil
| |
Collapse
|