1
|
Shrestha A, Limay-Rios V, Brettingham DJL, Raizada MN. Maize pollen carry bacteria that suppress a fungal pathogen that enters through the male gamete fertilization route. FRONTIERS IN PLANT SCIENCE 2024; 14:1286199. [PMID: 38269134 PMCID: PMC10806238 DOI: 10.3389/fpls.2023.1286199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
In flowering plants, after being released from pollen grains, the male gametes use the style channel to migrate towards the ovary where they fertilize awaiting eggs. Environmental pathogens exploit the style passage, resulting in diseased progeny seed. The belief is that pollen also transmits pathogens into the style. By contrast, we hypothesized that pollen carries beneficial microbes that suppress environmental pathogens on the style passage. No prior studies have reported pollen-associated bacterial functions in any plant species. Here, bacteria were cultured from maize (corn) pollen encompassing wild ancestors and farmer-selected landraces from across the Americas, grown in a common field in Canada for one season. In total, 298 bacterial isolates were cultured, spanning 45 genera, 103 species, and 88 OTUs, dominated by Pantoea, Bacillus, Pseudomonas, Erwinia, and Microbacterium. Full-length 16S DNA-based taxonomic profiling showed that 78% of bacterial taxa from the major wild ancestor of maize (Parviglumis teosinte) were present in at least one cultivated landrace. The species names of the bacterial isolates were used to search the pathogen literature systematically; this preliminary evidence predicted that the vast majority of the pollen-associated bacteria analyzed are not maize pathogens. The pollen-associated bacteria were tested in vitro against a style-invading Fusarium pathogen shown to cause Gibberella ear rot (GER): 14 isolates inhibited this pathogen. Genome mining showed that all the anti-Fusarium bacterial species encode phzF, associated with biosynthesis of the natural fungicide, phenazine. To mimic the male gamete migration route, three pollen-associated bacterial strains were sprayed onto styles (silks), followed by Fusarium inoculation; these bacteria reduced GER symptoms and mycotoxin accumulation in progeny seed. Confocal microscopy was used to search for direct evidence that pollen-associated bacteria can defend living silks against Fusarium graminearum (Fg); bacterial strain AS541 (Kluyvera intermedia), isolated from pollen of ancestral Parviglumis, was observed to colonize the susceptible style/silk entry points of Fg (silk epidermis, trichomes, wounds). Furthermore, on style/silk tissue, AS541 colonized/aggregated on Fg hyphae, and was associated with Fg hyphal breaks. These results suggest that pollen has the potential to carry bacteria that can defend the style/silk passage against an environmental pathogen - a novel observation.
Collapse
Affiliation(s)
- Anuja Shrestha
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Victor Limay-Rios
- Department of Plant Agriculture, University of Guelph, Ridgetown, ON, Canada
| | | | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
2
|
Thompson MEH, Shrestha A, Rinne J, Limay-Rios V, Reid L, Raizada MN. The Cultured Microbiome of Pollinated Maize Silks Shifts after Infection with Fusarium graminearum and Varies by Distance from the Site of Pathogen Inoculation. Pathogens 2023; 12:1322. [PMID: 38003787 PMCID: PMC10675081 DOI: 10.3390/pathogens12111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Styles transmit pollen-derived sperm nuclei from pollen to ovules, but also transmit environmental pathogens. The microbiomes of styles are likely important for reproduction/disease, yet few studies exist. Whether style microbiome compositions are spatially responsive to pathogens is unknown. The maize pathogen Fusarium graminearum enters developing grain through the style (silk). We hypothesized that F. graminearum treatment shifts the cultured transmitting silk microbiome (TSM) compared to healthy silks in a distance-dependent manner. Another objective of the study was to culture microbes for future application. Bacteria were cultured from husk-covered silks of 14 F. graminearum-treated diverse maize genotypes, proximal (tip) and distal (base) to the F. graminearum inoculation site. Long-read 16S sequences from 398 isolates spanned 35 genera, 71 species, and 238 OTUs. More bacteria were cultured from F. graminearum-inoculated tips (271 isolates) versus base (127 isolates); healthy silks were balanced. F. graminearum caused a collapse in diversity of ~20-25% across multiple taxonomic levels. Some species were cultured exclusively or, more often, from F. graminearum-treated silks (e.g., Delftia acidovorans, Klebsiella aerogenes, K. grimontii, Pantoea ananatis, Stenotrophomonas pavanii). Overall, the results suggest that F. graminearum alters the TSM in a distance-dependent manner. Many isolates matched taxa that were previously identified using V4-MiSeq (core and F. graminearum-induced), but long-read sequencing clarified the taxonomy and uncovered greater diversity than was initially predicted (e.g., within Pantoea). These isolates represent the first comprehensive cultured collection from pathogen-treated maize silks to facilitate biocontrol efforts and microbial marker-assisted breeding.
Collapse
Affiliation(s)
- Michelle E. H. Thompson
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| | - Anuja Shrestha
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| | - Jeffrey Rinne
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| | - Victor Limay-Rios
- Department of Plant Agriculture, University of Guelph Ridgetown Campus, 120 Main Street E, Ridgetown, ON N0P 2C0, Canada
| | - Lana Reid
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Central Experimental Farm, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| |
Collapse
|
3
|
Webster G, Mullins AJ, Petrova YD, Mahenthiralingam E. Polyyne-producing Burkholderia suppress Globisporangium ultimum damping-off disease of Pisum sativum (pea). Front Microbiol 2023; 14:1240206. [PMID: 37692405 PMCID: PMC10485841 DOI: 10.3389/fmicb.2023.1240206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Extensive crop losses are caused by oomycete and fungal damping-off diseases. Agriculture relies heavily on chemical pesticides to control disease, but due to safety concerns multiple agents have been withdrawn. Burkholderia were successfully used as commercial biopesticides because of their fungicidal activity and plant protective traits. However, their potential for opportunistic pathogenicity led to a moratorium on their registration as biopesticides. Subsequently, Burkholderia were shown to produce multiple specialised metabolites including potent antimicrobial polyynes. Cepacin A, a polyyne produced by Burkholderia ambifaria biopesticide strains was shown to be an important metabolite for the protection of germinating peas against Globisporangium ultimum (formerly Pythium) damping-off disease. Recently, there has been an expansion in bacterial polyyne discovery, with the metabolites and their biosynthetic gene pathways found in several bacterial genera including Burkholderia, Collimonas, Trinickia, and Pseudomonas. To define the efficacy of these bacterial polyyne producers as biopesticidal agents, we systematically evaluated metabolite production, in vitro microbial antagonism, and G. ultimum biocontrol across a panel of 30 strains representing four bacterial genera. In vitro polyyne production and antimicrobial activity was demonstrated for most strains, but only Burkholderia polyyne producers were protective within the in vivo G. ultimum damping-off pea protection model. B. ambifaria was the most effective cepacin-expressing biopesticide, and despite their known potential for plant pathogenicity Burkholderia gladioli and Burkholderia plantarii were uniquely shown to be protective as caryoynencin-producing biopesticides. In summary, Burkholderia are effective biopesticides due to their suite of antimicrobials, but the ability to deploy polyyne metabolites, caryoynencin and cepacin, is strain and species dependent. Graphical Abstract.
Collapse
|
4
|
Enagbonma BJ, Fadiji AE, Ayangbenro AS, Babalola OO. Communication between Plants and Rhizosphere Microbiome: Exploring the Root Microbiome for Sustainable Agriculture. Microorganisms 2023; 11:2003. [PMID: 37630562 PMCID: PMC10458600 DOI: 10.3390/microorganisms11082003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Plant roots host numerous microorganisms around and inside their roots, forming a community known as the root microbiome. An increasing bulk of research is underlining the influences root-associated microbial communities can have on plant health and development. However, knowledge on how plant roots and their associated microbes interact to bring about crop growth and yield is limited. Here, we presented (i) the communication strategies between plant roots and root-associated microbes and (ii) the applications of plant root-associated microbes in enhancing plant growth and yield. This review has been divided into three main sections: communications between root microbiome and plant root; the mechanism employed by root-associated microbes; and the chemical communication mechanisms between plants and microbes and their application in plant growth and yield. Understanding how plant root and root-associated microbes communicate is vital in designing ecofriendly strategies for targeted disease suppression and improved plant growth that will help in sustainable agriculture. Ensuring that plants become healthy and productive entails keeping plants under surveillance around the roots to recognize disease-causing microbes and similarly exploit the services of beneficial microorganisms in nutrient acquisition, stress mitigation, and growth promotion.
Collapse
Affiliation(s)
| | | | | | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
5
|
Fardella PA, Tian Z, Clarke BB, Belanger FC. The Epichloë festucae Antifungal Protein Efe-AfpA Protects Creeping Bentgrass ( Agrostis stolonifera) from the Plant Pathogen Clarireedia jacksonii, the Causal Agent of Dollar Spot Disease. J Fungi (Basel) 2022; 8:jof8101097. [PMID: 36294663 PMCID: PMC9605492 DOI: 10.3390/jof8101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Dollar spot disease, caused by the fungal pathogen Clarireedia jacksonii, is a major problem in many turfgrass species, particularly creeping bentgrass (Agrostis stolonifera). It is well-established that strong creeping red fescue (Festuca rubra subsp. rubra) exhibits good dollar spot resistance when infected by the fungal endophyte Epichloë festucae. This endophyte-mediated disease resistance is unique to the fine fescues and has not been observed in other grass species infected with other Epichloë spp. The mechanism underlying the unique endophyte-mediated disease resistance in strong creeping red fescue has not yet been established. We pursued the possibility that it may be due to the presence of an abundant secreted antifungal protein produced by E. festucae. Here, we compare the activity of the antifungal protein expressed in Escherichia coli, Pichia pastoris, and Penicillium chrysogenum. Active protein was recovered from all systems, with the best activity being from Pe. chrysogenum. In greenhouse assays, topical application of the purified antifungal protein to creeping bentgrass and endophyte-free strong creeping red fescue protected the plants from developing severe symptoms caused by C. jacksonii. These results support the hypothesis that Efe-AfpA is a major contributor to the dollar spot resistance observed with E. festucae-infected strong creeping red fescue in the field, and that this protein could be developed as an alternative or complement to fungicides for the management of this disease on turfgrasses.
Collapse
|
6
|
Zhang Y, Kong WL, Wu XQ, Li PS. Inhibitory Effects of Phenazine Compounds and Volatile Organic Compounds Produced by Pseudomonas aurantiaca ST-TJ4 Against Phytophthora cinnamomi. PHYTOPATHOLOGY 2022; 112:1867-1876. [PMID: 35263163 DOI: 10.1094/phyto-10-21-0442-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phytophthora cinnamomi is an important plant pathogen that is widely distributed worldwide and has caused serious ecological damage and significant economic losses in forests and plantations in many countries. The use of plant growth-promoting rhizobacteria is an effective and environmentally friendly strategy for controlling diseases caused by P. cinnamomi. In this study, we investigated the antagonistic mechanism of Pseudomonas aurantiaca ST-TJ4 against P. cinnamomi through different antagonistic approaches, observations of mycelial morphology, study of mycelial metabolism, and identification of antagonistic substances. The results showed that Pseudomonas aurantiaca ST-TJ4 was able to significantly inhibit mycelial growth, causing mycelial deformation and disrupting internal cell structures. Additionally, pathogen cell membranes were damaged by ST-TJ4, and mycelial cell content synthesis was disrupted. Ultraperformance liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry analyses showed that phenazine compounds and 2-undecanone were the main antagonistic components. The ammonia produced by the ST-TJ4 strain also contributed to the inhibition of the growth of P. cinnamomi. In conclusion, our results confirm that Pseudomonas aurantiaca ST-TJ4 can inhibit P. cinnamomi through multiple mechanisms and can be used as a biological control agent for various plant diseases caused by P. cinnamomi.
Collapse
Affiliation(s)
- Yu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Pu-Sheng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
Villalobos-Flores LE, Espinosa-Torres SD, Hernández-Quiroz F, Piña-Escobedo A, Cruz-Narváez Y, Velázquez-Escobar F, Süssmuth R, García-Mena J. The Bacterial and Fungal Microbiota of the Mexican Rubiaceae Family Medicinal Plant Bouvardia ternifolia. MICROBIAL ECOLOGY 2022; 84:510-526. [PMID: 34553243 DOI: 10.1007/s00248-021-01871-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Bouvardia ternifolia is a medicinal plant considered a source of therapeutic compounds, like the antitumoral cyclohexapeptide bouvardin. It is known that large number of secondary metabolites produced by plants results from the interaction of the host and adjacent or embedded microorganisms. Using high-throughput DNA sequencing of V3-16S and V5-18S ribosomal gene libraries, we characterized the endophytic, endophytic + epiphyte bacterial, and fungal communities associated to flowers, leaves, stems, and roots, as well as the rhizosphere. The Proteobacteria (average 80.7%) and Actinobacteria (average 14.7%) were the most abundant bacterial phyla, while Leotiomycetes (average 54.8%) and Dothideomycetes (average 27.4%) were the most abundant fungal classes. Differential abundance for the bacterial endophyte group showed a predominance of Erwinia, Propionibacterium, and Microbacterium genera, while Sclerotinia, Coccomyces, and Calycina genera predominated for fungi. The predictive metagenome analysis for bacteria showed significative abundance of pathways for secondary metabolite production, while a FUNguild analysis revealed the presence of pathotroph, symbiotroph, and saprotrophs in the fungal community. Intra and inter copresence and mutual exclusion interactions were identified for bacterial and fungal kingdoms in the endophyte communities. This work provides a description of the diversity and composition of bacterial and fungal microorganisms living in flowers, leaves, stems, roots, and the rhizosphere of this medicinal plant; thus, it paves the way towards an integral understanding in the production of therapeutic metabolites.
Collapse
Affiliation(s)
- Loan Edel Villalobos-Flores
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Avenida Instituto Politécnico Nacional 2508, 07360, Ciudad de México, Mexico
| | - Samuel David Espinosa-Torres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Avenida Instituto Politécnico Nacional 2508, 07360, Ciudad de México, Mexico
| | - Fernando Hernández-Quiroz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Avenida Instituto Politécnico Nacional 2508, 07360, Ciudad de México, Mexico
| | - Alberto Piña-Escobedo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Avenida Instituto Politécnico Nacional 2508, 07360, Ciudad de México, Mexico
| | - Yair Cruz-Narváez
- Laboratorio de Posgrado de Operaciones Unitarias, Escuela Superior de Ingeniería Química E Industrias Extractivas del Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, 07738, Ciudad de México, Mexico
| | - Francisco Velázquez-Escobar
- Max Volmer Laboratorium Für Biophysikalische Chemie Technische Universität Berlin, Technische Universität Berlin, Str. des 17. Juni 135/Sekr. PC-14, 10623, Berlin, Germany
| | - Roderich Süssmuth
- Department of Chemistry, Institut Für Chemie, Technische Universität Berlin, Sekr. TC 2, Straße des 17. Juni 124, 10623, Berlin, Germany
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Avenida Instituto Politécnico Nacional 2508, 07360, Ciudad de México, Mexico.
| |
Collapse
|
8
|
Orlandi VT, Martegani E, Giaroni C, Baj A, Bolognese F. Bacterial pigments: A colorful palette reservoir for biotechnological applications. Biotechnol Appl Biochem 2022; 69:981-1001. [PMID: 33870552 PMCID: PMC9544673 DOI: 10.1002/bab.2170] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 04/09/2021] [Indexed: 12/12/2022]
Abstract
Synthetic derivatives are currently used instead of pigments in many applicative fields, from food to feed, from pharmaceutical to diagnostic, from agronomy to industry. Progress in organic chemistry allowed to obtain rather cheap compounds covering the whole color spectrum. However, several concerns arise from this chemical approach, as it is mainly based on nonrenewable resources such as fossil oil, and the toxicity or carcinogenic properties of products and/or precursors may be harmful for personnel involved in the productive processes. In this scenario, microorganisms and their pigments represent a colorful world to discover and reconsider. Each living bacterial strain may be a source of secondary metabolites with peculiar functions. The aim of this review is to link the physiological role of bacterial pigments with their potential use in different biotechnological fields. This enormous potential supports the big challenge for the development of strategies useful to identify, produce, and purify the right pigment for the desired application. At the end of this ideal journey through the world of bacterial pigments, the attention will be focused on melanin compounds, whose production relies upon different techniques ranging from natural producers, heterologous hosts, or isolated enzymes. In a green workflow, the microorganisms represent the starting and final point of pigment production.
Collapse
Affiliation(s)
| | - Eleonora Martegani
- Department of Biotechnologies and Life SciencesUniversity of InsubriaVareseItaly
| | - Cristina Giaroni
- Department of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Andreina Baj
- Department of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Fabrizio Bolognese
- Department of Biotechnologies and Life SciencesUniversity of InsubriaVareseItaly
| |
Collapse
|
9
|
The Biodiversity of Grapevine Bacterial Endophytes of Vitis amurensis Rupr. PLANTS 2022; 11:plants11091128. [PMID: 35567129 PMCID: PMC9099740 DOI: 10.3390/plants11091128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022]
Abstract
In this paper, the composition profiles of bacterial endophytes in wild-growing Amur grape Vitis amurensis Rupr. grown in the south of the Russian Far East were analyzed using both a cultivation-dependent (sowing bacteria) and a cultivation-independent (next generation sequencing, NGS) approach. Both methods revealed the prevalent endophytes in V. amurensis were represented by Gammaproteobacteria—40.3–75.8%, Alphaproteobacteria—8.6–18.7%, Actinobacteria—9.2–15.4%, and Bacilli—6.1–6.6%. NGS also showed a large proportion of Bacteroidia (12.2%) and a small proportion of other classes (less than 5.7%). In general, NGS revealed a greater variety of classes and genera in the endophytic bacterial community due to a high number of reads (574,207) in comparison with the number of colonies (933) obtained after the cultivation-dependent method. A comparative analysis performed in this study showed that both wild grape V. amurensis from Russia and domesticated cultivars of V. vinifera from Germany and California (USA) exhibit the same basic composition of endophytic bacteria, while the percentages of major taxa and minor taxa showed some differences depending on the plant organ, grape individuals, environmental conditions, and sampling time. Furthermore, the obtained data revealed that lower temperatures and increased precipitation favored the number and diversity of endophytic bacteria in the wild Amur grape. Thus, this study firstly described and analyzed the biodiversity of endophytic bacteria in wild grapevine V. amurensis.
Collapse
|
10
|
Al-Askar AA, Rashad EM, Moussa Z, Ghoneem KM, Mostafa AA, Al-Otibi FO, Arishi AA, Saber WIA. A Novel Endophytic Trichoderma longibrachiatum WKA55 With Biologically Active Metabolites for Promoting Germination and Reducing Mycotoxinogenic Fungi of Peanut. Front Microbiol 2022; 13:772417. [PMID: 35401430 PMCID: PMC8993229 DOI: 10.3389/fmicb.2022.772417] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Plant residuals comprise the natural habitat of the plant pathogen; therefore, attention is currently focusing on biological-based bioprocessing of biomass residuals into benefit substances. The current study focused on the biodegradation of peanut plant residual (PNR) into citric acid (CA) through a mathematical modeling strategy. Novel endophytic Trichoderma longibrachiatum WKA55 (GenBank accession number: MZ014020.1), having lytic (cellulase, protease, and polygalacturonase) activity, and tricalcium phosphate (TCP) solubilization ability were isolated from peanut seeds and used during the fermentation process. As reported by HPLC, the maximum CA (5505.1 μg/g PNR) was obtained after 9 days in the presence of 15.49 mg TCP, and 15.68 mg glucose. GC–MS analysis showed other bioactive metabolites in the filtrate of the fermented PNR. Practically, the crude product (40%) fully inhibited (100%) the growth and spore germination of three mycotoxinogenic fungi. On peanuts, it improved the seed germination (91%), seedling features, and vigor index (70.45%) with a reduction of abnormal seedlings (9.33%). The current study presents the fundamentals for large-scale production in the industry for the sustainable development of PNR biomass as a natural source of bioactive metabolites, and safe consumption of lignocellulosic-proteinaceous biomass, as well. T. longibrachiatum WKA55 was also introduced as a novel CA producer specified on PNR. Application of the resulting metabolite is encouraged on a large scale.
Collapse
Affiliation(s)
- Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Abdulaziz A. Al-Askar,
| | - Ehsan M. Rashad
- Department of Seed Pathology Research, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Zeiad Moussa
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - Khalid M. Ghoneem
- Department of Seed Pathology Research, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ashraf A. Mostafa
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fatimah O. Al-Otibi
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amr Abker Arishi
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - WesamEldin I. A. Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
- WesamEldin I. A. Saber,
| |
Collapse
|
11
|
Sapkota S, Catching KE, Raymer PL, Martinez-Espinoza AD, Bahri BA. New Approaches to an Old Problem: Dollar Spot of Turfgrass. PHYTOPATHOLOGY 2022; 112:469-480. [PMID: 34406790 DOI: 10.1094/phyto-11-20-0505-rvw] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dollar spot, caused by fungal pathogens Clarireedia spp. (formerly Sclerotinia homoeocarpa), is the most common and widely distributed disease of turfgrass worldwide. It can drastically reduce the quality of turfgrass species and affect their aesthetic value and playability. Management of dollar spot typically includes a costly program of multiple application of fungicides within a growing season. Consequently, there have been reported cases of fungicide resistance in populations of Clarireedia spp. Host resistance could be an important component of dollar spot management; however, this approach has been hampered by the lack of sources of resistance because nearly all known warm- and cool-season turfgrass species are susceptible. With the recent advancement in genome sequencing technologies, studies on pathogen genomics and host-pathogen interactions are emerging with the hope of revealing candidate resistance genes in turfgrass and genes for virulence and pathogenicity in Clarireedia spp. Large-scale screening of turfgrass germplasm and quantitative trait locus (QTL) analysis for dollar spot resistance are important for resistance breeding, but only a handful of such studies have been conducted to date. This review summarizes currently available information on the dollar spot pathosystem, taxonomy, pathogen genomics, host-pathogen interaction, genetics of resistance, and QTL mapping and also provides some thoughts for future research prospects to better manage this disease.
Collapse
Affiliation(s)
- Suraj Sapkota
- Department of Plant Pathology, University of Georgia, Griffin, GA 30223
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin, GA 30223
| | - Katherine E Catching
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin, GA 30223
| | - Paul L Raymer
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin, GA 30223
- Department of Crop and Soil Science, University of Georgia, Griffin, GA 30223
| | | | - Bochra A Bahri
- Department of Plant Pathology, University of Georgia, Griffin, GA 30223
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin, GA 30223
| |
Collapse
|
12
|
Amelioration in traditional farming system by exploring the different plant growth-promoting attributes of endophytes for sustainable agriculture. Arch Microbiol 2022; 204:151. [DOI: 10.1007/s00203-021-02637-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022]
|
13
|
Understanding the Various Strategies for the Management of Fungal Pathogens in Crop Plants in the Current Scenario. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Wierz JC, Gaube P, Klebsch D, Kaltenpoth M, Flórez LV. Transmission of Bacterial Symbionts With and Without Genome Erosion Between a Beetle Host and the Plant Environment. Front Microbiol 2021; 12:715601. [PMID: 34630349 PMCID: PMC8493222 DOI: 10.3389/fmicb.2021.715601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
Many phytophagous insects harbor symbiotic bacteria that can be transmitted vertically from parents to offspring, or acquired horizontally from unrelated hosts or the environment. In the latter case, plants are a potential route for symbiont transfer and can thus foster a tripartite interaction between microbe, insect, and plant. Here, we focus on two bacterial symbionts of the darkling beetle Lagria villosa that belong to the genus Burkholderia; the culturable strain B. gladioli Lv-StA and the reduced-genome strain Burkholderia Lv-StB. The strains can be transmitted vertically and confer protection to the beetle’s eggs, but Lv-StA can also proliferate in plants, and both symbiont strains have presumably evolved from plant pathogens. Notably, little is known about the role of the environment for the transmission dynamics and the maintenance of the symbionts. Through manipulative assays, we demonstrate the transfer of the symbionts from the beetle to wheat, rice and soybean plants, as well as leaf litter. In addition, we confirm that aposymbiotic larvae can pick up Lv-StA from dry leaves and the symbiont can successfully establish in the beetle’s symbiotic organs. Also, we show that the presence of plants and soil in the environment improves symbiont maintenance. These results indicate that the symbionts of L. villosa beetles are still capable of interacting with plants despite signatures of genome erosion and suggest that a mixed-mode of bacterial transmission is likely key for the persistence of the symbiosis.
Collapse
Affiliation(s)
- Jürgen C Wierz
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Paul Gaube
- Molecular Biodiversity Research Group, Center for Computational and Theoretical Biology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Dagmar Klebsch
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany.,Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Laura V Flórez
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany.,Department of Plant and Environmental Sciences, Section for Organismal Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Improved Dynamic Range of a Rhamnose-Inducible Promoter for Gene Expression in Burkholderia spp. Appl Environ Microbiol 2021; 87:e0064721. [PMID: 34190606 DOI: 10.1128/aem.00647-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A diverse genetic toolkit is critical for understanding bacterial physiology and genotype-phenotype relationships. Inducible promoter systems are an integral part of this toolkit. In Burkholderia and related species, the l-rhamnose-inducible promoter is among the first choices due to its tight control and the lack of viable alternatives. To improve upon its maximum activity and dynamic range, we explored the effect of promoter system modifications in Burkholderia cenocepacia with a LacZ-based reporter. By combining the bacteriophage T7 gene 10 stem-loop and engineered rhaI transcription factor-binding sites, we obtained a rhamnose-inducible system with a 6.5-fold and 3.0-fold increases in maximum activity and dynamic range, respectively, compared to the native promoter. We then added the modified promoter system to pSCrhaB2 and pSC201, common genetic tools used for plasmid-based and chromosome-based gene expression, respectively, in Burkholderia, creating pSCrhaB2plus and pSC201plus. We demonstrated the utility of pSCrhaB2plus for gene expression in B. thailandensis, B. multivorans, and B. vietnamiensis and used pSC201plus to control highly expressed essential genes from the chromosome of B. cenocepacia. The utility of the modified system was demonstrated as we recovered viable mutants to control ftsZ, rpoBC, and rpsF, whereas the unmodified promoter was unable to control rpsF. The modified expression system allowed control of an essential gene depletion phenotype at lower levels of l-rhamnose, the inducer. pSCRhaB2plus and pSC201plus are expected to be valuable additions to the genetic toolkit for Burkholderia and related species. IMPORTANCE Species of Burkholderia are dually recognized as being of attractive biotechnological potential but also opportunistic pathogens for immunocompromised individuals. Understanding the genotype-phenotype relationship is critical for synthetic biology approaches in Burkholderia to disentangle pathogenic from beneficial traits. A diverse genetic toolkit, including inducible promoters, is the foundation for these investigations. Thus, we sought to improve on the commonly used rhamnose-inducible promoter system. Our modifications resulted in both higher levels of heterologous protein expression and broader control over highly expressed essential genes in B. cenocepacia. The significance of our work is in expanding the genetic toolkit to enable more comprehensive studies into Burkholderia and related bacteria.
Collapse
|
16
|
Ahmad T, Bashir A, Farooq S, Riyaz-Ul-Hassan S. Burkholderia gladioli E39CS3, an endophyte of Crocus sativus Linn., induces host resistance against corm-rot caused by Fusarium oxysporum. J Appl Microbiol 2021; 132:495-508. [PMID: 34170610 DOI: 10.1111/jam.15190] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/19/2021] [Accepted: 06/13/2021] [Indexed: 01/02/2023]
Abstract
AIM To investigate the role of the leading saffron endophyte Burkholderia gladioli strain E39CS3 (BG-E39) in the inhibition of corm-rot and induced systemic resistance (ISR) in the host against the saffron specific pathogen, Fusarium oxysporum. METHODS AND RESULTS We studied the interaction between BG-E39 and the corm-rot pathogen F. oxysporum in vitro and in vivo. BG-E39 strongly inhibited both the F. oxysporum strains and other saffron-specific and non-specific pathogens used in this study. Confrontation and microscopic analyses revealed that the endophyte possessed fungicidal activity against the pathogens and effectively induced cell death in the mycelia. The endophyte produced chitinases as well as β-1,3-glucanase that may be involved in the pathogen cell wall degradation. BG-E39 did not cause corm-rot in Crocus sativus and the closely related plant, Gladiolus, thus establishing that it is non-pathogenic to these plants. The endophyte reduced corm-rot through antibiosis and enhanced the endogenous jasmonic acid (JA) levels and expression of JA-regulated and other plant defence genes. CONCLUSIONS The bacterial endophyte BG-E39 provides resistance to the host plant against F. oxysporum corm-rot in nature. SIGNIFICANCE AND IMPACT OF THE STUDY The current study discovers the role of the saffron endophyte BG-E39 in providing resistance to the host against corm-rot. Therefore, this endophyte is a potential candidate for developing a microbial formulation for the biocontrol of the most common disease of C. sativus.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abid Bashir
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sadaqat Farooq
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Syed Riyaz-Ul-Hassan
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
17
|
Fungicidal Activity of Volatile Organic Compounds Emitted by Burkholderia gladioli Strain BBB-01. Molecules 2021; 26:molecules26030745. [PMID: 33572680 PMCID: PMC7867013 DOI: 10.3390/molecules26030745] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/03/2023] Open
Abstract
A Burkholderia gladioli strain, named BBB-01, was isolated from rice shoots based on the confrontation plate assay activity against several plant pathogenic fungi. The genome of this bacterial strain consists of two circular chromosomes and one plasmid with 8,201,484 base pairs in total. Pangenome analysis of 23 B. gladioli strains suggests that B. gladioli BBB-01 has the closest evolutionary relationship to B. gladioli pv. gladioli and B. gladioli pv. agaricicola. B. gladioli BBB-01 emitted dimethyl disulfide and 2,5-dimethylfuran when it was cultivated in lysogeny broth and potato dextrose broth, respectively. Dimethyl disulfide is a well-known pesticide, while the bioactivity of 2,5-dimethylfuran has not been reported. In this study, the inhibition activity of the vapor of these two compounds was examined against phytopathogenic fungi, including Magnaporthe oryzae, Gibberella fujikuroi, Sarocladium oryzae, Phellinus noxius and Colletotrichumfructicola, and human pathogen Candida albicans. In general, 2,5-dimethylfuran is more potent than dimethyl disulfide in suppressing the growth of the tested fungi, suggesting that 2,5-dimethylfuran is a potential fumigant to control plant fungal disease.
Collapse
|
18
|
Burkholderia gladioli CGB10: A Novel Strain Biocontrolling the Sugarcane Smut Disease. Microorganisms 2020; 8:microorganisms8121943. [PMID: 33297590 PMCID: PMC7762381 DOI: 10.3390/microorganisms8121943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
In this study, we isolated an endophytic Burkholderia gladioli strain, named CGB10, from sugarcane leaves. B. gladioli CGB10 displayed strong inhibitory activity against filamentous growth of fungal pathogens, one of which is Sporisorium scitamineum that causes sugarcane smut, a major disease affecting the quality and production of sugarcane in tropical and subtropical regions. CGB10 could effectively suppress sugarcane smut under field conditions, without itself causing any obvious damage or disease, thus underscoring a great potential as a biocontrol agent (BCA) for the management of sugarcane smut. A toxoflavin biosynthesis and transport gene cluster potentially responsible for such antifungal activity was identified in the CGB10 genome. Additionally, a quorum-sensing gene cluster was identified too and compared with two close Burkholderia species, thus supporting an overall connection to the regulation of toxoflavin synthesis therein. Overall, this work describes the in vitro and field Sporisorium scitamineum biocontrol by a new B. gladioli strain, and reports genes and molecular mechanisms potentially involved.
Collapse
|
19
|
Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie van Leeuwenhoek 2020; 113:1075-1107. [PMID: 32488494 DOI: 10.1007/s10482-020-01429-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
Endophytic microbes are known to live asymptomatically inside their host throughout different stages of their life cycle and play crucial roles in the growth, development, fitness, and diversification of plants. The plant-endophyte association ranges from mutualism to pathogenicity. These microbes help the host to combat a diverse array of biotic and abiotic stressful conditions. Endophytic microbes play a major role in the growth promotion of their host by solubilizing of macronutrients such as phosphorous, potassium, and zinc; fixing of atmospheric nitrogen, synthesizing of phytohormones, siderophores, hydrogen cyanide, ammonia, and act as a biocontrol agent against wide array of phytopathogens. Endophytic microbes are beneficial to plants by directly promoting their growth or indirectly by inhibiting the growth of phytopathogens. Over a long period of co-evolution, endophytic microbes have attained the mechanism of synthesis of various hydrolytic enzymes such as pectinase, xylanases, cellulase, and proteinase which help in the penetration of endophytic microbes into tissues of plants. The effective usage of endophytic microbes in the form of bioinoculants reduce the usage of chemical fertilizers. Endophytic microbes belong to different phyla such as Actinobacteria, Acidobacteria, Bacteroidetes, Deinococcus-thermus, Firmicutes, Proteobacteria, and Verrucomicrobia. The most predominant and studied endophytic bacteria belonged to Proteobacteria followed by Firmicutes and then by Actinobacteria. The most dominant among reported genera in most of the leguminous and non-leguminous plants are Bacillus, Pseudomonas, Fusarium, Burkholderia, Rhizobium, and Klebsiella. In future, endophytic microbes have a wide range of potential for maintaining health of plant as well as environmental conditions for agricultural sustainability. The present review is focused on endophytic microbes, their diversity in leguminous as well as non-leguminous crops, biotechnological applications, and ability to promote the growth of plant for agro-environmental sustainability.
Collapse
|
20
|
Romero-Gutiérrez KJ, Dourado MN, Garrido LM, Olchanheski LR, Mano ET, Dini-Andreote F, Valvano MA, Araújo WL. Phenotypic traits of Burkholderia spp. associated with ecological adaptation and plant-host interaction. Microbiol Res 2020; 236:126451. [PMID: 32146294 DOI: 10.1016/j.micres.2020.126451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/20/2020] [Accepted: 02/27/2020] [Indexed: 11/15/2022]
Abstract
Burkholderia species have different lifestyles establishing mutualist or pathogenic associations with plants and animals. Changes in the ecological behavior of these bacteria may depend on genetic variations in response to niche adaptation. Here, we studied 15 Burkholderia strains isolated from different environments with respect to genetic and phenotypic traits. By Multilocus Sequence Analysis (MLSA) these isolates fell into 6 distinct groups. MLSA clusters did not correlate with strain antibiotic sensitivity, but with the bacterial ability to produce antimicrobial compounds and control orchid necrosis. Further, the B. seminalis strain TC3.4.2R3, a mutualistic bacterium, was inoculated into orchid plants and the interaction with the host was evaluated by analyzing the plant response and the bacterial oxidative stress response in planta. TC3.4.2R3 responded to plant colonization by increasing its own growth rate and by differential gene regulation upon oxidative stress caused by the plant, while reducing the plant's membrane lipid peroxidation. The bacterial responses to oxidative stress were recapitulated by bacterial exposure to the herbicide paraquat. We suggest that the ability of Burkholderia species to successfully establish in the rhizosphere correlates with genetic variation, whereas traits associated with antibiotic resistance are more likely to be categorized as strain specific.
Collapse
Affiliation(s)
- Karent J Romero-Gutiérrez
- Department of Microbiology, University of São Paulo, Institute of Biomedical Sciences, São Paulo, SP, Brazil
| | - Manuella N Dourado
- Department of Microbiology, University of São Paulo, Institute of Biomedical Sciences, São Paulo, SP, Brazil
| | - Leandro M Garrido
- Department of Microbiology, University of São Paulo, Institute of Biomedical Sciences, São Paulo, SP, Brazil
| | - Luiz Ricardo Olchanheski
- Department of Microbiology, University of São Paulo, Institute of Biomedical Sciences, São Paulo, SP, Brazil
| | - Emy T Mano
- Department of Microbiology, University of São Paulo, Institute of Biomedical Sciences, São Paulo, SP, Brazil
| | - Francisco Dini-Andreote
- Department of Plant Science, The Pennsylvania State University, Pennsylvania, University Park, PA, USA; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, BT9 7BL, United Kingdom
| | - Welington L Araújo
- Department of Microbiology, University of São Paulo, Institute of Biomedical Sciences, São Paulo, SP, Brazil.
| |
Collapse
|
21
|
Kaltenpoth M, Flórez LV. Versatile and Dynamic Symbioses Between Insects and Burkholderia Bacteria. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:145-170. [PMID: 31594411 DOI: 10.1146/annurev-ento-011019-025025] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Symbiotic associations with microorganisms represent major sources of ecological and evolutionary innovations in insects. Multiple insect taxa engage in symbioses with bacteria of the genus Burkholderia, a diverse group that is widespread across different environments and whose members can be mutualistic or pathogenic to plants, fungi, and animals. Burkholderia symbionts provide nutritional benefits and resistance against insecticides to stinkbugs, defend Lagria beetle eggs against pathogenic fungi, and may be involved in nitrogen metabolism in ants. In contrast to many other insect symbioses, the known associations with Burkholderia are characterized by environmental symbiont acquisition or mixed-mode transmission, resulting in interesting ecological and evolutionary dynamics of symbiont strain composition. Insect-Burkholderia symbioses present valuable model systems from which to derive insights into general principles governing symbiotic interactions because they are often experimentally and genetically tractable and span a large fraction of the diversity of functions, localizations, and transmission routes represented in insect symbioses.
Collapse
Affiliation(s)
- Martin Kaltenpoth
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; ,
| | - Laura V Flórez
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; ,
| |
Collapse
|
22
|
Nouh FAA, Abo Nahas HH, Abdel-Azeem AM. Agriculturally Important Fungi: Plant–Microbe Association for Mutual Benefits. Fungal Biol 2020. [DOI: 10.1007/978-3-030-45971-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Yang L, Gao J, Zhang Y, Tian J, Sun Y, Wang C. RNA-Seq identification of candidate defense genes by analyzing Mythimna separata feeding-damage induced systemic resistance in balsas teosinte. PEST MANAGEMENT SCIENCE 2020; 76:333-342. [PMID: 31207043 DOI: 10.1002/ps.5519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/05/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Armyworm (Mythimna separata) is a destructive herbivore for maize. Balsas teosinte (Zea mays ssp. parviglumis), the direct wild ancestor of cultivated maize, has shown great potential to defend against herbivory. Here, based on armyworm bioassay, we compared responses of teosinte and B73 maize inbred during armyworm attack in their transcriptome profiles to elucidate the gene expression changes involved in teosinte responses to armyworm attack. The goal of this study was to identify novel resistance alleles that could serve as valuable resources for modern maize breeding. RESULTS Our bioassay revealed that armyworm larvae grew less on teosinte than on maize. A follow-up transcriptomic comparison showed more down-regulated genes in maize B73 and similar numbers of up-regulated genes in both genotypes under armyworm attack. The up-regulated genes in teosinte were markedly enriched in MAPK cascade-mediated signaling pathway and phytohormone pathway. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that phytohormones jasmonic acid, ethylene, salicylic acid and abscisic acid (ABA) were actively involved in armyworm resistance of teosinte plants, and so were transcription factors such as MYBs, WRKYs and TIFYs. Interestingly, teosinte also showed high regulation in three ABA receptor PYLs. Based on differential expression analysis, we identified 30 candidate defense-related genes in teosinte, which belong to 11 gene families and the majority of the genes were up-regulated, while some of them were nonresponsive in maize. CONCLUSION This study demonstrates that teosinte showed more vigorous defense response than maize toward armyworm attack and might be a beneficial genetic resource to improve pest resistance in cultivated maize. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liyan Yang
- College of Life Science, Shanxi Normal University, Linfen, China
| | - Jing Gao
- College of Life Science, Shanxi Normal University, Linfen, China
| | - Yurong Zhang
- College of Life Science, Shanxi Normal University, Linfen, China
| | - Jingyun Tian
- College of Life Science, Shanxi Normal University, Linfen, China
| | - Yi Sun
- Biotechnology Research Center, Shanxi Academy of Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan, China
| | - Chuangyun Wang
- Institute of Crop Sciences, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| |
Collapse
|
24
|
Liu Y, Yang F, Nguyen TTH, Wu X, Xu Y, Kim SG. Complete genome sequence of Bacillus ciccensis 5L6 T, a new species isolated from maize (Zea mays L.) seeds with anti-fungal activity. Microb Pathog 2019; 137:103753. [PMID: 31539588 DOI: 10.1016/j.micpath.2019.103753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/19/2019] [Accepted: 09/16/2019] [Indexed: 11/29/2022]
Abstract
Maize is a crop grown worldwide. Bacillus ciccensis 5L6T was isolated from maize (Zea mays L., Jingke968) seeds and was a new species of Bacillus with potential anti-fungal activity. The complete genome of 5L6T was sequenced and assembled with a length of 5,207,802 bp and a GC content of 37.42%. The proteins responsible for anti-fungal activity and the potential beneficial interaction with maize of 5L6Twere annotated and reported here. The complete genome sequence of the new species B. ciccensis 5L6T will promote its biological application.
Collapse
Affiliation(s)
- Yang Liu
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China.
| | - Fuzhen Yang
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Tra T H Nguyen
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeonbuk, 56212, South Korea
| | - Xianyu Wu
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Youqiang Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, PR China.
| | - Song-Gun Kim
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeonbuk, 56212, South Korea; University of Science and Technology (UST), Daejeon, 34113, South Korea.
| |
Collapse
|
25
|
|
26
|
Shehata HR, Raizada MN. A Burkholderia endophyte of the ancient maize landrace Chapalote utilizes c-di-GMP-dependent and independent signaling to suppress diverse plant fungal pathogen targets. FEMS Microbiol Lett 2018; 364:3898815. [PMID: 28679171 DOI: 10.1093/femsle/fnx138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 06/29/2017] [Indexed: 12/19/2022] Open
Abstract
Chapalote is a maize (corn) landrace grown continuously by subsistence farmers in the Americas since 1000 BC, valued in part for its broad-spectrum pathogen resistance. Previously, we showed that Chapalote possesses a bacterial endophyte, Burkholderia gladioli strain 3A12, which suppresses growth of Sclerotinia homoeocarpa, a fungal pathogen of a maize relative, used as a model system. Ten mutants that lost the anti-pathogen activities were identified, corresponding to five genes. However, S. homoeocarpa is not a known maize pathogen; hence, the relevance of these anti-fungal mechanisms to its ancient host has not been clear. Here, the strain 3A12 mutants were tested against a known pathogen of maize and many crops, Rhizoctonia solani. Microscopy established that wild-type 3A12 swarms towards, and attaches onto, the pathogen, forming microcolonies, resulting in hyphal cleavage. Analysis of the mutants revealed that 3A12 uses common downstream gene products (e.g. fungicides) to suppress the growth of both S. homoeocarpa and R. solani, but apparently different upstream regulatory machinery, with the former, but not latter pathogen, requiring YajQ, a receptor for the secondary messenger c-di-GMP. We conclude that B. gladioli strain 3A12, an endophyte of an ancient maize, employs both c-di-GMP-dependent and independent signaling to target diverse fungal pathogens.
Collapse
Affiliation(s)
- Hanan R Shehata
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Microbiology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Manish N Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
27
|
Turfgrasses as model assay systems for high-throughput in planta screening of beneficial endophytes isolated from cereal crops. Symbiosis 2017. [DOI: 10.1007/s13199-017-0511-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
O'Keeffe KR, Carbone I, Jones CD, Mitchell CE. Plastic potential: how the phenotypes and adaptations of pathogens are influenced by microbial interactions within plants. CURRENT OPINION IN PLANT BIOLOGY 2017; 38:78-83. [PMID: 28505582 DOI: 10.1016/j.pbi.2017.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/14/2017] [Indexed: 06/07/2023]
Abstract
Predicting the effects of plant-associated microbes on emergence, spread, and evolution of plant pathogens demands an understanding of how pathogens respond to these microbes at two levels of biological organization: that of an individual pathogen and that of a pathogen population across multiple individual plants. We first examine the plastic responses of individual plant pathogens to microbes within a shared host, as seen through changes in pathogen growth and multiplication. We then explore the limited understanding of how within-plant microbial interactions affect pathogen populations and discuss the need to incorporate population-level observations with population genomic techniques. Finally, we suggest that integrating across levels will further our understanding of the ecological and evolutionary impacts of within-plant microbial interactions on pathogens.
Collapse
Affiliation(s)
- Kayleigh R O'Keeffe
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Corbin D Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles E Mitchell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum for the Environment and Ecology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
29
|
Tian Z, Wang R, Ambrose KV, Clarke BB, Belanger FC. The Epichloë festucae antifungal protein has activity against the plant pathogen Sclerotinia homoeocarpa, the causal agent of dollar spot disease. Sci Rep 2017; 7:5643. [PMID: 28717232 PMCID: PMC5514056 DOI: 10.1038/s41598-017-06068-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/07/2017] [Indexed: 02/05/2023] Open
Abstract
Epichloë spp. are naturally occurring fungal endophytic symbionts of many cool-season grasses. Infection by the fungal endophytes often confers biotic and abiotic stress tolerance to their hosts. Endophyte-mediated disease resistance is well-established in the fine fescue grass Festuca rubra subsp. rubra (strong creeping red fescue) infected with E. festucae. Resistance to fungal pathogens is not an established effect of endophyte infection of other grass species, and may therefore be unique to the fine fescues. The underlying mechanism of the disease resistance is unknown. E. festucae produces a secreted antifungal protein that is highly expressed in the infected plant tissues and may therefore be involved in the disease resistance. Most Epichloë spp. do not have a gene for a similar antifungal protein. Here we report the characterization of the E. festucae antifungal protein, designated Efe-AfpA. The antifungal protein partially purified from the apoplastic proteins of endophyte-infected plant tissue and the recombinant protein expressed in the yeast Pichia pastoris was found to have activity against the important plant pathogen Sclerotinia homoeocarpa. Efe-AfpA may therefore be a component of the disease resistance seen in endophyte-infected strong creeping red fescue.
Collapse
Affiliation(s)
- Zipeng Tian
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Ruying Wang
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Karen V Ambrose
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, 08901, USA
- Indigo Agriculture, Charlestown, Massachusetts, 02129, USA
| | - Bruce B Clarke
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Faith C Belanger
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, 08901, USA.
| |
Collapse
|
30
|
Shehata HR, Griffiths MW, Raizada MN. Seeds of the Wild Progenitor of Maize Possess Bacteria That Antagonize Foodborne Pathogens. Foodborne Pathog Dis 2017; 14:202-209. [DOI: 10.1089/fpd.2016.2225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hanan R. Shehata
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
- Department of Microbiology, School of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mansel W. Griffiths
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
- Canadian Research Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada
| | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
31
|
Puri A, Padda KP, Chanway CP. Plant Growth Promotion by Endophytic Bacteria in Nonnative Crop Hosts. ENDOPHYTES: CROP PRODUCTIVITY AND PROTECTION 2017. [DOI: 10.1007/978-3-319-66544-3_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Shehata HR, Ettinger CL, Eisen JA, Raizada MN. Genes Required for the Anti-fungal Activity of a Bacterial Endophyte Isolated from a Corn Landrace Grown Continuously by Subsistence Farmers Since 1000 BC. Front Microbiol 2016; 7:1548. [PMID: 27757101 PMCID: PMC5047915 DOI: 10.3389/fmicb.2016.01548] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/15/2016] [Indexed: 12/14/2022] Open
Abstract
Endophytes are microbes that inhabit internal plant tissues without causing disease. Some endophytes are known to combat pathogens. The corn (maize) landrace Chapalote has been grown continuously by subsistence farmers in the Americas since 1000 BC, without the use of fungicides, and the crop remains highly valued by farmers, in part for its natural tolerance to pests. We hypothesized that the pathogen tolerance of Chapalote may, in part, be due to assistance from its endophytes. We previously identified a bacterial endophyte from Chapalote seeds, Burkholderia gladioli strain 3A12, for its ability to combat a diversity of crop pathogens, including Sclerotinia homoeocarpa, the most important fungal disease of creeping bentgrass, a relative of maize used here as a model system. Strain 3A12 represents a unique opportunity to understand the anti-fungal activities of an endophyte associated with a crop variety grown by subsistence farmers since ancient times. Here, microscopy combined with Tn5-mutagenesis demonstrates that the anti-fungal mode of action of 3A12 involves flagella-dependent swarming toward its pathogen target, attachment and biofilm-mediated microcolony formation. The mutant screen revealed that YajQ, a receptor for the secondary messenger c-di-GMP, is a critical signaling system that mediates this endophytic mobility-based defense for its host. Microbes from the traditional seeds of farmers may represent a new frontier in elucidating host-microbe mutualistic interactions.
Collapse
Affiliation(s)
- Hanan R. Shehata
- Department of Plant Agriculture, University of Guelph, GuelphON, Canada
- Department of Microbiology, School of Pharmacy, Mansoura UniversityMansoura, Egypt
| | - Cassandra L. Ettinger
- Genome Center, University of California Davis, DavisCA, USA
- Department of Evolution and Ecology, University of California Davis, DavisCA, USA
| | - Jonathan A. Eisen
- Genome Center, University of California Davis, DavisCA, USA
- Department of Evolution and Ecology, University of California Davis, DavisCA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, DavisCA, USA
| | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, GuelphON, Canada
| |
Collapse
|
33
|
Mousa WK, Schwan AL, Raizada MN. Characterization of Antifungal Natural Products Isolated from Endophytic Fungi of Finger Millet (Eleusine coracana). Molecules 2016; 21:E1171. [PMID: 27598120 PMCID: PMC6273740 DOI: 10.3390/molecules21091171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/19/2016] [Accepted: 08/27/2016] [Indexed: 02/01/2023] Open
Abstract
Finger millet is an ancient African-Indian crop that is resistant to many pathogens including the fungus, Fusarium graminearum. We previously reported the first isolation of putative fungal endophytes from finger millet and showed that the crude extracts of four strains had anti-Fusarium activity. However, active compounds were isolated from only one strain. The objectives of this study were to confirm the endophytic lifestyle of the three remaining anti-Fusarium isolates, to identify the major underlying antifungal compounds, and to initially characterize the mode(s) of action of each compound. Results of confocal microscopy and a plant disease assay were consistent with the three fungal strains behaving as endophytes. Using bio-assay guided fractionation and spectroscopic structural elucidation, three anti-Fusarium secondary metabolites were purified and characterized. These molecules were not previously reported to derive from fungi nor have antifungal activity. The purified antifungal compounds were: 5-hydroxy 2(3H)-benzofuranone, dehydrocostus lactone (guaianolide sesquiterpene lactone), and harpagoside (an iridoide glycoside). Light microscopy and vitality staining were used to visualize the in vitro interactions between each compound and Fusarium; the results suggested a mixed fungicidal/fungistatic mode of action. We conclude that finger millet possesses fungal endophytes that can synthesize anti-fungal compounds not previously reported as bio-fungicides against F. graminearum.
Collapse
Affiliation(s)
- Walaa Kamel Mousa
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada.
- Department of Pharmacognosy, Mansoura University, Mansoura 35516, Egypt.
| | - Adrian L Schwan
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Manish N Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
34
|
Abstract
In the 1990s several biocontrol agents on that contained Burkholderia strains were registered by the United States Environmental Protection Agency (EPA). After risk assessment these products were withdrawn from the market and a moratorium was placed on the registration of Burkholderia-containing products, as these strains may pose a risk to human health. However, over the past few years the number of novel Burkholderia species that exhibit plant-beneficial properties and are normally not isolated from infected patients has increased tremendously. In this commentary we wish to summarize recent efforts that aim at discerning pathogenic from beneficial Burkholderia strains.
Collapse
Affiliation(s)
- Leo Eberl
- Department of Plant and Microbial Biology, University Zürich, Zurich, CH-8008, Switzerland
| | - Peter Vandamme
- Laboratory of Microbiology, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|