1
|
Oliveira IM, Gomes IB, Simões LC, Simões M. A review of research advances on disinfection strategies for biofilm control in drinking water distribution systems. WATER RESEARCH 2024; 253:121273. [PMID: 38359597 DOI: 10.1016/j.watres.2024.121273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The presence of biofilms in drinking water distribution systems (DWDS) is responsible for water quality deterioration and a possible source of public health risks. Different factors impact the biological stability of drinking water (DW) in the distribution networks, such as the presence and concentration of nutrients, water temperature, pipe material composition, hydrodynamic conditions, and levels of disinfectant residual. This review aimed to evaluate the current state of knowledge on strategies for DW biofilm disinfection through a qualitative and quantitative analysis of the literature published over the last decade. A systematic review method was performed on the 562 journal articles identified through database searching on Web of Science and Scopus, with 85 studies selected for detailed analysis. A variety of disinfectants were identified for DW biofilm control such as chlorine, chloramine, UV irradiation, hydrogen peroxide, chlorine dioxide, ozone, and others at a lower frequency, namely, electrolyzed water, bacteriophages, silver ions, and nanoparticles. The disinfectants can impact the microbial communities within biofilms, reduce the number of culturable cells and biofilm biomass, as well as interfere with the biofilm matrix components. The maintenance of an effective residual concentration in the water guarantees long-term prevention of biofilm formation and improves the inactivation of detached biofilm-associated opportunistic pathogens. Additionally, strategies based on multi-barrier processes by optimization of primary and secondary disinfection combined with other water treatment methods improve the control of opportunistic pathogens, reduce the chlorine-tolerance of biofilm-embedded cells, as well as decrease the corrosion rate in metal-based pipelines. Most of the studies used benchtop laboratory devices for biofilm research. Even though these devices mimic the conditions found in real DWDS, future investigations on strategies for DW biofilm control should include the validity of the promising strategies against biofilms formed in real DW networks.
Collapse
Affiliation(s)
- Isabel Maria Oliveira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Inês Bezerra Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia Chaves Simões
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems, Braga/Guimarães, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
2
|
Brié A, Gantzer C, Boudaud N, Bertrand I. The impact of chlorine and heat on the infectivity and physicochemical properties of bacteriophage MS2. FEMS Microbiol Ecol 2019; 94:5033402. [PMID: 29878194 DOI: 10.1093/femsec/fiy106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 05/29/2018] [Indexed: 11/14/2022] Open
Abstract
Enteric viruses and bacteriophages are exposed to various inactivating factors outside their host, and among them chlorine and heat are the most commonly used sanitizer in water industry and treatment in the food industry, respectively. Using MS2 phages as models for enteric viruses, we investigated the impact of free chlorine and heat on their physicochemical properties. Free chlorine was first evaluated alone. No increase in either capsid permeability or hydrophobicity was observed. The negative surface charge slightly increased suggesting molecular changes in the capsid. However, a weakening of the capsid by chlorine was suggested by differential scanning fluorimetry. This phenomenon was confirmed when chlorination was followed by a heat treatment. Indeed, an increase in the inactivation of MS2 phages and the permeability of their capsids to RNases was observed. More interestingly, an increase in the expression of hydrophobic domains at the phage surface was observed, but only for phages remaining infectious. The chlorine-caused weakening of the capsid suggested that, for an optimal use, the oxidant should be followed by heat. The increased permeability to RNases and the expression of hydrophobic domains may contribute to the development or improvement of molecular methods specific for infectious enteric viruses.
Collapse
Affiliation(s)
- Adrien Brié
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS Université de Lorraine, Faculté de Pharmacie, 5 rue Albert Lebrun, BP 80403, 54001 Nancy, France.,Food Safety Department, ACTALIA, 310 rue Popielujko, 50000 Saint Lô, France
| | - Christophe Gantzer
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS Université de Lorraine, Faculté de Pharmacie, 5 rue Albert Lebrun, BP 80403, 54001 Nancy, France
| | - Nicolas Boudaud
- Food Safety Department, ACTALIA, 310 rue Popielujko, 50000 Saint Lô, France
| | - Isabelle Bertrand
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS Université de Lorraine, Faculté de Pharmacie, 5 rue Albert Lebrun, BP 80403, 54001 Nancy, France
| |
Collapse
|