1
|
Jiao K, Deng B, Song P, Ding H, Liu H, Lian B. Difference Analysis of the Composition of Iron (Hydr)Oxides and Dissolved Organic Matter in Pit Mud of Different Pit Ages in Luzhou Laojiao and Its Implications for the Ripening Process of Pit Mud. Foods 2023; 12:3962. [PMID: 37959081 PMCID: PMC10648004 DOI: 10.3390/foods12213962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Long-term production practice proves that good liquor comes out of the old cellar, and the aged pit mud is very important to the quality of Luzhou-flavor liquor. X-ray diffraction, Fourier transform ion cyclotron resonance mass spectrometry, and infrared spectroscopy were used to investigate the composition characteristics of iron-bearing minerals and dissolved organic matter (DOM) in 2-year, 40-year, and 100-year pit mud and yellow soil (raw materials for making pit mud) of Luzhou Laojiao distillery. The results showed that the contents of total iron and crystalline iron minerals decreased significantly, while the ratio of Fe(II)/Fe(III) and the content of amorphous iron (hydr)oxides increased significantly with increasing cellar age. DOM richness, unsaturation, and aromaticity, as well as lignin/phenolics, polyphenols, and polycyclic aromatics ratios, were enhanced in pit mud. The results of the principal component analysis indicate that changes in the morphology and content of iron-bearing minerals in pit mud were significantly correlated with the changes in DOM molecular components, which is mainly attributed to the different affinities of amorphous iron (hydr)oxides and crystalline iron minerals for the DOM components. The study is important for understanding the evolution pattern of iron-bearing minerals and DOM and their interactions during the aging of pit mud and provides a new way to further understand the influence of aged pit mud on Luzhou-flavor liquor production.
Collapse
Affiliation(s)
- Kairui Jiao
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (K.J.); (H.L.)
| | - Bo Deng
- National Engineering Research Center of Solid State Brewing, Luzhou 646000, China; (B.D.); (H.D.)
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China;
| | - Hailong Ding
- National Engineering Research Center of Solid State Brewing, Luzhou 646000, China; (B.D.); (H.D.)
| | - Hailong Liu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (K.J.); (H.L.)
| | - Bin Lian
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
2
|
Shoubao Y, Jie Y, TingTing S, Jiaquan G, Cuie S. Yeast diversity in pit mud and related volatile compounds in fermented grains of chinese strong-flavour liquor. AMB Express 2023; 13:56. [PMID: 37291367 DOI: 10.1186/s13568-023-01562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Chinese strong-flavour liquor is produced via a traditional solid-state fermentation strategy facilitated by live microorganisms in pit mud-based cellars. For the present analysis, pit mud samples from different spatial locations within fermentation cellars were collected, and the yeast communities therein were assessed via culture-based and denaturing gradient gel electrophoresis (DGGE) approaches. These analyses revealed significant differences in the composition of yeast communities present in different layers of pit mud. In total, 29 different yeast species were detected, and principal component analyses revealed clear differences in microbial diversity in pit mud samples taken from different cellar locations. Culture-dependent strategies similarly detected 20 different yeast species in these samples. However, while Geotrichum silvicola, Torulaspora delbrueckii, Hanseniaspora uvarum, Saturnispora silvae, Issatchenkia orientalis, Candida mucifera, Kazachstania barnettii, Cyberlindnera jadinii, Hanseniaspora spp., Alternaria tenuissima, Cryptococcus laurentii, Metschnikowia spp., and Rhodotorula dairenensis were detected via a PCR-DGGE approach, they were not detectable in culture-dependent analyses. In contrast, culture-based approaches led to the identification of Schizosaccharomyces pombe and Debaryomyces hansenii in these pit mud samples, whereas they were not detected using DGGE fingerprints profiles. An additional HS-SPME-GC-MS-based analysis of the volatile compounds present in fermented grains samples led to the identification of 66 such compounds, with the highest levels of volatile acids, esters, and alcohols being detected in fermented grains from lower layer samples. A canonical correspondence analysis (CCA) suggested they were significant correlations between pit mud yeast communities and associated volatile compounds in fermented grains.
Collapse
Affiliation(s)
- Yan Shoubao
- Department of biology and food engineering, Huainan Normal University, Huainan, 230038, China
- Brewing Industry Microbial Resource Development and Application Engineering Research Center in Anhui Province, Huainan Normal University, Huainan, 230038, China
- Anhui Yingjia Group Co., Ltd, Luan, 237271, China
| | - Yang Jie
- Department of biology and food engineering, Huainan Normal University, Huainan, 230038, China
- Brewing Industry Microbial Resource Development and Application Engineering Research Center in Anhui Province, Huainan Normal University, Huainan, 230038, China
| | - Shen TingTing
- Department of biology and food engineering, Huainan Normal University, Huainan, 230038, China
- Brewing Industry Microbial Resource Development and Application Engineering Research Center in Anhui Province, Huainan Normal University, Huainan, 230038, China
| | | | - Shi Cuie
- Department of biology and food engineering, Huainan Normal University, Huainan, 230038, China.
- Brewing Industry Microbial Resource Development and Application Engineering Research Center in Anhui Province, Huainan Normal University, Huainan, 230038, China.
| |
Collapse
|
3
|
Liu MK, Liu CY, Tian XH, Feng J, Guo XJ, Liu Y, Zhang XY, Tang YM. Bioremediation of degraded pit mud by indigenous microbes for Baijiu production. Food Microbiol 2022; 108:104096. [DOI: 10.1016/j.fm.2022.104096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/20/2022] [Accepted: 07/16/2022] [Indexed: 11/26/2022]
|
4
|
Chen C, Yang H, Liu J, Luo H, Zou W. Systematic Review of Actinomycetes in the Baijiu Fermentation Microbiome. Foods 2022; 11:3551. [PMID: 36429142 PMCID: PMC9689711 DOI: 10.3390/foods11223551] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Actinomycetes (a group of filamentous bacteria) are the dominant microbial order in the Daqu (DQ) fermentation starter and in the pit mud (PM) of the Baijiu fermentation microbiome. Actinomycetes produce many of the key enzymes and flavor components, and supply important precursors, which have a major influence on its characteristic aroma components, to other microorganisms during fermentation. This paper reviews the current progress on actinomycete research related to Baijiu fermentation, including the isolation and identification, distribution, interspecies interactions, systems biology, and main metabolites. The main metabolites and applications of the actinomycetes during Baijiu fermentation are also discussed.
Collapse
Affiliation(s)
- Cong Chen
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644005, China
| | - Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jie Liu
- Anhui Linshui Liquor Co., Ltd., Lu’an 237471, China
| | - Huibo Luo
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644005, China
| | - Wei Zou
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644005, China
| |
Collapse
|
5
|
Microbial succession and its effect on key aroma components during light-aroma-type Xiaoqu Baijiu brewing process. World J Microbiol Biotechnol 2022; 38:166. [PMID: 35861902 DOI: 10.1007/s11274-022-03353-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Light-aroma-type Baijiu is a Chinese distilled alcoholic beverage produced from fermented sorghum. Microbial composition and dynamics during Baijiu production have a great influence on the flavor and quality of Chinese Baijiu. However, the microbial changes that occur during brewing of Xiaoqu Baijiu are poorly understood. In this study, the microbial composition of light-aroma-type Xiaoqu Baijiu at the saccharification and fermentation stages was investigated to explore microbial dynamics and their effects on aroma components using high-throughput sequencing and gas chromatography-flame ionization detection (GC-FID). Rhizopus, Pichia, Wickerhamomyces, Saccharomyces, Acinetobacter, Lactobacillus, and Weissella constituted the core microbes for Xiaoqu Baijiu production. Microbial succession during brewing could be divided into two phases: at the saccharification and early fermentation stages (F-0d to F-4d), Rhizopus and Acinetobacter were identified as the predominant microbes, accounting for 78.2-90.8% and 53.9-89.5% of the fungal and bacterial communities, respectively, whereas at the middle and late stages of fermentation (F-5d to F-14d), the abundance of Pichia, Wickerhamomyces, Saccharomyces, and Lactobacillus increased. Redundancy analysis (RDA) and Mantel tests indicated that the water, amino acid nitrogen, acid, and reducing sugar contents were significantly correlated with the fungal and bacterial communities in grains (p < 0.05). Pichia, Rhizopus, Saccharomyces, and Wickerhamomyces, especially Saccharomyces, were closely related to the contents of major alcohols, esters and aldehydes, and these microbes had an important functional role in the formation of Xiaoqu Baijiu flavor. This work provides insights into the microbial succession that occurs during brewing of light-aroma-type Xiaoqu Baijiu and the microbial contribution to flavor, which have potential for optimizing production and enhancing the flavor of Baijiu.
Collapse
|
6
|
Zhang Z, Dong Y, Xiang F, Wang Y, Hou Q, Ni H, Cai W, Liu W, Yang S, Guo Z. Analysis of bacterial diversity and genetic evolution of Lacticaseibacillus paracasei isolates in fermentation pit mud. J Appl Microbiol 2022; 133:1821-1831. [PMID: 35802775 DOI: 10.1111/jam.15672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/13/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
AIMS Since little is known about the genetic diversity of lactic acid bacteria (LAB) isolates from the fermentation pit mud (FPM), we sought to evaluate the bacterial structure, identify the LAB isolates and investigate the genotype and genetic diversity of the LAB isolates. METHODS AND RESULTS Using high-throughput MiSeq sequencing, we identified seven dominant bacterial genera in FPM. Lactobacillus had the highest abundance. We isolated 55 LAB strains. These isolates were all identified as Lacticaseibacillus paracasei. Using an extant multilocus sequence typing (MLST) scheme, isolates were assigned to 18 sequence types (STs) and three clonal complexes. ST1, the largest group, mainly comprised FPM isolates. Niche-specific ST2 to ST18 only contained FPM isolates. Isolates could be divided into four lineages, with most assigned to Lineage 1. Only one FPM isolate was classified as L. paracasei subsp. paracasei. Other isolates could not be classified at the subspecies level using the seven MLST loci. CONCLUSIONS Lactobacilli account for a high proportion of bacteria in pit mud. Based on the traditional culture method, L. paracasei was the dominant species, and these isolates exhibit a high ethanol tolerance, high intraspecific diversity and specific genetic profiles. SIGNIFICANCE AND IMPACT OF THE STUDY The study described the characterization of FPM bacterial diversity, giving an insight into the genetic diversity of L. paracasei strains present in FPM.
Collapse
Affiliation(s)
- Zhendong Zhang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Yun Dong
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Fanshu Xiang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Yurong Wang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Qiangchuan Hou
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Hui Ni
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China.,School of Food Science, Shihezi University, Shihezi, Xinjiang Autonomous Region, People's Republic of China
| | - Wenchao Cai
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China.,School of Food Science, Shihezi University, Shihezi, Xinjiang Autonomous Region, People's Republic of China
| | - Wenhui Liu
- Hubei Guxiangyang Liquor Industry Co., Ltd., Xiangyang, People's Republic of China
| | - Shaoyong Yang
- Hubei Guxiangyang Liquor Industry Co., Ltd., Xiangyang, People's Republic of China
| | - Zhuang Guo
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China
| |
Collapse
|
7
|
Zhao L, Wang Y, Xing J, Gu S, Wu Y, Li X, Ma J, Mao J. Distinct succession of abundant and rare fungi in fermented grains during Chinese strong-flavor liquor fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Wang XJ, Zhu HM, Ren ZQ, Huang ZG, Wei CH, Deng J. Characterization of Microbial Diversity and Community Structure in Fermentation Pit Mud of Different Ages for Production of Strong-Aroma Baijiu. Pol J Microbiol 2020; 69:1-14. [PMID: 32396715 PMCID: PMC7324862 DOI: 10.33073/pjm-2020-018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 12/20/2022] Open
Abstract
In the traditional fermentation process of strong-aroma Baijiu, a fermentation pit mud (FPM) provides many genera of microorganisms for fermentation. However, the functional microorganisms that have an important effect on the quality of Baijiu and their changes with the age of fermentation pit (FP) are poorly understood. Herein, the Roche 454 pyrosequencing technique and a phospholipid fatty-acid analysis were employed to reveal the structure and diversity of prokaryotic communities in FPM samples that have been aged for 5, 30, and 100 years. The results revealed an increase in total prokaryotic biomass with an FP age; however, Shannon’s diversity index decreased significantly (p < 0.01). These results suggested that a unique microbial community structure evolved with uninterrupted use of the FP. The number of functional microorganisms, which could produce the flavor compounds of strong-aroma Baijiu, increased with the FP age. Among them, Clostridium and Ruminococcaceae are microorganisms that directly produce caproic acid. The increase of their relative abundance in the FPM might have improved the quality of strong-aroma Baijiu. Syntrophomonas, Methanobacterium, and Methanocorpusculum might also be beneficial to caproic acid production. They are not directly involved but provide possible environmental factors for caproic acid production. Overall, our study results indicated that an uninterrupted use of the FP shapes the particular microbial community structure in the FPM. This research provides scientific support for the concept that the aged FP yields a high-quality Baijiu.
Collapse
Affiliation(s)
- Xu-Jia Wang
- Sichuan C-Luminary Biotech Company , Chengdu , P.R. China
| | - Hong-Mei Zhu
- Sichuan C-Luminary Biotech Company , Chengdu , P.R. China
| | - Zhi-Qiang Ren
- Liquor Making Biotechnology and Application Key Laboratory of Sichuan Province , Sichuan University of Science and Engineering , Yibin , P.R. China ; School of Bioengineering , Sichuan University of Science and Engineering , Yibin , P.R. China
| | - Zhi-Guo Huang
- Liquor Making Biotechnology and Application Key Laboratory of Sichuan Province , Sichuan University of Science and Engineering , Yibin , P.R. China ; School of Bioengineering , Sichuan University of Science and Engineering , Yibin , P.R. China
| | - Chun-Hui Wei
- Liquor Making Biotechnology and Application Key Laboratory of Sichuan Province , Sichuan University of Science and Engineering , Yibin , P.R. China ; School of Bioengineering , Sichuan University of Science and Engineering , Yibin , P.R. China
| | - Jie Deng
- Liquor Making Biotechnology and Application Key Laboratory of Sichuan Province , Sichuan University of Science and Engineering , Yibin , P.R. China ; School of Bioengineering , Sichuan University of Science and Engineering , Yibin , P.R. China
| |
Collapse
|
9
|
Structural and Functional Changes in Prokaryotic Communities in Artificial Pit Mud during Chinese Baijiu Production. mSystems 2020; 5:5/2/e00829-19. [PMID: 32209718 PMCID: PMC7093824 DOI: 10.1128/msystems.00829-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Strong-flavor baijiu (SFB) accounts for more than 70% of all Chinese liquor production. In the Chinese baijiu brewing industry, artificial pit mud (APM) has been widely used since the 1960s to construct fermentation cellars for production of high-quality SFB. To gain insights at the systems level into the mechanisms driving APM prokaryotic taxonomic and functional dynamics and into how this variation is connected with high-quality SFB production, we performed the first combined metagenomic, metaproteomic, and metabolomic analyses of this brewing microecosystem. Together, the multi-omics approach enabled us to develop a more complete picture of the changing metabolic processes occurring in APM microbial communities during high-quality SFB production, which will be helpful for further optimization of APM culture technique and improvement of SFB quality. The Chinese alcoholic beverage strong-flavor baijiu (SFB) gets its characteristic flavor during fermentation in cellars lined with pit mud. Microbes in the pit mud produce key precursors of flavor esters. The maturation time of natural pit mud of over 20 years has promoted attempts to produce artificial pit mud (APM) with a shorter maturation time. However, knowledge about the molecular basis of APM microbial dynamics and associated functional variation during SFB brewing is limited, and the role of this variability in high-quality SFB production remains poorly understood. We studied APM maturation in new cellars until the fourth brewing batch using 16S rRNA gene amplicon sequencing, quantitative PCR, metaproteomics, and metabolomics techniques. A total of 36 prokaryotic classes and 195 genera were detected. Bacilli and Clostridia dominated consistently, and the relative abundance of Bacilli decreased along with the APM maturation. Even though both amplicon sequencing and quantitative PCR showed increased abundance of Clostridia, the levels of most of the Clostridium proteins were similar in both the first- and fourth-batch APM samples. Six genera correlated with eight or more major flavor compounds in SFB samples. Functional prediction suggested that the prokaryotic communities in the fourth-batch APM samples were actively engaged in organic acid metabolism, and the detected higher concentrations of proteins and metabolites in the corresponding metabolic pathways supported the prediction. This multi-omics approach captured changes in the abundances of specific microbial species, proteins, and metabolites during APM maturation, which are of great significance for the optimization of APM culture technique. IMPORTANCE Strong-flavor baijiu (SFB) accounts for more than 70% of all Chinese liquor production. In the Chinese baijiu brewing industry, artificial pit mud (APM) has been widely used since the 1960s to construct fermentation cellars for production of high-quality SFB. To gain insights at the systems level into the mechanisms driving APM prokaryotic taxonomic and functional dynamics and into how this variation is connected with high-quality SFB production, we performed the first combined metagenomic, metaproteomic, and metabolomic analyses of this brewing microecosystem. Together, the multi-omics approach enabled us to develop a more complete picture of the changing metabolic processes occurring in APM microbial communities during high-quality SFB production, which will be helpful for further optimization of APM culture technique and improvement of SFB quality.
Collapse
|
10
|
Zhang Q, Geng Z, Li D, Ding Z. Characterization and discrimination of microbial community and co-occurrence patterns in fresh and strong flavor style flue-cured tobacco leaves. Microbiologyopen 2020; 9:e965. [PMID: 31808296 PMCID: PMC7002102 DOI: 10.1002/mbo3.965] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 11/24/2022] Open
Abstract
Fermentation, also known as aging, is vital for enhancing the quality of flue-cured tobacco leaves (FTLs). Aged FTLs demonstrate high-quality sensory characteristics, while unaged FTLs do not. Microbes play important roles in the FTL fermentation process. However, the eukaryotic microbial community diversity is poorly understood, as are microbial associations within FTLs. We aimed to characterize and compare the microbiota associated with two important categories, fresh and strong flavor style FTLs, and to reveal correlations between the microbial taxa within them. Based on 16S and 18S rRNA Illumina MiSeq sequencing, the community richness and diversity of prokaryotes were almost as high as that of eukaryotes. The dominant microbes of FTLs belonged to seven genera, including Pseudomonas, Bacillus, Methylobacterium, Acinetobacter, Sphingomonas, Neophaeosphaeria, and Cladosporium, of the Proteobacteria, Firmicutes, and Ascomycota phyla. According to partial least square discriminant analysis (PLS-DA), Xanthomonas, Franconibacter, Massilia, Quadrisphaera, Staphylococcus, Cladosporium, Lodderomyces, Symmetrospora, Golovinomyces, and Dioszegia were significantly positively correlated with fresh flavor style FTLs, while Xenophilus, Fusarium, unclassified Ustilaginaceae, Tilletiopsis, Cryphonectria, Colletotrichum, and Cyanodermella were significantly positively correlated with strong flavor style FTLs. Network analysis identified seven hubs, Aureimonas, Kocuria, Massilia, Brachybacterium, Clostridium, Dietzia, and Vishniacozyma, that may play important roles in FTL ecosystem stability, which may be destroyed by Myrmecridium. FTL microbiota was found to be correlated with flavor style. Species present in lower numbers than the dominant microbes might be used as microbial markers to discriminate different flavor style samples and to stabilize FTL microbial communities. This research advances our understanding of FTL microbiota and describes a means of discriminating between fresh and strong flavor FTLs based on their respective stable microbiota.
Collapse
Affiliation(s)
- Qianying Zhang
- Technical Research CenterChina Tobacco Sichuan Industrial Co., Ltd.ChengduChina
- National Engineering Laboratory for Cereal Fermentation TechnologySchool of BiotechnologyJiangnan UniversityWuxiChina
| | - Zongze Geng
- Technical Research CenterChina Tobacco Sichuan Industrial Co., Ltd.ChengduChina
| | - Dongliang Li
- Technical Research CenterChina Tobacco Sichuan Industrial Co., Ltd.ChengduChina
| | - Zhongyang Ding
- National Engineering Laboratory for Cereal Fermentation TechnologySchool of BiotechnologyJiangnan UniversityWuxiChina
| |
Collapse
|
11
|
He G, Huang J, Wu C, Jin Y, Zhou R. Bioturbation effect of fortified Daqu on microbial community and flavor metabolite in Chinese strong-flavor liquor brewing microecosystem. Food Res Int 2019; 129:108851. [PMID: 32036891 DOI: 10.1016/j.foodres.2019.108851] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 01/14/2023]
Abstract
Traditional spontaneous fermentation in microecosystem with microbial successions and environmental variables results in inconsistent quality of fermented foods. We therefore propose the directional bioturbation for microbiota regulation and metabolites production in food fermentation. Here, we revealed the bioturbation effect of fortified Daqu on microbial community based on taxonomic composition, co-occurrence network, and metabolic potential, using Chinese strong-flavor liquor fermentation as a microecosystem. According to principal coordinate analysis, microbial communities were obviously influenced by the bioturbation of fortified Daqu. More specifically, bioturbation increased the abundances of Caproiciproducens, Clostridium, Aspergillus, Candida, Methanobacterium, and Methanosarcina, while decreased that of Lactobacillus. Meanwhile, higher abundances of most genes that encoding enzymes involved in interspecies hydrogen transfer between hexanoic acid bacteria and methanogens were observed in the bioturbated ecosystem by PICRUSt approach. Additionally, co-occurrence analysis showed that bioturbation increased the diversity and complexity of interspecies interactions in microecosystem, which contributed to higher production of flavor metabolites such as hexanoic acid, ethyl hexanoate, and hexyl hexanoate. These results indicated that the bioturbation of fortified Daqu is feasible for flavor metabolism by interspecies interactions of functional microbiota in liquor fermentation. Taken together, it is of great importance for regulating Chinese liquor and even other foods fermentation by bioturbation.
Collapse
Affiliation(s)
- Guiqiang He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China.
| |
Collapse
|
12
|
Contrasting bacterial community structure in artificial pit mud-starter cultures of different qualities: a complex biological mixture for Chinese strong-flavor Baijiu production. 3 Biotech 2019; 9:89. [PMID: 30800600 DOI: 10.1007/s13205-019-1622-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 02/08/2019] [Indexed: 10/27/2022] Open
Abstract
The complex starter culture for artificial pit mud (APMSC) hosts a wide variety of microbial communities that play a crucial role in Chinese strong-flavor Baijiu production. Based on its organoleptic properties, the quality of APMSC can be divided into normal and inferior quality grades. However, the relationship between the APMSC microbial community and APMSC quality is poorly understood. In this study, the bacterial community structure in normal and inferior APMSC derived from two different production batches was analyzed using denaturing gradient gel electrophoresis and Illumina MiSeq sequencing. Highly similar patterns of bacterial diversity and community structure were observed in the APMSC samples of the same quality, and a significant higher bacterial species diversity (Shannon index and Chao1) was detected in the normal compared to the inferior APMSC samples. Fifteen genera were detected in the APMSC samples, and seven (Caproiciproducens, Clostridium, Lactobacillus, Bacillus, Pediococcus, Rummeliibacillus, and Sporolactobacillus) were dominant, accounting for 92.12-99.89% of total abundance. Furthermore, the bacterial communities in the normal and inferior APMSC had significantly different structure and function. The normal APMSC was characterized by abundant Caproiciproducens and Clostridium and high caproic and butyric acid contents. In contrast, the inferior APMSC was overrepresented by Lactobacillus and Bacillus and lactic and acetic acids. This study may help clarify the key microbes sustaining APMSC ecosystem stability and functionality, and guide future improvements in APMSC production.
Collapse
|
13
|
Zou W, Ye G, Zhang K. Diversity, Function, and Application of Clostridium in Chinese Strong Flavor Baijiu Ecosystem: A Review. J Food Sci 2018; 83:1193-1199. [PMID: 29660763 DOI: 10.1111/1750-3841.14134] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/01/2018] [Indexed: 12/30/2022]
Abstract
Baijiu is a Chinese traditional distilled liquor with an annual yield over 13.12 million tons. Strong flavor baijiu (SFB) also called Luzhou-flavor liquor, takes account for > 70% of the total baijiu produced. SFB is produced by an open solid fermentation process with a complex microbial ecosystem. Clostridium is one of the most important microorganisms for the formation of the main flavor compounds of SFB, such as ethyl caproate. In this paper, we review current research progress on the Clostridium in the SFB ecosystem, focusing on the species diversity, physiological and metabolic features along with interspecies interactions. Systems biology approaches for the study of Clostridium from SFB ecosystems were discussed and explored. Furthermore, current applications of Clostridium in SFB production were discussed. PRACTICAL APPLICATION Strong flavor baijiu (SFB) accounts for more than 70% of total yield of Chinese baijiu, which exists for hundreds of years. Clostridium is common in SFB ecosystem and identified to be one of main contributors of flavor compounds in SFB. Study on the Clostridium from SFB ecosystem is not only helpful for the understanding of flavor compounds formation mechanism, but also the improvement of SFB quality. This study focuses on the current researches on the Clostridium species in SFB ecosystem, including the species diversity, physiological and metabolic features, and applications.
Collapse
Affiliation(s)
- Wei Zou
- the College of Bioengineering, Sichuan Univ. of Science & Engineering, 180 Xueyuan Road, Zigong, Sichuan 643000, China
| | - Guangbin Ye
- the College of Bioengineering, Sichuan Univ. of Science & Engineering, 180 Xueyuan Road, Zigong, Sichuan 643000, China
| | - Kaizheng Zhang
- the College of Bioengineering, Sichuan Univ. of Science & Engineering, 180 Xueyuan Road, Zigong, Sichuan 643000, China
| |
Collapse
|