1
|
Duran-Bedolla J, Garza-Ramos U, Rodríguez-Medina N, Aguilar Vera A, Barrios-Camacho H. Exploring the environmental traits and applications of Klebsiella variicola. Braz J Microbiol 2021; 52:2233-2245. [PMID: 34626346 DOI: 10.1007/s42770-021-00630-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/04/2021] [Indexed: 10/20/2022] Open
Abstract
Klebsiella variicola has been found in various natural niches, alone or in association with other bacteria, and causes diseases in animals and plants with important economic and environmental impacts. K. variicola has the capacity to fix nitrogen in the rhizosphere and soil; produces indole acetic acid, acetoin, and ammonia; and dissolves phosphorus and potassium, which play an important role in plant growth promotion and nutrition. Some members of K. variicola have properties such as halotolerance and alkalotolerance, conferring an evolutionary advantage. In the environmental protection, K. variicola can be used in the wastewater treatment, biodegradation, and bioremediation of polluted soil, either alone or in association with other organisms. In addition, it has the potential to carry out industrial processes in the food and pharmaceutical industries, like the production of maltose and glucose by the catalysis of debranching unmodified oligosaccharides by the pullulanase enzyme. Finally, this bacterium has the ability to transform chemical energy into electrical energy, such as a biocatalyst, which could be useful in the near future. These properties show that K. variicola should be considered an eco-friendly bacterium with hopeful technological promise. In this review, we explore the most significant aspects of K. variicola and highlight its potential applications in environmental and biotechnological processes.
Collapse
Affiliation(s)
- Josefina Duran-Bedolla
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Ulises Garza-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Nadia Rodríguez-Medina
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Alejandro Aguilar Vera
- Centro de Ciencias Genómicas, Programa de Genómica Funcional de Procariotes, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Humberto Barrios-Camacho
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
2
|
Martínez‐Romero E, Aguirre‐Noyola JL, Bustamante‐Brito R, González‐Román P, Hernández‐Oaxaca D, Higareda‐Alvear V, Montes‐Carreto LM, Martínez‐Romero JC, Rosenblueth M, Servín‐Garcidueñas LE. We and herbivores eat endophytes. Microb Biotechnol 2021; 14:1282-1299. [PMID: 33320440 PMCID: PMC8313258 DOI: 10.1111/1751-7915.13688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Health depends on the diet and a vegetal diet promotes health by providing fibres, vitamins and diverse metabolites. Remarkably, plants may also provide microbes. Fungi and bacteria that reside inside plant tissues (endophytes) seem better protected to survive digestion; thus, we investigated the reported evidence on the endophytic origin of some members of the gut microbiota in animals such as panda, koala, rabbits and tortoises and several herbivore insects. Data examined here showed that some members of the herbivore gut microbiota are common plant microbes, which derived to become stable microbiota in some cases. Endophytes may contribute to plant fibre or antimetabolite degradation and synthesis of metabolites with the plethora of enzymatic activities that they display; some may have practical applications, for example, Lactobacillus plantarum found in the intestinal tract, plants and in fermented food is used as a probiotic that may defend animals against bacterial and viral infections as other endophytic-enteric bacteria do. Clostridium that is an endophyte and a gut bacterium has remarkable capabilities to degrade cellulose by having cellulosomes that may be considered the most efficient nanomachines. Cellulose degradation is a challenge in animal digestion and for biofuel production. Other endophytic-enteric bacteria may have cellulases, pectinases, xylanases, tannases, proteases, nitrogenases and other enzymatic capabilities that may be attractive for biotechnological developments, indeed many endophytes are used to promote plant growth. Here, a cycle of endophytic-enteric-soil-endophytic microbes is proposed which has relevance for health and comprises the fate of animal faeces as natural microbial inoculants for plants that constitute bacterial sources for animal guts.
Collapse
Affiliation(s)
| | | | | | - Pilar González‐Román
- Programa de Ecología GenómicaCentro de Ciencias GenómicasUNAMCuernavacaMorelosMexico
| | | | | | | | | | - Mónica Rosenblueth
- Programa de Ecología GenómicaCentro de Ciencias GenómicasUNAMCuernavacaMorelosMexico
| | | |
Collapse
|
3
|
Gutierrez-Villagomez JM, Vázquez-Martínez J, Ramírez-Chávez E, Molina-Torres J, Trudeau VL. Profiling low molecular weight organic compounds from naphthenic acids, acid extractable organic mixtures, and oil sands process-affected water by SPME-GC-EIMS. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:122186. [PMID: 32006852 DOI: 10.1016/j.jhazmat.2020.122186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 05/24/2023]
Abstract
Naphthenic acids (NAs) are complex mixtures of carboxylic acids from petroleum that have industrial applications and that may be released to the environment after oil spills. There is significant research on the chemical composition and toxicity of water-soluble NAs derived from oil sands mining in Alberta, Canada. Yet, little is known about low molecular weight organic compounds (LMWOC) from these sources. Headspace solid-phase microextraction coupled to gas chromatography-electron impact mass spectrometry was used for LMWOC profiling of commercial NA blends, and an acid-extractable organics (AEOs) mixture from a tailings pond. From Sigma 1, Sigma 2, Merichem NAs and the AEO extract, 54, 56, 40 and 4 compounds were identified, respectively. These include aliphatic and cyclic hydrocarbons, carboxylic acids, alkylbenzenes, phenols, naphthalene and alkyl-naphthalene, and decalin compounds. A sample of oil sands process-affected water (OSPW) and aqueous solutions of the NA blends were evaluated for matrix effects on LMWOC profiles. Principal component and clustering analyses revealed that LMWOC profiles of commercial extracts were closely related but distinct from the AEO and OSPW samples. Some of the identified LMWOC are reported to be genotoxic or carcinogenic, and therefore the NA mixtures and AEOs should be considered hazardous materials and further evaluated.
Collapse
Affiliation(s)
| | - Juan Vázquez-Martínez
- Departamento de Ingeniería Bioquímica, Instituto Tecnológico Superior de Irapuato (ITESI), Tecnológico Nacional de México (TecNM), Carretera Irapuato - Silao km 12.5 Colonia El Copal, Irapuato, Guanajuato, Mexico; Departamento de Biotecnología y Bioquímica, CINVESTAV Unidad Irapuato, Guanajuato, 36824, Mexico
| | - Enrique Ramírez-Chávez
- Departamento de Biotecnología y Bioquímica, CINVESTAV Unidad Irapuato, Guanajuato, 36824, Mexico
| | - Jorge Molina-Torres
- Departamento de Biotecnología y Bioquímica, CINVESTAV Unidad Irapuato, Guanajuato, 36824, Mexico
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
4
|
Guo L, Ya M, Guo YS, Xu WL, Li CD, Sun JP, Zhu JJ, Qian JP. Study of bacterial and fungal community structures in traditional koumiss from Inner Mongolia. J Dairy Sci 2019; 102:1972-1984. [PMID: 30639001 DOI: 10.3168/jds.2018-15155] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/09/2018] [Indexed: 11/19/2022]
Abstract
Koumiss is notable for its nutritional functions, and microorganisms in koumiss determine its versatility. In this study, the bacterial and fungal community structures in traditional koumiss from Inner Mongolia, China, were investigated. Our results demonstrated that 6 bacterial phyla represented by 126 genera and 49 species and 3 fungal phyla represented by 59 genera and 57 species were detected in 11 samples of artisanal koumiss. Among them, Lactobacillus was the predominant genus of bacterium, and Kluyveromyces and Saccharomyces dominated at the fungal genus level. In addition, there were no differences in the bacterial and fungal richness and diversity of koumiss from 3 neighboring administrative divisions in Inner Mongolia, and the bacterial and fungal community structures (the varieties and relative abundance of bacterial and fungal genera and species) were clearly distinct in individual samples. This study provides a comprehensive understanding of the bacterial and fungal population profiles and the predominant genus and species, which would be beneficial for screening, isolation, and culture of potential probiotics to simulate traditional fermentation of koumiss for industrial and standardized production in the future.
Collapse
Affiliation(s)
- Liang Guo
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China.
| | - Mei Ya
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China
| | - Yuan-Sheng Guo
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China
| | - Wei-Liang Xu
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China
| | - Chun-Dong Li
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China
| | - Jian-Ping Sun
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China
| | - Jian-Jun Zhu
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China
| | - Jun-Ping Qian
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China
| |
Collapse
|