1
|
Rathakrishnan B, Dhanalakshmi V, Rajendhran J. Comparative Genomic Analysis of Three Paenibacillus polymyxa Strains Isolated from Termitarium and Identification of Novel Biosynthetic Gene Clusters. Curr Microbiol 2025; 82:180. [PMID: 40057921 DOI: 10.1007/s00284-025-04164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/25/2025] [Indexed: 03/20/2025]
Abstract
The emergence of multidrug-resistant (MDR) pathogens poses a significant global threat in healthcare settings, emphasizing the critical need for novel antibiotic discovery. Consequently, international efforts are continuously directed towards identifying new antibiotics from diverse microbial sources. We investigated the biosynthetic potential of three Paenibacillus polymyxa strains isolated from a termitarium, WGTm-28, WGTm-93, and WGTm-147. These strains exhibited a broad-spectrum of antimicrobial activity against clinical and plant pathogens. Whole-genome sequencing using the Illumina platform and subsequent annotation revealed 112 biosynthetic gene clusters (BGCs) responsible for synthesizing diverse secondary metabolites. Notably, BGCs encoding polymyxin, fusaricidin B, and tridecaptin were identified in all three strains. Anabaenopeptin NZ857/nostamide A was found in WGTm-28 and WGTm-93, while paenibacillin and paenilan were found only in WGTm-93. A BGC coding for rhizomideA/B/C was exclusively present in WGTm-147. BGCs encoding marthiapeptide A, aurantinin B/C/D, cerecidin, paenibacterin, paenicidin B, and calyculin A were identified with lower identity (from 28 to 60%) with previously reported organisms. Interestingly, 33 putative NRPS BGCs, hybrid clusters, and PKSs BGC were discovered with ≤ 25% or no identity to known antibiotics, suggesting the potential of synthesizing novel antimicrobial agents by these strains.
Collapse
Affiliation(s)
- Boomiga Rathakrishnan
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India
| | - Venkatesan Dhanalakshmi
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India
| | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India.
| |
Collapse
|
2
|
Li Y, Su X, Xi W, Zheng Y, Liu Y, Zheng W, Wei S, Leng Y, Tian Y. Genomic characterization and antifungal properties of Paenibacillus polymyxa YF, a promising biocontrol agent against Fusarium oxysporum pathogen of codonopsis root rot. Front Microbiol 2025; 16:1549944. [PMID: 40078555 PMCID: PMC11897986 DOI: 10.3389/fmicb.2025.1549944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Root rot, a destructive soil-borne disease, poses a significant threat to a wide range of economically important crops. Codonopsis, a high-value medicine plant, is particularly susceptible to substantial production losses caused by Fusarium oxysporum-induced root rot. In this study, we identified a promising biocontrol agent for codonopsis root rot, Paenibacillus polymyxa YF. In vitro assay demonstrated that the strain YF exhibited a 70.69% inhibition rate against F. oxysporum and broad-spectrum antifungal activities against the selected six postharvest pathogens. Additionally, the strain YF demonstrated significant plant growth-promoting properties. Subsequent in vivo inoculation assays revealed that the strain YF effectively mitigated disease symptoms of F. oxysporum-induced root rot in codonopsis, even achieving a complete disease prevention efficacy rate of 100%. Our findings further elucidated that the robust biocontrol capacity of the strain YF against F. oxysporum is mediated through multiple mechanisms, including inhibition of fusaric acid secretion, downregulation of virulence-associated genes in F. oxysporum, and the production of multiple hydrolytic enzymes. Genomic analysis showed that the strain YF has a 5.62-Mb single circular chromosome with 5,138 protein-coding genes. Comprehensive genome mining of the strain YF also identified numerous genes and gene clusters involved in bio-fertilization, resistance inducers synthesis, plant colonization, biofilm formation, and antimicrobial activity. These findings provide insights into the biocontrol mechanisms of the strain YF and offer substantial potential for its further exploration and application in crop production.
Collapse
Affiliation(s)
- Ying Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Xu Su
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, China
| | - Wenjie Xi
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Yanli Zheng
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Yang Liu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Wangshan Zheng
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Shiyu Wei
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Yan Leng
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Yongqiang Tian
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| |
Collapse
|
3
|
Maggi F, Giuliodori AM, Brandi A, Cimarelli L, Alcántara R, Pallotti S, Amantini C, Petrelli D, Fabbretti A, Spurio R, Napolioni V. Pangenome analysis of Paenibacillus polymyxa strains reveals the existence of multiple and functionally distinct Paenibacillus species. Appl Environ Microbiol 2024; 90:e0174024. [PMID: 39475287 DOI: 10.1128/aem.01740-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 11/21/2024] Open
Abstract
Paenibacillus polymyxa, a Gram-positive bacterium commonly found in soil and plant roots, plays an important role in the environment due to its nitrogen-fixing ability and is renowned for producing antibiotics like polymyxin. In this study, we present a robust framework for investigating the evolutionary and taxonomic connections of strains belonging to P. polymyxa available at the National Center for Biotechnology Information, as well as five new additional strains isolated at the University of Camerino (Italy), through pangenome analysis. These strains can produce secondary metabolites active against Staphylococcus aureus and Klebsiella pneumoniae. Employing techniques such as digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI) estimation, OrthoFinder, and ribosomal multilocus sequence typing, we consistently divided these P. polymyxa strains into four clusters, which differ significantly in terms of ANI and dDDH percentages, both considered as reference indices for separating bacterial species. Moreover, the strains of Cluster 2 were re-classified as belonging to the Paenibacillus ottowii species. By comparing the pangenomes, we identified the core genes of each cluster and analyzed them to recognize distinctive features in terms of biosynthetic/metabolic potential. The comparison of pangenomes also allowed us to pinpoint differences between clusters in terms of genetic variability and the percentage of the genome dedicated to core and accessory genes. In conclusion, the data obtained from our analyses of strains belonging to the P. polymyxa species converge toward a necessary reclassification, which will require a fundamental contribution from microbiologists in the near future. IMPORTANCE The development of sequencing technologies has led to an exponential increase in microbial sequencing data. Accurately identifying bacterial species remains a challenge because of extensive intra-species variability, the need for multiple identification methods, and the rapid rate of taxonomic changes. A substantial contribution to elucidating the relationships among related bacterial strains comes from comparing their genomic sequences. This comparison also allows for the identification of the "pangenome," which is the set of genes shared by all individuals of a species, as well as the set of genes that are unique to subpopulations. Here, we applied this approach to Paenibacillus polymyxa, a species studied for its potential as a biofertilizer and biocontrol agent and known as an antibiotic producer. Our work highlights the need for a more efficient classification of this bacterial species and provides a better delineation of strains with different properties.
Collapse
Affiliation(s)
- Federica Maggi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Anna Maria Giuliodori
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Anna Brandi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Lucia Cimarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Roberto Alcántara
- Biomolecules Laboratory, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Stefano Pallotti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Dezemona Petrelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Attilio Fabbretti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Roberto Spurio
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
4
|
Yuan P, Chen Z, Xu M, Cai W, Liu Z, Sun D. Microbial cell factories using Paenibacillus: status and perspectives. Crit Rev Biotechnol 2024; 44:1386-1402. [PMID: 38105503 DOI: 10.1080/07388551.2023.2289342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/03/2023] [Accepted: 04/22/2023] [Indexed: 12/19/2023]
Abstract
Considered a "Generally Recognized As Safe" (GRAS) bacterium, the plant growth-promoting rhizobacterium Paenibacillus has been widely applied in: agriculture, medicine, industry, and environmental remediation. Paenibacillus species not only accelerate plant growth and degrade toxic substances in wastewater and soil but also produce industrially-relevant enzymes and antimicrobial peptides. Due to a lack of genetic manipulation tools and methods, exploitation of the bioresources of naturally isolated Paenibacillus species has long been limited. Genetic manipulation tools and methods continue to improve in Paenibacillus, such as shuttle plasmids, promoters, and genetic tools of CRISPR. Furthermore, genetic transformation systems develop gradually, including: penicillin-mediated transformation, electroporation, and magnesium amino acid-mediated transformation. As genetic manipulation methods of homologous recombination and CRISPR-mediated editing system have developed gradually, Paenibacillus has come to be regarded as a promising microbial chassis for biomanufacturing, expanding its application scope, such as: industrial enzymes, bioremediation and bioadsorption, surfactants, and antibacterial agents. In this review, we describe the applications of Paenibacillus bioproducts, and then discuss recent advances and future challenges in the development of genetic manipulation systems in this genus. This work highlights the potential of Paenibacillus as a new microbial chassis for mining bioresources.
Collapse
Affiliation(s)
- Panhong Yuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Ziyan Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Mengtao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Wenfeng Cai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Zhizhi Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Chen N, Cai P, Zhang D, Zhang J, Zhong Z, Li YX. Metabolic engineering of "last-line antibiotic" colistin in Paenibacillus polymyxa. Metab Eng 2024; 85:35-45. [PMID: 39019251 DOI: 10.1016/j.ymben.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Colistin, also known as polymyxin E, is a lipopeptide antibiotic used to treat infections caused by multidrug-resistant gram-negative bacteria. It is considered a "last-line antibiotic", but its clinical development is hindered by low titer and impurities resulting from the presence of diverse homologs in microbial fermentation. To ensure consistent pharmaceutical activity and kinetics, it is crucial to have high-purity colistin active pharmaceutical ingredient (API) in the pharmaceutical industry. This study focused on the metabolic engineering of a natural colistin producer strain to produce colistin with a high titer and purity. Guided by genome mining, we identified Paenibacillus polymyxa ATCC 842 as a natural colistin producer capable of generating a high proportion of colistin A. By systematically inactivating seven non-essential biosynthetic gene clusters (BGCs) of peptide metabolites that might compete precursors with colistin or inhibit colistin production, we created an engineered strain, P14, which exhibited an 82% increase in colistin titer and effectively eliminated metabolite impurities such as tridecaptin, paenibacillin, and paenilan. Additionally, we engineered the L-2,4-diaminobutyric acid (L-2,4-DABA) pathway to further enhance colistin production, resulting in the engineered strain P19, which boosted a remarkable colistin titer of 649.3 mg/L - a 269% improvement compared to the original strain. By concurrently feeding L-isoleucine and L-leucine, we successfully produced high-purity colistin A, constituting 88% of the total colistin products. This study highlights the potential of metabolic engineering in improving the titer and purity of lipopeptide antibiotics in the non-model strain, making them more suitable for clinical use. These findings indicate that efficiently producing colistin API in high purity directly from fermentation can now be achieved in a straightforward manner.
Collapse
Affiliation(s)
- Nanzhu Chen
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Peiyan Cai
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dengwei Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Junliang Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zheng Zhong
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yong-Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
6
|
Wang H, Wang N, Tan Y, Mi Q, Mao Y, Zhao C, Tian X, Liu W, Huang L. Paenibacillus polymyxa YLC1: a promising antagonistic strain for biocontrol of Pseudomonas syringae pv. actinidiae, causing kiwifruit bacterial canker. PEST MANAGEMENT SCIENCE 2023; 79:4357-4366. [PMID: 37417001 DOI: 10.1002/ps.7633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Kiwifruit bacterial canker (KBC) caused by Pseudomonas syringae pv. actinidiae (Psa) is the main limiting factor in the kiwifruit industry. This study aimed to identify bacterial strains with antagonistic activity against Psa, analyze antagonistically active substances and provide a new basis for the biological control of KBC. RESULTS A total of 142 microorganisms were isolated from the rhizosphere soil of asymptomatic kiwifruit. Among them, an antagonistic bacterial strain was identified as Paenibacillus polymyxa YLC1 by 16S rRNA sequencing. KBC control by strain YLC1 (85.4%) was comparable to copper hydroxide treatment (81.8%) under laboratory conditions and field testing. Active substances of strain YLC1 were identified by genetic sequence analysis using antiSMASH. Six biosynthetic active compound gene clusters were identified as encoding ester peptide synthesis, such as polymyxins. An active fraction was purified and identified as polymyxin B1 using chromatography, hydrogen nuclear magnetic resonance (NMR), and liquid chromatography-mass spectrometry. In addition, polymyxin B1 also was found significantly to suppress the expression of T3SS-related genes, but did not affect the growth of Psa at low concentrations. CONCLUSION In this study, a biocontrol strain P. polymyxa YLC1 obtained from kiwifruit rhizosphere soil exhibited excellent control effects on KBC in vitro and in field tests. Its active compound was identified as polymyxin B1, which inhibits a variety of pathogenic bacteria. We conclude that P. polymyxa YLC1 is a biocontrol strain with excellent prospects for development and application. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hua Wang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Nana Wang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Life Science, Northwest A&F University, Yangling, People's Republic of China
| | - Yunxiao Tan
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Qianqian Mi
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Yiru Mao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Chao Zhao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Xiangrong Tian
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Forestry, Northwest A&F University, Yangling, People's Republic of China
| | - Wei Liu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Lili Huang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
7
|
Zhao Y, Xie X, Li J, Shi Y, Chai A, Fan T, Li B, Li L. Comparative Genomics Insights into a Novel Biocontrol Agent Paenibacillus peoriae Strain ZF390 against Bacterial Soft Rot. BIOLOGY 2022; 11:1172. [PMID: 36009799 PMCID: PMC9404902 DOI: 10.3390/biology11081172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
Bacterial soft rot, caused by Pectobacterium brasiliense, can infect several economically important horticultural crops. However, the management strategies available to control this disease are limited. Plant-growth-promoting rhizobacteria (PGPR) have been considered to be promising biocontrol agents. With the aim of obtaining a strain suitable for agricultural applications, 161 strains were isolated from the rhizosphere soil of healthy cucumber plants and screened through plate bioassays and greenhouse tests. Paenibacillus peoriae ZF390 exhibited an eminent control effect against soft rot disease and a broad antagonistic activity spectrum in vitro. Moreover, ZF390 showed good activities of cellulase, protease, and phosphatase and a tolerance of heavy metal. Whole-genome sequencing was performed and annotated to explore the underlying biocontrol mechanisms. Strain ZF390 consists of one 6,193,667 bp circular chromosome and three plasmids. Comparative genome analysis revealed that ZF390 involves ten gene clusters responsible for secondary metabolite antibiotic synthesis, matching its excellent biocontrol activity. Plenty of genes related to plant growth promotion, biofilm formation, and induced systemic resistance were mined to reveal the biocontrol mechanisms that might consist in strain ZF390. Overall, these findings suggest that strain ZF390 could be a potential biocontrol agent in bacterial-soft-rot management, as well as a source of antimicrobial mechanisms for further exploitation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Xue D, Older EA, Zhong Z, Shang Z, Chen N, Dittenhauser N, Hou L, Cai P, Walla MD, Dong SH, Tang X, Chen H, Nagarkatti P, Nagarkatti M, Li YX, Li J. Correlational networking guides the discovery of unclustered lanthipeptide protease-encoding genes. Nat Commun 2022; 13:1647. [PMID: 35347143 PMCID: PMC8960859 DOI: 10.1038/s41467-022-29325-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
Bacterial natural product biosynthetic genes, canonically clustered, have been increasingly found to rely on hidden enzymes encoded elsewhere in the genome for completion of biosynthesis. The study and application of lanthipeptides are frequently hindered by unclustered protease genes required for final maturation. Here, we establish a global correlation network bridging the gap between lanthipeptide precursors and hidden proteases. Applying our analysis to 161,954 bacterial genomes, we establish 5209 correlations between precursors and hidden proteases, with 91 prioritized. We use network predictions and co-expression analysis to reveal a previously missing protease for the maturation of class I lanthipeptide paenilan. We further discover widely distributed bacterial M16B metallopeptidases of previously unclear biological function as a new family of lanthipeptide proteases. We show the involvement of a pair of bifunctional M16B proteases in the production of previously unreported class III lanthipeptides with high substrate specificity. Together, these results demonstrate the strength of our correlational networking approach to the discovery of hidden lanthipeptide proteases and potentially other missing enzymes for natural products biosynthesis.
Collapse
Affiliation(s)
- Dan Xue
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Ethan A Older
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Zheng Zhong
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhuo Shang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Nanzhu Chen
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Nolan Dittenhauser
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Lukuan Hou
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Peiyan Cai
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Michael D Walla
- The Mass Spectrometry Center, Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Shi-Hui Dong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Hexin Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Yong-Xin Li
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
9
|
Jiang A, Zou C, Xu X, Ke Z, Hou J, Jiang G, Fan C, Gong J, Wei J. Complete genome sequence of biocontrol strain Paenibacillus peoriae HJ-2 and further analysis of its biocontrol mechanism. BMC Genomics 2022; 23:161. [PMID: 35209846 PMCID: PMC8876185 DOI: 10.1186/s12864-022-08330-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/19/2022] [Indexed: 01/25/2023] Open
Abstract
Background Paris polyphylla is a herb widely used in traditional Chinese medicine to treat various diseases. Stem rot diseases seriously affected the yield of P. polyphylla in subtropical areas of China. Therefore, cost-effective, chemical-free, eco-friendly strategies to control stem rot on P. polyphylla are valuable and urgently needed. Results In this paper, we reported the biocontrol efficiency of Paenibacillus peoriae HJ-2 and its complete genome sequence. Strain HJ-2 could serve as a potential biocontrol agent against stem rot on P. polyphylla in the greenhouse and field. The genome of HJ-2 consists of a single 6,001,192 bp chromosome with an average GC content of 45% and 5,237 predicted protein coding genes, 39 rRNAs and 108 tRNAs. The phylogenetic tree indicated that HJ-2 is most closely related to P. peoriae IBSD35. Functional analysis of genome revealed numerous genes/gene clusters involved in plant colonization, biofilm formation, plant growth promotion, antibiotic and resistance inducers synthesis. Moreover, metabolic pathways that potentially contribute to biocontrol mechanisms were identified. Conclusions This study revealed that P. peoriae HJ-2 could serve as a potential BCA against stem rot on P. polyphylla. Based on genome analysis, the genome of HJ-2 contains more than 70 genes and 12 putative gene clusters related to secondary metabolites, which have previously been described as being involved in chemotaxis motility, biofilm formation, growth promotion, antifungal activity and resistance inducers biosynthesis. Compared with other strains, variation in the genes/gene clusters may lead to different antimicrobial spectra and biocontrol efficacies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08330-0.
Collapse
Affiliation(s)
- Aiming Jiang
- College of Agriculture, Guangxi University, Nanning, 530004, China.,College of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan, 442000, China
| | - Chengwu Zou
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Xiang Xu
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Zunwei Ke
- College of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan, 442000, China
| | - Jiangan Hou
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Guihe Jiang
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Chunli Fan
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jianhua Gong
- College of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan, 442000, China
| | - Jiguang Wei
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
10
|
Li T, Mann R, Kaur J, Spangenberg G, Sawbridge T. Transcriptome Analyses of Barley Roots Inoculated with Novel Paenibacillus sp. and Erwinia gerundensis Strains Reveal Beneficial Early-Stage Plant-Bacteria Interactions. PLANTS 2021; 10:plants10091802. [PMID: 34579335 PMCID: PMC8467301 DOI: 10.3390/plants10091802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
Plant growth-promoting bacteria can improve host plant traits including nutrient uptake and metabolism and tolerance to biotic and abiotic stresses. Understanding the molecular basis of plant–bacteria interactions using dual RNA-seq analyses provides key knowledge of both host and bacteria simultaneously, leading to future enhancements of beneficial interactions. In this study, dual RNA-seq analyses were performed to provide insights into the early-stage interactions between barley seedlings and three novel bacterial strains (two Paenibacillus sp. strains and one Erwinia gerundensis strain) isolated from the perennial ryegrass seed microbiome. Differentially expressed bacterial and barley genes/transcripts involved in plant–bacteria interactions were identified, with varying species- and strain-specific responses. Overall, transcriptome profiles suggested that all three strains improved stress response, signal transduction, and nutrient uptake and metabolism of barley seedlings. Results also suggested potential improvements in seedling root growth via repressing ethylene biosynthesis in roots. Bacterial secondary metabolite gene clusters producing compounds that are potentially associated with interactions with the barley endophytic microbiome and associated with stress tolerance of plants under nutrient limiting conditions were also identified. The results of this study provided the molecular basis of plant growth-promoting activities of three novel bacterial strains in barley, laid a solid foundation for the future development of these three bacterial strains as biofertilisers, and identified key differences between bacterial strains of the same species in their responses to plants.
Collapse
Affiliation(s)
- Tongda Li
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (R.M.); (J.K.); (G.S.); (T.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
- Correspondence: ; Tel.: +61-3-9032-7088
| | - Ross Mann
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (R.M.); (J.K.); (G.S.); (T.S.)
| | - Jatinder Kaur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (R.M.); (J.K.); (G.S.); (T.S.)
| | - German Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (R.M.); (J.K.); (G.S.); (T.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Timothy Sawbridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (R.M.); (J.K.); (G.S.); (T.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| |
Collapse
|
11
|
Transcriptomics differentiate two novel bioactive strains of Paenibacillus sp. isolated from the perennial ryegrass seed microbiome. Sci Rep 2021; 11:15545. [PMID: 34330961 PMCID: PMC8324883 DOI: 10.1038/s41598-021-94820-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/16/2021] [Indexed: 01/10/2023] Open
Abstract
Paenibacillus species are Gram-positive bacteria that have been isolated from a diverse array of plant species and soils, with some species exhibiting plant growth-promoting (PGP) activities. Here we report two strains (S02 and S25) of a novel Paenibacillus sp. that were isolated from perennial ryegrass (Lolium perenne) seeds. Comparative genomics analyses showed this novel species was closely related to P. polymyxa. Genomic analyses revealed that strains S02 and S25 possess PGP genes associated with biological nitrogen fixation, phosphate solubilisation and assimilation, as well as auxin production and transportation. Moreover, secondary metabolite gene cluster analyses identified 13 clusters that are shared by both strains and three clusters unique to S25. In vitro assays demonstrated strong bioprotection activity against phytopathogens (Colletotrichum graminicola and Fusarium verticillioides), particularly for strain S02. A transcriptomics analysis evaluating nitrogen fixation activity showed both strains carry an expressed nif operon, but strain S02 was more active than strain S25 in nitrogen-free media. Another transcriptomics analysis evaluating the interaction of strains with F. verticillioides showed strain S02 had increased expression of core genes of secondary metabolite clusters (fusaricidin, paenilan, tridecaptin and polymyxin) when F. verticillioides was present and absent, compared to S25. Such bioactivities make strain S02 a promising candidate to be developed as a combined biofertiliser/bioprotectant.
Collapse
|
12
|
Kim MS, Kim HR, Jeong DE, Choi SK. Cytosine Base Editor-Mediated Multiplex Genome Editing to Accelerate Discovery of Novel Antibiotics in Bacillus subtilis and Paenibacillus polymyxa. Front Microbiol 2021; 12:691839. [PMID: 34122396 PMCID: PMC8193733 DOI: 10.3389/fmicb.2021.691839] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
Genome-based identification of new antibiotics is emerging as an alternative to traditional methods. However, uncovering hidden antibiotics under the background of known antibiotics remains a challenge. To over this problem using a quick and effective genetic approach, we developed a multiplex genome editing system using a cytosine base editor (CBE). The CBE system achieved simultaneous double, triple, quadruple, and quintuple gene editing with efficiencies of 100, 100, 83, and 75%, respectively, as well as the 100% editing efficiency of single targets in Bacillus subtilis. Whole-genome sequencing of the edited strains showed that they had an average of 8.5 off-target single-nucleotide variants at gRNA-independent positions. The CBE system was used to simultaneously knockout five known antibiotic biosynthetic gene clusters to leave only an uncharacterized polyketide biosynthetic gene cluster in Paenibacillus polymyxa E681. The polyketide showed antimicrobial activities against gram-positive bacteria, but not gram-negative bacteria and fungi. Therefore, our findings suggested that the CBE system might serve as a powerful tool for multiplex genome editing and greatly accelerating the unraveling of hidden antibiotics in Bacillus and Paenibacillus species.
Collapse
Affiliation(s)
- Man Su Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, South Korea
| | - Ha-Rim Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Da-Eun Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Soo-Keun Choi
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
13
|
Lebedeva J, Jukneviciute G, Čepaitė R, Vickackaite V, Pranckutė R, Kuisiene N. Genome Mining and Characterization of Biosynthetic Gene Clusters in Two Cave Strains of Paenibacillus sp. Front Microbiol 2021; 11:612483. [PMID: 33505378 PMCID: PMC7829367 DOI: 10.3389/fmicb.2020.612483] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
The genome sequencing and mining of microorganisms from unexplored and extreme environments has become important in the process of identifying novel biosynthetic pathways. In the present study, the biosynthetic potential of Paenibacillus sp. strains 23TSA30-6 and 28ISP30-2 was investigated. Both strains were isolated from the deep oligotrophic Krubera-Voronja Cave and were found to be highly active against both Gram-positive and Gram-negative bacteria. Genome mining revealed a high number of biosynthetic gene clusters in the cave strains: 21 for strain 23TSA30-6 and 19 for strain 28ISP30-2. Single clusters encoding the biosynthesis of phosphonate, terpene, and siderophore, as well as a single trans-AT polyketide synthase/non-ribosomal peptide synthetase, were identified in both genomes. The most numerous clusters were assigned to the biosynthetic pathways of non-ribosomal peptides and ribosomally synthesized and post-translationally modified peptides. Although four non-ribosomal peptide synthetase gene clusters were predicted to be involved in the biosynthesis of known compounds (fusaricidin, polymyxin B, colistin A, and tridecaptin) of the genus Paenibacillus, discrepancies in the structural organization of the clusters, as well as in the substrate specificity of some adenylation domains, were detected between the reference pathways and the clusters in our study. Among the clusters involved in the biosynthesis of ribosomally synthesized peptides, only one was predicted to be involved in the biosynthesis of a known compound: paenicidin B. Most biosynthetic gene clusters in the genomes of the cave strains showed a low similarity with the reference pathways and were predicted to represent novel biosynthetic pathways. In addition, the cave strains differed in their potential to encode the biosynthesis of a few unique, previously unknown compounds (class II lanthipeptides and three non-ribosomal peptides). The phenotypic characterization of proteinaceous and volatile compounds produced by strains 23TSA30-6 and 28ISP30-2 was also performed, and the results were compared with those of genome mining.
Collapse
Affiliation(s)
- Jolanta Lebedeva
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Gabriele Jukneviciute
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rimvydė Čepaitė
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vida Vickackaite
- Department of Analytical and Environmental Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, Lithuania
| | - Raminta Pranckutė
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Nomeda Kuisiene
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
14
|
Soni R, Nanjani S, Keharia H. Genome analysis reveals probiotic propensities of Paenibacillus polymyxa HK4. Genomics 2020; 113:861-873. [PMID: 33096257 DOI: 10.1016/j.ygeno.2020.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/24/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022]
Abstract
The legislations on the usage of antibiotics as growth promoters and prophylactic agents have compelled to develop alternative tools to upsurge the animal protection and contain antibiotic usage. Probiotics have emerged as an effective antibiotic substitute in animal farming. The present study explores the probiotic perspective of Paenibacillus polymyxa HK4 interlinking the genotypic and phenotypic characteristics. The draft genome of HK4 revealed the presence of ORFs encoding the functions associated with tolerance to gastrointestinal stress and adhesion. The biosynthetic gene clusters encoding non-ribosomally synthesized peptides, polyketides and lanthipeptides such as fusaricidin, tridecaptin, polymyxin, paenilan and paenibacillin were annotated in HK4 genome. The strain harbored the chromosomal gene conferring the resistance to lincosamides. No functional gene encoding virulence or toxins could be identified in the genome of HK4. The genome analysis data was complemented by the in vitro experiments confirming its survival during gastrointestinal transit, antimicrobial potential and antibiotic sensitivity. NUCLEOTIDE SEQUENCE ACCESSION NUMBER: The draft-genome sequence of Paenibacillus polymyxa HK4 has been deposited as whole-genome shotgun project at GenBank under the accession number PRJNA603023.
Collapse
Affiliation(s)
- Riteshri Soni
- Post Graduate Department of Biosciences, UGC Center of Advanced Study, Sardar Patel University, Vadtal road, Bakrol 388315, Gujarat, India
| | - Sandhya Nanjani
- Post Graduate Department of Biosciences, UGC Center of Advanced Study, Sardar Patel University, Vadtal road, Bakrol 388315, Gujarat, India
| | - Hareshkumar Keharia
- Post Graduate Department of Biosciences, UGC Center of Advanced Study, Sardar Patel University, Vadtal road, Bakrol 388315, Gujarat, India.
| |
Collapse
|
15
|
Zhou L, Zhang T, Tang S, Fu X, Yu S. Pan-genome analysis of Paenibacillus polymyxa strains reveals the mechanism of plant growth promotion and biocontrol. Antonie van Leeuwenhoek 2020; 113:1539-1558. [PMID: 32816227 DOI: 10.1007/s10482-020-01461-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Rapid development of gene sequencing technologies has led to an exponential increase in microbial sequencing data. Genome research of a single organism does not capture the changes in the characteristics of genetic information within a species. Pan-genome analysis gives us a broader perspective to study the complete genetic information of a species. Paenibacillus polymyxa is a Gram-positive bacterium and an important plant growth-promoting rhizobacterium with the ability to produce multiple antibiotics, such as fusaricidin, lantibiotic, paenilan, and polymyxin. Our study explores the pan-genome of 14 representative P. polymyxa strains isolated from around the world. Heap's law model and curve fitting confirmed an open pan-genome of P. polymyxa. The phylogenetic and collinearity analyses reflected that the evolutionary classification of P. polymyxa strains are not associated with geographical area and ecological niches. Few genes related to phytohormone synthesis and phosphate solubilization were conserved; however, the nif cluster gene associated with nitrogen fixation exists only in some strains. This finding is indicative of nitrogen fixing ability is not stable in P. polymyxa. Analysis of antibiotic gene clusters in P. polymyxa revealed the presence of these genes in both core and accessory genomes. This observation indicates that the difference in living environment led to loss of ability to synthesize antibiotics in some strains. The current pan-genomic analysis of P. polymyxa will help us understand the mechanisms of biological control and plant growth promotion. It will also promote the use of P. polymyxa in agriculture.
Collapse
Affiliation(s)
- Liangliang Zhou
- Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Ting Zhang
- College of Bioscience and Engineering, Jiangxi Agricultural university, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Shan Tang
- Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xueqin Fu
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, Jiangxi, People's Republic of China
| | - Shuijing Yu
- Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, People's Republic of China.
| |
Collapse
|
16
|
Mokhtar NFK, Hashim AM, Hanish I, Zulkarnain A, Raja Nhari RMH, Abdul Sani AA, Abbasiliasi S, Ariff A, Mustafa S, Rahim RA. The Discovery of New Antilisterial Proteins From Paenibacillus polymyxa Kp10 via Genome Mining and Mass Spectrometry. Front Microbiol 2020; 11:960. [PMID: 32714281 PMCID: PMC7343975 DOI: 10.3389/fmicb.2020.00960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/22/2020] [Indexed: 12/25/2022] Open
Abstract
The inhibitory properties of novel antimicrobial proteins against food-borne pathogens such as Listeria monocytogenes offer extensive benefits to the food and medical industries. In this study, we have identified antimicrobial proteins from a milk curd-derived bacterial isolate that exhibits antilisterial activity using genome mining and mass spectrometry analysis. The analysis of the draft genome sequence identified the isolate as Paenibacillus polymyxa Kp10, and predicted the presence of antimicrobial paenibacillin, paenilan, paeninodin, sactipeptides, thiazole-oxazole modified microcin, and histone-like DNA binding protein HU encoded in its genome. Interestingly, nanoLC-MS/MS analysis identified two histone-like DNA binding proteins HU as predicted in silico earlier, exhibiting antilisterial activity. Additionally, translation initiation factor IF-1 and 50S ribosomal protein L29 were also discovered by the mass spectrometry in the active fractions. The antilisterial activity of the four proteins was verified through heterologous protein expression and antimicrobial activity assay in vitro. This study has identified structural regulatory proteins from Paenibacillus possessing antilisterial activity with potential future application in the food and medical industries.
Collapse
Affiliation(s)
- Nur Fadhilah Khairil Mokhtar
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, Selangor, Malaysia
| | - Amalia Mohd Hashim
- Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Irwan Hanish
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Aisyah Zulkarnain
- Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, Selangor, Malaysia
| | | | - Asmahani Azira Abdul Sani
- Mass Spectrometry Technology Section, Malaysia Genome Institute, National Institute of Biotechnology Malaysia, Kajang, Malaysia
| | - Sahar Abbasiliasi
- Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, Selangor, Malaysia
| | - Arbakariya Ariff
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Shuhaimi Mustafa
- Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Chancellory, Universiti Teknikal Malaysia Melaka, Malacca, Malaysia
| |
Collapse
|
17
|
Wang B, Cheng H, Qian W, Zhao W, Liang C, Liu C, Cui G, Liu H, Zhang L. Comparative genome analysis and mining of secondary metabolites of Paenibacillus polymyxa. Genes Genet Syst 2020; 95:141-150. [PMID: 32611933 DOI: 10.1266/ggs.19-00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Paenibacillus polymyxa is a well-known Gram-positive biocontrol bacterium. It has been reported that many P. polymyxa strains can inhibit bacteria, fungi and other plant pathogens. Paenibacillus polymyxa employs a variety of mechanisms to promote plant growth, so it is necessary to understand the biocontrol ability of bacteria at the genome level. In the present study, thanks to the widespread availability of Paenibacillus genome data and the development of bioinformatics tools, we were able to analyze and mine the genomes of 43 P. polymyxa strains. The strain NCTC4744 was determined not to be P. polymyxa according to digital DNA-DNA hybridization and average nucleotide identity. By analysis of the pan-genome and the core genome, we found that the pan-genome of P. polymyxa was open and that there were 3,192 core genes. In a gene cluster analysis of secondary metabolites, 797 secondary metabolite gene clusters were found, of which 343 are not similar to known clusters and are expected to reveal a large number of new secondary metabolites. We also analyzed the plant growth-promoting genes that were mined and found, surpisingly, that these genes are highly conserved. The results of the present study not only reveal a large number of unknown potential secondary metabolite gene clusters in P. polymyxa, but also suggest that plant growth promotion characteristics are evolutionary adaptations of P. polymyxa to plant-related habitats.
Collapse
Affiliation(s)
- Buqing Wang
- Hebei University of Technology.,Institute of Biology, Hebei Academy of Sciences.,Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province
| | - Huicai Cheng
- Institute of Biology, Hebei Academy of Sciences.,Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province
| | - Wenjiang Qian
- Hebei University of Technology.,Institute of Biology, Hebei Academy of Sciences
| | - Wenya Zhao
- Institute of Biology, Hebei Academy of Sciences.,Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province
| | - Cong Liang
- Institute of Biology, Hebei Academy of Sciences.,Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province
| | - Chao Liu
- Hebei University of Technology.,Institute of Biology, Hebei Academy of Sciences
| | - Guanhui Cui
- Institute of Biology, Hebei Academy of Sciences.,Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province
| | - Hongwei Liu
- Institute of Biology, Hebei Academy of Sciences.,Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province
| | - Liping Zhang
- Hebei University of Technology.,Institute of Biology, Hebei Academy of Sciences.,Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province
| |
Collapse
|
18
|
Jeong H, Choi SK, Ryu CM, Park SH. Chronicle of a Soil Bacterium: Paenibacillus polymyxa E681 as a Tiny Guardian of Plant and Human Health. Front Microbiol 2019; 10:467. [PMID: 30930873 PMCID: PMC6429003 DOI: 10.3389/fmicb.2019.00467] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 02/21/2019] [Indexed: 01/25/2023] Open
Abstract
The Gram-positive rhizosphere bacterium Paenibacillus polymyxa promotes plant growth and produces various antibiotics. Herein, we review research on this species over the past two and a half decades, and focus on the mechanisms of P. polymyxa strain E681, isolated from barley roots in the South Korea in 1995. Strain E681 has outstanding growth-promoting effects on barley, cucumber, pepper, sesame, and Arabidopsis thaliana and produces antimicrobial compounds that protect plants against pathogenic fungi, oomycetes, and bacteria. Induced systemic resistance elicited by treating seeds or roots with strain E681 is a possible mechanism for protecting systemic plant tissues from biotic and other environmental stresses. Genome sequencing has broadened our horizons for antibiotic development and other industrial applications beyond agricultural use. At least six gene clusters for the biosynthesis of antibiotics have been discovered, including polymyxin (pmx), which was recently re-instated as an antibiotic of last resort against Gram-negative drug-resistant bacteria. Three groups of antibiotic synthetases include the gene clusters that encode one for the non-ribosomal peptide polymyxin, fusaricidin, and tridecaptin, another for the lantibiotic paenilan, and the third for a polyketide. We successfully introduced the pmx gene cluster into the surrogate host Bacillus subtilis and created polymyxin derivatives by domain swapping. Furthermore, various E681 derivatives, including a high fusaricidin producer and strains lacking multi-antibiotics production, have been constructed by random mutagenesis and genome engineering. Thus, E681 is an important bacterium that contributes to both plant and human health.
Collapse
Affiliation(s)
- Haeyoung Jeong
- Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon, South Korea
| | - Soo-Keun Choi
- Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon, South Korea
| | - Choong-Min Ryu
- Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon, South Korea
| | - Seung-Hwan Park
- Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
19
|
Paenibacillus polymyxa bioactive compounds for agricultural and biotechnological applications. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101092] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Identification of fusaricidins from the antifungal microbial strain Paenibacillus sp. MS2379 using ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. J Chromatogr A 2018; 1586:91-100. [PMID: 30558848 DOI: 10.1016/j.chroma.2018.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 11/21/2022]
Abstract
Paenibacillus sp. MS2379 is a highly efficient microbial strain producing fusaricidins, a class of lipopeptides that have demonstrated strong antifungal activities against a broad array of fungal pathogens. An integrated approach combining chromatographic fractionation, UHPLC-QTOF-MS analysis, and NMR spectroscopic interpretation was employed to characterize antifungal metabolites produced by this microbial strain, resulting in the identification of 48 fusaricidins including 30 cyclic and 18 open-chain species. In this regard, UHPLC-QTOF-MS played a vital role in determining structures of 28 new fusaricidins through peptide fragment analysis. The structural determination of the new fusaricidins by the high-resolution mass spectrometry was validated by follow-up isolation and NMR spectroscopic analysis of representative compounds. It is worth noting that novel fusaricidins with amino acid residues of serine and γ-aminobutyric acid were identified, which is of great biosynthetic significance for this biologically important class of compounds. The present study again illustrates the power of UHPLC-QTOF-MS for structural identification of lipopeptides, and the structural diversity of the identified fusaricidins makes this microbial strain unique as a potential biocontrol agent.
Collapse
|
21
|
Alkhalili RN, Canbäck B. Identification of Putative Novel Class-I Lanthipeptides in Firmicutes: A Combinatorial In Silico Analysis Approach Performed on Genome Sequenced Bacteria and a Close Inspection of Z-Geobacillin Lanthipeptide Biosynthesis Gene Cluster of the Thermophilic Geobacillus sp. Strain ZGt-1. Int J Mol Sci 2018; 19:E2650. [PMID: 30200662 PMCID: PMC6165006 DOI: 10.3390/ijms19092650] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/23/2018] [Accepted: 09/04/2018] [Indexed: 01/03/2023] Open
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified polycyclic peptides. Lanthipeptides that have antimicrobial activity are known as lantibiotics. Accordingly, the discovery of novel lantibiotics constitutes a possible solution for the problem of antibiotic resistance. We utilized the publicly available genome sequences and the bioinformatic tools tailored for the detection of lanthipeptides. We designed our strategy for screening of 252 firmicute genomes and detecting class-I lanthipeptide-coding gene clusters. The designed strategy resulted in identifying 69 class-I lanthipeptide sequences, of which more than 10% were putative novel. The identified putative novel lanthipeptides have not been annotated on the original or the RefSeq genomes, or have been annotated merely as coding for hypothetical proteins. Additionally, we identified bacterial strains that have not been previously recognized as lanthipeptide-producers. Moreover, we suggest corrections for certain firmicute genome annotations, and recommend lanthipeptide records for enriching the bacteriocin genome mining tool (BAGEL) databases. Furthermore, we propose Z-geobacillin, a putative class-I lanthipeptide coded on the genome of the thermophilic strain Geobacillus sp. ZGt-1. We provide lists of putative novel lanthipeptide sequences and of the previously unrecognized lanthipeptide-producing bacterial strains, so they can be prioritized for experimental investigation. Our results are expected to benefit researchers interested in the in vitro production of lanthipeptides.
Collapse
Affiliation(s)
- Rawana N Alkhalili
- Biotechnology, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden.
| | - Björn Canbäck
- Department of Biology, Lund University, SE-221 00 Lund, Sweden.
| |
Collapse
|