1
|
Fukuda A, Suzuki M, Makita K, Usui M. Low-frequency transmission and persistence of antimicrobial-resistant bacteria and genes from livestock to agricultural soil and crops through compost application. PLoS One 2024; 19:e0301972. [PMID: 38771763 PMCID: PMC11108225 DOI: 10.1371/journal.pone.0301972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/26/2024] [Indexed: 05/23/2024] Open
Abstract
Livestock excrement is composted and applied to agricultural soils. If composts contain antimicrobial-resistant bacteria (ARB), they may spread to the soil and contaminate cultivated crops. Therefore, we investigated the degree of transmission of ARB and related antimicrobial resistance genes (ARGs) and, as well as clonal transmission of ARB from livestock to soil and crops through composting. This study was conducted at Rakuno Gakuen University farm in Hokkaido, Japan. Samples of cattle feces, solid and liquid composts, agricultural soil, and crops were collected. The abundance of Escherichia coli, coliforms, β-lactam-resistant E. coli, and β-lactam-resistant coliforms, as well as the copy numbers of ARG (specifically the bla gene related to β-lactam-resistant bacteria), were assessed using qPCR through colony counts on CHROMagar ECC with or without ampicillin, respectively, 160 days after compost application. After the application of the compost to the soil, there was an initial increase in E. coli and coliform numbers, followed by a subsequent decrease over time. This trend was also observed in the copy numbers of the bla gene. In the soil, 5.0 CFU g-1 E. coli was detected on day 0 (the day post-compost application), and then, E. coli was not quantified on 60 days post-application. Through phylogenetic analysis involving single nucleotide polymorphisms (SNPs) and using whole-genome sequencing, it was discovered that clonal blaCTX-M-positive E. coli and blaTEM-positive Escherichia fergusonii were present in cattle feces, liquid compost, and soil on day 0 as well as 7 days post-application. This showed that livestock-derived ARB were transmitted from compost to soil and persisted for at least 7 days in soil. These findings indicate a potential low-level transmission of livestock-associated bacteria to agricultural soil through composts was observed at low frequency, dissemination was detected. Therefore, decreasing ARB abundance during composting is important for public health.
Collapse
Affiliation(s)
- Akira Fukuda
- Food Microbiology and Food Safety Unit, Division of Preventive Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Masato Suzuki
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kohei Makita
- Veterinary Epidemiology Unit, Division of Preventive Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Masaru Usui
- Food Microbiology and Food Safety Unit, Division of Preventive Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| |
Collapse
|
2
|
Survival of Escherichia coli in Manure-Amended Soils Is Affected by Spatiotemporal, Agricultural, and Weather Factors in the Mid-Atlantic United States. Appl Environ Microbiol 2019; 85:AEM.02392-18. [PMID: 30552193 DOI: 10.1128/aem.02392-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/10/2018] [Indexed: 11/20/2022] Open
Abstract
Untreated biological soil amendments of animal origin (BSAAO), such as manure, are commonly used to fertilize soils for growing fruit and vegetable crops and can contain enteric bacterial foodborne pathogens. Little is known about the comparative longitudinal survival of pathogens in agricultural fields containing different types of BSAAO, and field data may be useful to determine intervals between manure application and harvest of produce intended for human consumption to minimize foodborne illness. This study generated 324 survival profiles from 12 different field trials at three different sites (UMES, PA, and BARC) in the Mid-Atlantic United States from 2011 to 2015 of inoculated nonpathogenic Escherichia coli (gEc) and attenuated O157 E. coli (attO157) in soils which were unamended (UN) or amended with untreated poultry litter (PL), horse manure (HM), or dairy manure solids (DMS) or liquids (DML). Site, season, inoculum level (low/high), amendment type, management (organic/conventional), and depth (surface/tilled) all significantly (P < 0.0001) influenced survival duration (dpi100mort). Spatiotemporal factors (site, year, and season) in which the field trial was conducted influenced survival durations of gEc and attO157 to a greater extent than weather effects (average daily temperature and rainfall). Initial soil moisture content was the individual factor that accounted for the greatest percentage of variability in survival duration. PL supported greater survival durations of gEc and attO157, followed by HM, UN, and DMS in amended soils. The majority of survival profiles for gEc and attO157 which survived for more than 90 days came from a specific year (i.e., 2013). The effect of management and depth on dpi100mort were dependent on the amendment type evaluated.IMPORTANCE Current language in the Food Safety Modernization Act Produce Safety Rule states no objection to a 90- or 120-day interval between application of untreated BSAAO and harvest of crops to minimize transfer of pathogens to produce intended for human consumption with the intent to limit potential cases of foodborne illness. This regional multiple season, multiple location field trial determined survival durations of Escherichia coli in soils amended with manure to determine whether this interval is appropriate. Spatiotemporal factors influence survival durations of E. coli more than amendment type, total amount of E. coli present, organic or conventional soil management, and depth of manure application. Overall, these data show poultry litter may support extended survival of E. coli compared to horse manure or dairy manure, but spatiotemporal factors like site and season may have more influence than manure type in supporting survival of E. coli beyond 90 days in amended soils in the Mid-Atlantic United States.
Collapse
|
3
|
Mogren L, Windstam S, Boqvist S, Vågsholm I, Söderqvist K, Rosberg AK, Lindén J, Mulaosmanovic E, Karlsson M, Uhlig E, Håkansson Å, Alsanius B. The Hurdle Approach-A Holistic Concept for Controlling Food Safety Risks Associated With Pathogenic Bacterial Contamination of Leafy Green Vegetables. A Review. Front Microbiol 2018; 9:1965. [PMID: 30197634 PMCID: PMC6117429 DOI: 10.3389/fmicb.2018.01965] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 08/02/2018] [Indexed: 01/24/2023] Open
Abstract
Consumers appreciate leafy green vegetables such as baby leaves for their convenience and wholesomeness and for adding a variety of tastes and colors to their plate. In Western cuisine, leafy green vegetables are usually eaten fresh and raw, with no step in the long chain from seed to consumption where potentially harmful microorganisms could be completely eliminated, e.g., through heating. A concerning trend in recent years is disease outbreaks caused by various leafy vegetable crops and one of the most important foodborne pathogens in this context is Shiga toxin-producing Escherichia coli (STEC). Other pathogens such as Salmonella, Shigella, Yersinia enterocolitica and Listeria monocytogenes should also be considered in disease risk analysis, as they have been implicated in outbreaks associated with leafy greens. These pathogens may enter the horticultural value network during primary production in field or greenhouse via irrigation, at harvest, during processing and distribution or in the home kitchen/restaurant. The hurdle approach involves combining several mitigating approaches, each of which is insufficient on its own, to control or even eliminate pathogens in food products. Since the food chain system for leafy green vegetables contains no absolute kill step for pathogens, use of hurdles at critical points could enable control of pathogens that pose a human health risk. Hurdles should be combined so as to decrease the risk due to pathogenic microbes and also to improve microbial stability, shelf-life, nutritional properties and sensory quality of leafy vegetables. The hurdle toolbox includes different options, such as physical, physiochemical and microbial hurdles. The goal for leafy green vegetables is multi-target preservation through intelligently applied hurdles. This review describes hurdles that could be used for leafy green vegetables and their biological basis, and identifies prospective hurdles that need attention in future research.
Collapse
Affiliation(s)
- Lars Mogren
- Microbial Horticulture, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sofia Windstam
- Microbial Horticulture, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Department of Biological Sciences, SUNY Oswego, Oswego, NY, United States
| | - Sofia Boqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Ivar Vågsholm
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Karin Söderqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Anna K. Rosberg
- Microbial Horticulture, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Julia Lindén
- Microbial Horticulture, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Emina Mulaosmanovic
- Microbial Horticulture, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Maria Karlsson
- Microbial Horticulture, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Elisabeth Uhlig
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Åsa Håkansson
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Beatrix Alsanius
- Microbial Horticulture, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|