1
|
Mainello-Land AM, Bibi S, Gugino B, Bull CT. Multilocus sequence and phenotypic analysis of Pectobacterium and Dickeya type strains for identification of soft rot Pectobacteriaceae from symptomatic potato stems and tubers in Pennsylvania. Syst Appl Microbiol 2024; 47:126476. [PMID: 38113702 DOI: 10.1016/j.syapm.2023.126476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Outbreaks of potato blackleg and soft rot caused by Pectobacterium species and more recently Dickeya species across the U.S. mid-Atlantic region have caused yield loss due to poor emergence as well as losses from stem and tuber rot. To develop management strategies for soft rot diseases, we must first identify which members of the soft rot Pectobacteriaceae are present in regional potato plantings. However, the rapidly expanding number of soft rot Pectobacteriaceae species and the lack of readily available comparative data for type strains of Pectobacterium and Dickeya hinder quick identification. This manuscript provides a comparative analysis of soft rot Pectobacteriaceae and a comprehensive comparison of type strains from this group using rep-PCR, MLSA and 16S sequence analysis, as well as phenotypic and physiological analyses using Biolog GEN III plates. These data were used to identify isolates cultured from symptomatic potato stems collected between 2016 and 2018. The isolates were characterized for phenotypic traits and by sequence analysis to identify the bacteria from potatoes with blackleg and soft rot symptoms in Pennsylvania potato fields. In this survey, P. actinidiae, P. brasiliense, P. polonicum, P. polaris, P. punjabense, P. parmentieri, and P. versatile were identified from Pennsylvania for the first time. Importantly, the presence of P. actinidiae in Pennsylvania represents the first report of this organism in the U.S. As expected, P. carotorvorum and D. dianthicola were also isolated. In addition to a resource for future work studying the Dickeya and Pectobacterium associated with potato blackleg and soft rot, we provide recommendations for future surveys to monitor for quarantine or emerging soft rot Pectobacteriace regionally.
Collapse
Affiliation(s)
- Amanda M Mainello-Land
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shaheen Bibi
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Beth Gugino
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Carolee T Bull
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
2
|
Ding J, Li B, Xu C, Qiao Y, Zhang L. Diagnosing crop diseases based on domain-adaptive pre-training BERT of electronic medical records. APPL INTELL 2022. [DOI: 10.1007/s10489-022-04346-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
3
|
Osdaghi E, van der Wolf JM, Abachi H, Li X, De Boer S, Ishimaru CA. Bacterial ring rot of potato caused by Clavibacter sepedonicus: A successful example of defeating the enemy under international regulations. MOLECULAR PLANT PATHOLOGY 2022; 23:911-932. [PMID: 35142424 PMCID: PMC9190974 DOI: 10.1111/mpp.13191] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bacterial ring rot of potato (Solanum tuberosum) caused by the gram-positive coryneform bacterium Clavibacter sepedonicus is an important quarantine disease threatening the potato industry around the globe. Since its original description in 1906 in Germany, management of ring rot has been a major problem due to the seedborne nature (via seed tubers not true seeds) of the pathogen allowing the bacterium to be transmitted long distances via infected tubers. DISEASE SYMPTOMS On growing potato plants: interveinal chlorosis on leaflets leading to necrotic areas and systemic wilt. On infected tubers: vascular tissues become yellowish brown with a cheesy texture due to bacterial colonization and decay. HOST RANGE Potato is the main host of the pathogen, but natural infection also occurs on eggplant, tomato, and sugar beet. TAXONOMIC STATUS OF THE PATHOGEN Class: Actinobacteria; Order: Actinomycetales; Family: Microbacteriaceae; Genus: Clavibacter; Species: Clavibacter sepedonicus (Spieckermann and Kotthoff 1914) Li et al. 2018. SYNONYMS (NONPREFERRED SCIENTIFIC NAMES) Aplanobacter sepedonicus; Bacterium sepedonicum; Corynebacterium sepedonicum; Corynebacterium michiganense pv. sepedonicum; Clavibacter michiganensis subsp. sepedonicus. MICROBIOLOGICAL PROPERTIES Gram-positive, club-shaped cells with creamy to yellowish-cream colonies for which the optimal growth temperature is 20-23°C. DISTRIBUTION Asia (China, Japan, Kazakhstan, Nepal, North Korea, Pakistan, South Korea, Uzbekistan, the Asian part of Russia), Europe (Belarus, Bulgaria, Czech Republic, Estonia, Finland, Georgia, Germany, Greece, Hungary, Latvia, Lithuania, Norway, Poland, Romania, European part of Russia, Slovakia, Spain, Sweden, Turkey, Ukraine), and North America (Canada, Mexico, USA). PHYTOSANITARY CATEGORIZATION CORBSE: EPPO A2 list no. 51. EU; Annex designation I/A2.
Collapse
Affiliation(s)
- Ebrahim Osdaghi
- Department of Plant ProtectionCollege of AgricultureUniversity of TehranKarajIran
| | - Jan M. van der Wolf
- Business Unit Biointeractions and Plant HealthWageningen University and ResearchWageningenNetherlands
| | - Hamid Abachi
- Department of Plant ProtectionCollege of AgricultureUniversity of TehranKarajIran
| | - Xiang Li
- Canadian Food Inspection Agency, Charlottetown LaboratoryCharlottetownPECanada
| | - Solke H. De Boer
- Canadian Food Inspection Agency, Charlottetown LaboratoryCharlottetownPECanada
| | | |
Collapse
|
4
|
Xing Y, Liu J, Luo J, Ming T, Yang G, Sun S, Xu S, Li X, He E, Kong F, Yan S, Yang Y, Cai X. A Dual-Channel Intelligent Point-of-Care Testing System for Soluble Programmed Death-1 and Programmed Death-Ligand 1 Detection Based on Folding Paper-Based Immunosensors. ACS Sens 2022; 7:584-592. [PMID: 35060694 DOI: 10.1021/acssensors.1c02486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Both programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) are important proteins in cancer immunotherapy. Soluble forms (sPD-1 and sPD-L1) have potential for determining treatment and prognosis monitoring. However, there is a lack of detection methods for point-of-care testing (POCT) of these two proteins, so a low-cost rapid detection platform is urgently needed. To solve this problem, a dual-channel electrochemical platform, including a folding paper-based immunosensor and a POCT system for rapid simultaneous detection of these two proteins was designed and fabricated. The immunosensor consists of a three-electrode system and a reaction cell. The surface of the working electrode was modified with nanocomposites synthesized from amine-functionalized single-walled carbon nanotubes, new methylene blue, and gold nanoparticles. Antibodies to sPD-1 and sPD-L1 were also immobilized on the working electrode surface. A differential pulse voltammetry electrochemical method was adopted. The immunosensor was able to detect sPD-1 and sPD-L1 in the ranges of 50 pg/mL to 50 ng/mL and 5 pg/mL to 5 ng/mL, respectively. The limits of detection were 10 and 5 pg/mL. Using this detection platform, sPD-1 and sPD-L1 in plasma were detected by both enzyme-linked immunosorbent assay and the immunosensor, which has good application potential.
Collapse
Affiliation(s)
- Yu Xing
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Tao Ming
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Gucheng Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shuai Sun
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shengwei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xinrong Li
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Enhui He
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Fanli Kong
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shi Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Yue Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
5
|
Arizala D, Dobhal S, Babler B, Crockford AB, Rioux RA, Alvarez AM, Arif M. Development of a multiplex TaqMan qPCR targeting unique genomic regions for the specific and sensitive detection of Pectobacterium species and P. parmentieri. J Appl Microbiol 2022; 132:3089-3110. [PMID: 35026058 DOI: 10.1111/jam.15447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/13/2021] [Accepted: 01/06/2022] [Indexed: 11/26/2022]
Abstract
AIM The newly defined species P. parmentieri has emerged as an aggressive pathogen that causes soft rot and blackleg diseases on potato and has been widely disseminated across the globe, jeopardizing the productivity and potato food safety. The implementation of a fast and accurate detection tool is imperative to control, monitor and prevent further spread of these pathogens. The objective of this work was to develop a specific and sensitive multiplex TaqMan qPCR to detect P. parmentieri and distinguish it from all known Pectobacterium species. A universal internal control (UIC) was included to enhance the reliability of the assay. METHODS AND RESULTS A comparative genomics approach was used to identify O-acetyltransferase and the XRE family transcriptional regulator as specific targets for primers/probe design for the detection of the Pectobacterium genus and P. parmentieri, respectively. Specificity was assessed with 35 and 25 strains included inclusivity and exclusivity panels, respectively, isolated from different geographic locations and sources. The assay specifically detected all 35 strains of Pectobacterium sp. and all 15 P. parmentieri strains. No cross-reactivity was detected during assay validation. Our assay detected up to 10 fg genomic DNA and 1 CFU ml-1 bacterial culture. No change in the detection threshold (1 CFU ml-1 ) was observed in spiked assays after adding host tissue to the reactions. The assay was validated with naturally and artificially infected host tissues and soil rhizosphere samples. All infected plant samples containing the target pathogens were accurately amplified. CONCLUSION The presented multiplex TaqMan qPCR diagnostic assay is highly specific, sensitive, reliable for the detection of Pectobacterium species and P. parmentieri with no false positives or false negatives. SIGNIFICANCE AND IMPACT The developed assay can be adopted for multiple purposes such as seed certification programs, surveillance, biosecurity, microbial forensics, quarantine, border protection, inspections, and epidemiology.
Collapse
Affiliation(s)
- Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu
| | - Shefali Dobhal
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu
| | - Brooke Babler
- Department of Plant Pathology, University of Wisconsin-Madison
| | | | - Renee A Rioux
- Department of Plant Pathology, University of Wisconsin-Madison
| | - Anne M Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu
| |
Collapse
|
6
|
Yanagisawa H, Matsushita Y, Khiutti A, Mironenko N, Ohto Y, Afanasenko O. Occurrence and distribution of viruses infecting potato in Russia. Lett Appl Microbiol 2021; 73:64-72. [PMID: 33825200 DOI: 10.1111/lam.13476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/14/2021] [Accepted: 03/14/2021] [Indexed: 11/28/2022]
Abstract
Potato viral disease has been a major problem in potato production worldwide including Russia. Here, we detected Potato Virus M (PVM), P (PVP), S (PVS), Y (PVY), and X (PVX) and Potato Leaf Roll Virus (PLRV) by RT-PCR on potato leaves and tubers from the Northwestern (NW), Volga (VF), and Far Eastern (FE) federal districts of Russia. Each sample was co-infected with up to five viruses. RT-PCR disclosed all six viruses in NW, three in VF, and five in FE. Phylogenetic analyses of PVM and PVS strains resolved all PVM isolates in Group O (ordinary) and all PVS isolates in Group O. Seven PVY strains were detected, and they included only recombinants. PVY recombinants were thus the dominant potato virus strains in Russia, although they widely varied among the regions. Our research provides insights into the geographical distribution and genetic variability of potato viruses in Russia.
Collapse
Affiliation(s)
- H Yanagisawa
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Y Matsushita
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - A Khiutti
- Federal State Budget Scientific Institution, All-Russian Institute of Plant Protection (FSBSI VIZR), Saint Petersburg, Russia
| | - N Mironenko
- Federal State Budget Scientific Institution, All-Russian Institute of Plant Protection (FSBSI VIZR), Saint Petersburg, Russia
| | - Y Ohto
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - O Afanasenko
- Federal State Budget Scientific Institution, All-Russian Institute of Plant Protection (FSBSI VIZR), Saint Petersburg, Russia
| |
Collapse
|
7
|
Cojocaru R, Yaseen I, Unrau PJ, Lowe CF, Ritchie G, Romney MG, Sin DD, Gill S, Slyadnev M. Microchip RT-PCR Detection of Nasopharyngeal SARS-CoV-2 Samples. J Mol Diagn 2021; 23:683-690. [PMID: 33706009 PMCID: PMC7939975 DOI: 10.1016/j.jmoldx.2021.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/16/2021] [Accepted: 02/25/2021] [Indexed: 12/24/2022] Open
Abstract
Fast, accurate, and reliable diagnostic tests are critical for controlling the spread of the coronavirus disease 2019 (COVID-19) associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The current gold standard for testing is real-time PCR; however, during the current pandemic, supplies of testing kits and reagents have been limited. We report the validation of a rapid (30 minutes), user-friendly, and accurate microchip real-time PCR assay for detection of SARS-CoV-2 from nasopharyngeal swab RNA extracts. Microchips preloaded with COVID-19 primers and probes for the N gene accommodate 1.2-μL reaction volumes, lowering the required reagents by 10-fold compared with tube-based real-time PCR. We validated our assay using contrived reference samples and 21 clinical samples from patients in Canada, determining a limit of detection of 1 copy per reaction. The microchip real-time PCR provides a significantly lower resource alternative to the Centers for Disease Control and Prevention–approved real-time RT-PCR assays with comparable sensitivity, showing 100% positive and negative predictive agreement of clinical samples.
Collapse
Affiliation(s)
- Razvan Cojocaru
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia
| | - Iqra Yaseen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia.
| | - Christopher F Lowe
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, British Columbia; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia
| | - Gordon Ritchie
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, British Columbia
| | - Marc G Romney
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, British Columbia
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia; Department of Medicine (Respirology), University of British Columbia, Vancouver, British Columbia
| | - Sikander Gill
- Lumex Instruments Canada, Mission, British Columbia, Canada
| | - Maxim Slyadnev
- Lumex Instruments Canada, Mission, British Columbia, Canada
| |
Collapse
|
8
|
Ivanov AV, Safenkova IV, Drenova NV, Zherdev AV, Dzantiev BB. Development of lateral flow assay combined with recombinase polymerase amplification for highly sensitive detection of Dickeya solani. Mol Cell Probes 2020; 53:101622. [PMID: 32569728 DOI: 10.1016/j.mcp.2020.101622] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
Dickeya solani, one of the most significant bacterial pathogens, infects potato plants, resulting in severe economic damage. In this study, a lateral flow assay (LFA) combined with isothermal DNA amplification was developed for rapid, specific, and sensitive diagnosis of the potato blackleg disease caused by D. solani. Recombinase polymerase amplification (RPA) was chosen for this purpose. Five primer pairs specific to different regions of the D. solani genome were designed and screened. A primer pair providing correct recognition of the target sequence was aligned with the SOL-C region specific to D. solani and flanked by fluorescein (forward primer) and biotin (reverse primer). Lateral flow test strips were constructed to detect DNA amplicons. The RPA-LFA demonstrated a detection limit equal to 14,000 D. solani colony-forming units per gram of potato tuber. This assay provided sensitivity corresponding to the polymerase chain reaction (PCR) but was implemented at a fixed temperature (39 °C) over 30 min. No unspecific reactions with Pectobacterium, Clavibacter, and other Dickeya species were observed. Detection of latent infection of D. solani in the potato tubers by the developed RPA-LFA was verified by PCR. The obtained results confirmed that RPA-LFA has great potential for highly sensitive detection of latent infection.
Collapse
Affiliation(s)
- Aleksandr V Ivanov
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russia
| | - Irina V Safenkova
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russia
| | - Natalia V Drenova
- All-Russian Plant Quarantine Centre, Pogranichnaya Street, 32, Bykovo-2, Moscow Region, 140150, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russia.
| |
Collapse
|
9
|
|
10
|
Gallo García YM, Sierra Mejía A, Donaire Segarra L, Aranda M, Gutiérrez Sánchez PA, Marín Montoya M. Coinfección natural de virus de ARN en cultivos de papa ( Solanum tuberosum subsp. Andigena) en Antioquia (Colombia). ACTA BIOLÓGICA COLOMBIANA 2019. [DOI: 10.15446/abc.v24n3.79277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Las enfermedades virales son uno de los principales problemas fitopatológicos de la papa. Con el fin de determinar los virus más prevalentes en cultivos de papa var. Diacol Capiro en el oriente Antioqueño (Colombia), se evaluó mediante RT-qPCR la presencia de diez virus de ARN (PVY, PVA, PVV, TaLMV, PVS, PLRV, PYVV, PVX, ToRSV y PMTV) en 36 muestras de tejido foliar. Los resultados indicaron la ocurrencia de cinco de los diez virus evaluados, con niveles de prevalencia de 88,9 %, 75 %, 75 %, 41,7 % y 25 % para PVY, PVX, PYVV, PLRV y PVS, respectivamente. Con fines comparativos, cuatro virus también se evaluaron mediante ELISA, siendo detectados PVS (80,5 %), PVY (55 %) y PLRV (5,5 %); mientras que PVX no fue encontrado con esta prueba. La comparación de estas técnicas mediante la razón de prevalencia (RP), indicó que la RT-qPCR ofrece niveles superiores de detección con valores de RP = 1,6 y RP = 7,5 para los virus PVY y PLRV; mientras que para PVS la ELISA detectó más muestras positivas que RT-qPCR (RP = 3,22), evidenciándose la necesidad de diseñar nuevos cebadores ajustados a la diversidad de este virus en Antioquia. La coinfección mixta más frecuente fue PVY-PYVV-PVX (22,2 %), mientras que los cinco virus se encontraron en el 11,1 % de las muestras. Finalmente, utilizando secuenciación Sanger de la cápside y NGS para los genomas completos, se confirmó la circulación de todos los virus detectados en los cultivos de papa del oriente Antioqueño. Estos resultados señalan la necesidad de fortalecer los programas de manejo integrado de enfermedades virales en Antioquia.
Collapse
|
11
|
Liu N, Lei Y, Zhang M, Zheng W, Shi Y, Qi X, Chen H, Zhou Y, Gong G. Latent Infection of Powdery Mildew on Volunteer Wheat in Sichuan Province, China. PLANT DISEASE 2019; 103:1084-1091. [PMID: 31009363 DOI: 10.1094/pdis-06-18-1003-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wheat powdery mildew, caused by the fungal pathogen Blumeria graminis f. sp. tritici, is one of the most destructive wheat diseases in China, especially in Sichuan Province. Successfully oversummered B. graminis f. sp. tritici can become a primary infection source for wheat seedlings in the fall. Determining the latent infection level of B. graminis f. sp. tritici in volunteer wheat and the oversummering areas of B. graminis f. sp. tritici is important for estimating potential B. graminis f. sp. tritici epidemics. In this study, we clarified the critical role of volunteer wheat in the B. graminis f. sp. tritici oversummering cycle and determined whether latent B. graminis f. sp. tritici infection was present in volunteer wheat by using real-time polymerase chain reaction (real-time PCR). The results indicated that volunteer wheat was mostly found in the northeast and middle regions of Sichuan, where lower temperatures and higher precipitation are common. A total of 13.2% of samples showed symptoms of B. graminis f. sp. tritici (spores) in the field, and 36.8% of samples were found to carry the B. graminis f. sp. tritici pathogen, even though no symptoms were observed. Volunteer wheat with B. graminis f. sp. tritici infection symptoms was found at an altitude of 536 m but volunteer wheat latently infected by B. graminis f. sp. tritici was identified at the lowest altitude of 323 m. Crop shade (e.g., corn and lima bean) provided suitable conditions for the survival of volunteer wheat in the summer. In addition, volunteer wheat played a key role in the B. graminis f. sp. tritici oversummering cycle. Moreover, B. graminis f. sp. tritici could oversummer by infecting generations of volunteer wheat in the summer, thereby becoming the primary infection source for autumn-sown wheat. The results showed that the latent infection of wheat diseases could be rapidly quantified by real-time PCR. Here, the primary disease center of autumn-sown wheat in Ya'an and Wenjiang were detected accurately based on this method. This study provides solid evidence for identifying the disease center, which offers guidance for wheat disease control and management.
Collapse
Affiliation(s)
- Na Liu
- 1 College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- 2 College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450002, China; and
| | - Yu Lei
- 1 College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- 3 College of Biological Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Min Zhang
- 1 College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenming Zheng
- 2 College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450002, China; and
| | - Yongchun Shi
- 2 College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450002, China; and
| | - Xiaobo Qi
- 1 College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Huabao Chen
- 1 College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - You Zhou
- 1 College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoshu Gong
- 1 College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
12
|
Okiro LA, Tancos MA, Nyanjom SG, Smart CD, Parker ML. Comparative Evaluation of LAMP, qPCR, Conventional PCR, and ELISA to Detect Ralstonia solanacearum in Kenyan Potato Fields. PLANT DISEASE 2019; 103:959-965. [PMID: 30895864 PMCID: PMC7779969 DOI: 10.1094/pdis-03-18-0489-re] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/04/2018] [Indexed: 05/25/2023]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is considered among the most damaging diseases of potato in Sub-Saharan Africa and the most significant biotic constraint of potato production alongside late blight. Unlike late blight, which can be managed by chemical means, R. solanacearum can only be managed through cultural methods and clean seed. Laboratory testing to certify seed before planting is required to confirm the absence of the pathogen in Kenya. A loop-mediated isothermal amplification (LAMP) assay was developed using the UDP-(3-O-acyl)-N-acetylglucosamine deacetylase gene (IpxC) to screen seed potato for R. solanacearum strains. The assay was assessed using DNA extracted from R. solanacearum and other soil and potato pathogens to demonstrate specificity and sensitivity. The LAMP assay was validated using field samples from different potato growing regions of Kenya collected over two growing seasons and compared with established nucleic acid and protein-based assays. The IpxC LAMP assay was found to be specific and sensitive to R. solanacearum, detecting as low as 2.5 pg/µl of R. solanacearum DNA. Of the 47 potentially infected field samples collected, both IpxC LAMP and quantitative polymerase chain reaction (PCR) detected R. solanacearum DNA in 90% of the samples, followed by conventional PCR (86%) and ELISA (75%). This IpxC LAMP assay is a promising diagnostic tool to rapidly screen for R. solanacearum in seed potato with high sensitivity in Kenya. Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .
Collapse
Affiliation(s)
- Lilian A. Okiro
- Department of Biochemistry and Molecular Biology, Egerton University, Njoro Campus, PO Box, 536 – 20115, Egerton, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Biosciences Eastern and Central Africa–International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, 00100, Kenya
| | - Matthew A. Tancos
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY, U.S.A.; and
| | - Steven G. Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Christine D. Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY, U.S.A.; and
| | - Monica L. Parker
- CGIAR Research Program on Roots, Tubers and Bananas, International Potato Center, Nairobi, Kenya
| |
Collapse
|
13
|
Potato Pathogens in Russia's Regions: An Instrumental Survey with the Use of Real-Time PCR/RT-PCR in Matrix Format. Pathogens 2019; 8:pathogens8010018. [PMID: 30699977 PMCID: PMC6492229 DOI: 10.3390/pathogens8010018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/26/2019] [Accepted: 01/26/2019] [Indexed: 11/17/2022] Open
Abstract
Viral and bacterial diseases of potato cause significant yield loss worldwide. The current data on the occurrence of these diseases in Russia do not provide comprehensive understanding of the phytosanitary situation. Diagnostic systems based on disposable stationary open qPCR micromatrices intended for the detection of eight viral and seven bacterial/oomycetal potato diseases have been used for wide-scale screening of target pathogens to estimate their occurrence in 11 regions of Russia and to assess suitability of the technology for high-throughput diagnostics under conditions of field laboratories. Analysis of 1025 leaf and 725 tuber samples confirmed the earlier reported data on the dominance of potato viruses Y, S, and M in most regions of European Russia, as well as relatively high incidences of Clavibacter michiganensis subsp. sepedonicus, Pectobacterium atrosepticum, and P. carotovorum subsp. carotovorum, and provided detailed information on the phytosanitary status of selected regions and geographical spread of individual pathogens. Information on the occurrence of mixed infections, including their composition, was the first data set of this kind for Russia. The study is the first large-scale screening of a wide range of potato pathogens conducted in network mode using unified methodology and standardized qPCR micromatrices. The data represent valuable information for plant pathologists and potato producers and indicate the high potential of the combined use of matrix PCR technology and network approaches to data collection and analysis with the view to rapidly and accurately assess the prevalence of certain pathogens, as well as the phytosanitary state of large territories.
Collapse
|
14
|
Razo SC, Panferova NA, Panferov VG, Safenkova IV, Drenova NV, Varitsev YA, Zherdev AV, Pakina EN, Dzantiev BB. Enlargement of Gold Nanoparticles for Sensitive Immunochromatographic Diagnostics of Potato Brown Rot. SENSORS (BASEL, SWITZERLAND) 2019; 19:E153. [PMID: 30621133 PMCID: PMC6338966 DOI: 10.3390/s19010153] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
Lateral flow immunoassay (LFIA) is a convenient tool for rapid field-based control of various bacterial targets. However, for many applications, the detection limits obtained by LFIA are not sufficient. In this paper, we propose enlarging gold nanoparticles' (GNPs) size to develop a sensitive lateral flow immunoassay to detect Ralstonia solanacearum. This bacterium is a quarantine organism that causes potato brown rot. We fabricated lateral flow test strips using gold nanoparticles (17.4 ± 1.0 nm) as a label and their conjugates with antibodies specific to R. solanacearum. We proposed a signal enhancement in the test strips' test zone due to the tetrachloroauric (III) anion reduction on the GNP surface, and the increase in size of the gold nanoparticles on the test strips was approximately up to 100 nm, as confirmed by scanning electron microscopy. Overall, the gold enhancement approach decreased the detection limit of R. solanacearum by 33 times, to as low as 3 × 10⁴ cells∙mL⁻1 in the potato tuber extract. The achieved detection limit allows the diagnosis of latent infection in potato tubers. The developed approach based on gold enhancement does not complicate analyses and requires only 3 min. The developed assay together with the sample preparation and gold enlargement requires 15 min. Thus, the developed approach is promising for the development of lateral flow test strips and their subsequent introduction into diagnostic practice.
Collapse
Affiliation(s)
- Shyatesa C Razo
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia.
- Agricultural-Technological Institute, RUDN University, Miklukho-Maklaya Street 8/2, 117198 Moscow, Russia.
| | - Natalia A Panferova
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia.
| | - Vasily G Panferov
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia.
| | - Irina V Safenkova
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia.
| | - Natalia V Drenova
- All-Russian Plant Quarantine Centre, Pogranichnaya Street 32, Bykovo-2, Moscow Region, 140150 Moscow, Russia.
| | - Yuri A Varitsev
- A.G. Lorch All-Russian Potato Research Institute, Lorch Street 23, Kraskovo, Moscow Region, 140051 Moscow, Russia.
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia.
| | - Elena N Pakina
- Agricultural-Technological Institute, RUDN University, Miklukho-Maklaya Street 8/2, 117198 Moscow, Russia.
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia.
| |
Collapse
|
15
|
Nikitin M, Deych K, Grevtseva I, Girsova N, Kuznetsova M, Pridannikov M, Dzhavakhiya V, Statsyuk N, Golikov A. Preserved Microarrays for Simultaneous Detection and Identification of Six Fungal Potato Pathogens with the Use of Real-Time PCR in Matrix Format. BIOSENSORS 2018; 8:E129. [PMID: 30551630 PMCID: PMC6316111 DOI: 10.3390/bios8040129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 01/11/2023]
Abstract
Fungal diseases of plants are of great economic importance causing 70⁻80% of crop losses associated with microbial plant pathogens. Advanced on-site disease diagnostics is very important to maximize crop productivity. In this study, diagnostic systems have been developed for simultaneous detection and identification of six fungal pathogens using 48-well microarrays (micromatrices) for qPCR. All oligonucleotide sets were tested for their specificity using 59 strains of target and non-target species. Detection limit of the developed test systems varied from 0.6 to 43.5 pg of DNA depending on target species with reproducibility within 0.3-0.7% (standard deviation). Diagnostic efficiency of test systems with stabilized and freeze-dried PCR master-mixes did not significantly differ from that of freshly prepared microarrays, though detection limit increased. Validation of test systems on 30 field samples of potato plants showed perfect correspondence with the results of morphological identification of pathogens. Due to the simplicity of the analysis and the automated data interpretation, the developed microarrays have good potential for on-site use by technician-level personnel, as well as for high-throughput monitoring of fungal potato pathogens.
Collapse
Affiliation(s)
- Maksim Nikitin
- GenBit LLC, Nauchny pr., 20, Bld. 4, Moscow 117246, Russia.
| | - Ksenia Deych
- GenBit LLC, Nauchny pr., 20, Bld. 4, Moscow 117246, Russia.
| | | | - Natalya Girsova
- All-Russian Research Institute of Phytopathology, Institute Str., 5, Bolshie Vyazemy 143050, Russia.
| | - Maria Kuznetsova
- All-Russian Research Institute of Phytopathology, Institute Str., 5, Bolshie Vyazemy 143050, Russia.
| | - Mikhail Pridannikov
- All-Russian Research Institute of Phytopathology, Institute Str., 5, Bolshie Vyazemy 143050, Russia.
- Centre of Parasitology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii Prospect 33, Moscow 119071, Russia.
| | - Vitaly Dzhavakhiya
- All-Russian Research Institute of Phytopathology, Institute Str., 5, Bolshie Vyazemy 143050, Russia.
| | - Natalia Statsyuk
- All-Russian Research Institute of Phytopathology, Institute Str., 5, Bolshie Vyazemy 143050, Russia.
| | | |
Collapse
|