1
|
Darwiche N, Dufresne C, Chartier A, Claude B, Colas C, Fougère L, Sebban M, Lucchesi ME, Le Floch S, Nehmé R. Glycolipid and Lipopeptide Biosurfactants: Structural Classes and Characterization-Rhamnolipids as a Model. Crit Rev Anal Chem 2024:1-21. [PMID: 39734093 DOI: 10.1080/10408347.2024.2441428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
In recent years, biosurfactants (BS) produced by various bacteria, fungi and yeast strains have attracted much interest because of their unique properties and potential applications in many industries ranging from bioremediation to agriculture and biomedical to cosmetics. Glycolipids are a popular group of BS that include rhamnolipids, sophorolipids, mannosylerythritol, trehalose lipids, xylolipids and cellobiose lipids. Lipopeptides e.g., surfactins, iturins and fengycins are of major biotechnological interest because of their antitumor, immunomodulatory, and antimicrobial activities effects. This review addresses the structural properties of glycolipids and lipopeptides, their main domains of application as well as the screening tests of BS production. Glycolipids are mostly composed of a carbohydrate moiety linked to a ß-hydroxy fatty acid chain with a glycosidic bond. The properties of glycolipids are related to the nature of the carbohydrate moiety and the length of the fatty acid chain. The lipopeptide structure is mainly composed of a linear or cyclic peptide linked to fatty acids of different chain lengths. The structural complexity of these compounds requires various analytical techniques for characterization and quantification. As an example, the analytical techniques used for the characterization of rhamnolipids are presented in this review. RLs are very promising BS with a wide range of applications in various fields, such as cosmetics, food science, pharmaceuticals, and environmental remediation.
Collapse
Affiliation(s)
- Nadin Darwiche
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311 Université d'Orléans - Pôle de chimie, Orléans Cedex 2, France
| | - Christelle Dufresne
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311 Université d'Orléans - Pôle de chimie, Orléans Cedex 2, France
| | - Agnès Chartier
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311 Université d'Orléans - Pôle de chimie, Orléans Cedex 2, France
| | - Bérengère Claude
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311 Université d'Orléans - Pôle de chimie, Orléans Cedex 2, France
| | - Cyril Colas
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311 Université d'Orléans - Pôle de chimie, Orléans Cedex 2, France
| | - Laëtitia Fougère
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311 Université d'Orléans - Pôle de chimie, Orléans Cedex 2, France
| | - Muriel Sebban
- Laboratoire de Chimie Organique Bioorganique -Réactivité et Analyse, COBRA, UMR 6014, Université Rouen Normandie, Bâtiment IRCOF, Mont-Saint-Aignan Cedex, France
| | - Marie-Elisabeth Lucchesi
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne (LUBEM), Université de Bretagne Occidentale, Brest Cedex3, France
| | - Stéphane Le Floch
- Centre de documentation, de recherche et d'expérimentations sur les pollutions accidentelles des eaux-CEDRE, Brest Cedex 2, France
| | - Reine Nehmé
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311 Université d'Orléans - Pôle de chimie, Orléans Cedex 2, France
| |
Collapse
|
2
|
Tabussam T, Shehnaz H, Majeed MI, Nawaz H, Alghamdi AA, Iqbal MA, Shahid M, Shahid U, Umer R, Rehman MT, Farooq U, Hassan A, Imran M. Surface-enhanced Raman spectroscopy for studying the interaction of organometallic compound bis(1,3-dihexylimidazole-2-yl) silver(i) hexafluorophosphate (v) with the biofilm of Escherichia coli. RSC Adv 2024; 14:7112-7123. [PMID: 38419676 PMCID: PMC10899858 DOI: 10.1039/d3ra08667d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Escherichia coli biofilms are a major cause of gastrointestinal tract diseases, such as esophageal, stomach and intestinal diseases. Nowadays, these are the most commonly occurring diseases caused by consuming contaminated food. In this study, we evaluated the efficacy of probiotics in controlling multidrug-resistant E. coli and reducing its ability to form biofilms. Our results substantiate the effective use of probiotics as antimicrobial alternatives and to eradicate biofilms formed by multidrug-resistant E. coli. In this research, surface enhanced Raman spectroscopy (SERS) was utilized to identify and evaluate Escherichia coli biofilms and their response to the varying concentrations of the organometallic compound bis(1,3-dihexylimidazole-2-yl) silver(i) hexafluorophosphate (v). Given the escalating challenge of antibiotic resistance in bacteria that form biofilms, understanding the impact of potential antibiotic agents is crucial for the healthcare sector. The combination of SERS with principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) enabled the detection and characterization of the biofilm, providing insights into the biochemical changes induced by the antibiotic candidate. The identified SERS spectral features served as indicators for elucidating the mode of action of the potential drug on the biofilm. Through PCA and PLS-DA, metabolic variations allowing the differentiation and classification of unexposed biofilms and biofilms exposed to different concentrations of the synthesized antibiotic were successfully identified, with 95% specificity, 96% sensitivity, and a 0.75 area under the curve (AUC). This research underscores the efficiency of surface enhanced Raman spectroscopy in differentiating the impact of potential antibiotic agents on E. coli biofilms.
Collapse
Affiliation(s)
- Tania Tabussam
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Hina Shehnaz
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Abeer Ahmed Alghamdi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Urwa Shahid
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Rabiea Umer
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | | | - Umer Farooq
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Ahmad Hassan
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
3
|
Shakeel M, Majeed MI, Nawaz H, Rashid N, Ali A, Haque A, Akbar MU, Tahir M, Munir S, Ali Z, Shahbaz M, Saleem M. Surface-enhanced Raman spectroscopy for the characterization of pellets of biofilm forming bacterial strains of Staphylococcus epidermidis. Photodiagnosis Photodyn Ther 2022; 40:103145. [PMID: 36210039 DOI: 10.1016/j.pdpdt.2022.103145] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Surface-enhanced Raman spectroscopy (SERS) is an effective tool for identifying biofilm forming bacterial strains. Biofilm forming bacteria are considered a major issue in the health sector because they have strong resistance against antibiotics. Staphylococcus epidermidis is commonly present on intravascular devices and prosthetic joints, catheters and wounds. OBJECTIVES To identify and characterize biofilm forming and non-biofilm forming bacterial strains, surface- enhanced Raman spectroscopy with principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) were used. METHODS Surface-enhanced Raman spectroscopy (SERS) with silver nanoparticles were employed for the analysis and characterization of biofilm forming bacterial strains. SERS is used to differentiate between non biofilm forming (five samples), medium biofilm forming (five samples) and strong biofilm forming (five samples) bacterial strains by applying silver nanoparticles (AgNPs) as SERS substrate. Principal component analysis (PCA) and Partial least square discriminant analysis (PLS-DA) were used to discriminate between non, medium and strong biofilm ability of bacterial strains. RESULTS Principal component analysis (PCA) and Partial least square discriminant analysis (PLS-DA) have been used to identify the biochemical differences in the form of SERS features which can be used to differentiate between biofilm forming and non-biofilm forming bacterial strains. PLS-DA provides successful differentiation and classification of these different strains with 94.5% specificity, 96% sensitivity and 89% area under the curve (AUC). CONCLUSIONS Surface-enhanced Raman spectroscopy can be utilized to differentiate between non, medium and strong biofilm forming bacterial strains.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Nosheen Rashid
- Department of Chemistry, University of Education, Faisalabad Campus, Faisalabad 38000, Pakistan.
| | - Aamir Ali
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Asma Haque
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Umair Akbar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Tahir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Saania Munir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Zain Ali
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Shahbaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Mudassar Saleem
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
4
|
Sportelli MC, Kranz C, Mizaikoff B, Cioffi N. Recent advances on the spectroscopic characterization of microbial biofilms: A critical review. Anal Chim Acta 2022; 1195:339433. [DOI: 10.1016/j.aca.2022.339433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 02/07/2023]
|
5
|
Production, Purification and Characterization of ‘Iturin A-2’ a Lipopeptide with Antitumor Activity from Chinese Sauerkraut Bacterium Bacillus velezensis T701. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10241-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Maksimov IV, Singh BP, Cherepanova EA, Burkhanova GF, Khairullin RM. Prospects and Applications of Lipopeptide-Producing Bacteria for Plant Protection (Review). APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820010135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|