1
|
Osdaghi E, Abachi H, Jacques M. Clavibacter michiganensis Reframed: The Story of How the Genomics Era Made a New Face for an Old Enemy. MOLECULAR PLANT PATHOLOGY 2025; 26:e70093. [PMID: 40391582 PMCID: PMC12089995 DOI: 10.1111/mpp.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/20/2025] [Accepted: 04/30/2025] [Indexed: 05/22/2025]
Abstract
OBJECTIVE Bacterial wilt and canker of tomato caused by the gram-positive corynebacterial species Clavibacter michiganensis is an economically important disease threatening the tomato industry in both open-air and greenhouse productions around the world. The disease occurs in many countries, with a particular importance in regions characterised by high temperature and water scarcity. Management of bacterial canker has been a major problem since its original description in 1909. This is due in part to the seedborne nature of the pathogen, allowing the bacterium to be transmitted over long distances via infected seeds, as well as a lack of effective treatment to clean seeds. Detection of the pathogen from seeds is difficult due to high competition on culture media with diverse members of the seed-associated microbiota. Identification of the pathogen can also be difficult owing to the presence of different colony variants on culture media. In this review, we provide a historical perspective and an updated overview on the aetiology, epidemiology and management strategies of the bacterial canker disease. We also gathered recent molecular findings in the pathogenicity mechanisms and bioecology of C. michiganensis to boost management of the bacterial canker disease in the 21st century tomato industry. TAXONOMY Class: Actinobacteria; Order: Micrococcales; Family: Microbacteriaceae; Genus: Clavibacter; Species: Clavibacter michiganensis. DISEASE SYMPTOMS Interveinal leaf chlorosis leading to necrotic areas. Canker on stems and lateral branches of the plant. Discolouration of vascular and pith tissues to dark yellow or brown. Small and early ripened fruits or discolouration of the placenta from white to yellow in the interior part of the ripening fruits. HOST RANGE Tomato (Solanum lycopersicum) is the main host of the pathogen while natural infection has also been reported on eggplant, pepper and wild nightshade plants. SYNONYMS (HISTORICAL/NON-PREFERRED SCIENTIFIC NAMES) Aplanobacter michiganensis; Pseudomonas michiganense; Pseudomonas michiganensis; Bacterium michiganense; Phytomonas michiganensis; Mycobacterium michiganense; Erwinia michiganensis (=michiganense); Corynebacterium michiganense; Corynebacterium michiganense pv. michiganense; Corynebacterium michiganense subsp. michiganense; Clavibacter michiganensis subsp. michiganensis. MICROBIOLOGICAL PROPERTIES The bacterium produces domed, round and shiny mucoid colonies on general culture media. Colonies are usually yellow-pigmented, while pink-pigmented strains are occasionally observed. Cells are gram-positive, aerobic, non-motile, non-spore-producing curved rods (coryneform). DISTRIBUTION Present in all continents. PHYTOSANITARY CATEGORIZATION EPPO A2 List no. 50, EU 2019/2072 RNQP Annex IV. See EPPO (https://gd.eppo.int/taxon/CORBMI/categorization) and CABI (https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.15338) databases for further country-specific categorisations. EPPO code: CORBMI.
Collapse
Affiliation(s)
- Ebrahim Osdaghi
- Department of Plant Protection, College of AgricultureUniversity of TehranKarajIran
| | - Hamid Abachi
- Department of Plant Protection, College of AgricultureUniversity of TehranKarajIran
| | - Marie‐Agnes Jacques
- Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM‐CFBPUniversité d'AngersAngersFrance
| |
Collapse
|
2
|
Dobhal S, Santillana G, Stulberg MJ, Arizala D, Alvarez AM, Arif M. Development and validation of genome-informed and multigene-based qPCR and LAMP assays for accurate detection of Dickeya solani: a critical quarantine pathogen threatening the potato industry. Microbiol Spectr 2025; 13:e0078424. [PMID: 39660908 PMCID: PMC11723575 DOI: 10.1128/spectrum.00784-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/13/2024] [Indexed: 12/12/2024] Open
Abstract
Dickeya solani one of the most aggressive pectinolytic phytopathogens, causes blackleg disease in potatoes, resulting in significant economic losses and adversely impacting one of the world's most important food crops. The diagnostics methods are critical in monitoring the latent infection for international trade of potato seed tubers and in implementation of control strategies. Our study employed a whole-genome comparative approach, identifying unique target gene loci (LysR and TetR family of transcriptional regulators gene regions) and designing loop-mediated isothermal amplification (LAMP) and a multi-gene-based multiplex TaqMan qPCR assays for specific detection and differentiation of D. solani. Both methods underwent meticulous validation with extensive inclusivity and exclusivity panels, exhibiting 100% accuracy and no false positives or negatives. The LAMP method demonstrated the detection limit of 100 fg and 1 CFU per reaction using pure genomic DNA and crude bacterial cell lysate, respectively. The qPCR detection limit was 1 pg, 100 fg and 10 fg with quadplex, triplex, and singleplex, respectively. None of the assays were impacted by any inhibitory or competitive effects after adding host DNA (in qPCR) or crude lysate (in LAMP). The assays proved robust and reproducible in detecting the target pathogen in infected samples, with the LAMP assay being field-deployable due to its simplicity and rapid results acquisition within approximately 9 min. The reproducibility was confirmed by performing the assay in two independent laboratories. These assays offer a robust, rapid, and reliable solution for routine testing, with applications in phytosanitary inspection, disease diagnosis, and epidemiological studies.IMPORTANCEDickeya solani, one of the most aggressive soft rot causing bacteria and a quarantine pathogen, poses a severe threat to food security by causing substantial economic losses to the potato industry. Accurate and timely detection of this bacterium is vital for monitoring latent infections, particularly for international trade of potato seed tubers, and for implementing effective control strategies. In this research, we have developed LAMP and multi-gene-based multiplex TaqMan qPCR assays for specific detection of D. solani. These assays, characterized by their precision, rapidity, and robustness, are crucial for distinguishing D. solani from related species. Offering unparalleled sensitivity and specificity, these assays are indispensable for phytosanitary inspection and epidemiological monitoring, providing a powerful tool enabling management of this threatening pathogen.
Collapse
Affiliation(s)
- Shefali Dobhal
- Department of Plant
and Environmental Protection Sciences, University of Hawaii at
Manoa, Honolulu,
Hawaii, USA
| | - Gem Santillana
- Plant Pathogen
Confirmatory Diagnostics Laboratory (PPCDL), APHIS PPQ, Science and
Technology, United States Department of
Agriculture, Beltsville,
Maryland, USA
| | - Michael J. Stulberg
- Plant Pathogen
Confirmatory Diagnostics Laboratory (PPCDL), APHIS PPQ, Science and
Technology, United States Department of
Agriculture, Beltsville,
Maryland, USA
| | - Dario Arizala
- Department of Plant
and Environmental Protection Sciences, University of Hawaii at
Manoa, Honolulu,
Hawaii, USA
| | - Anne M. Alvarez
- Department of Plant
and Environmental Protection Sciences, University of Hawaii at
Manoa, Honolulu,
Hawaii, USA
| | - Mohammad Arif
- Department of Plant
and Environmental Protection Sciences, University of Hawaii at
Manoa, Honolulu,
Hawaii, USA
| |
Collapse
|
3
|
Bispo Carvalho IC, Silva Carvalho AM, Wendland A, Rossato M. Colorimetric LAMP Assay for Detection of Xanthomonas phaseoli pv. manihotis in Cassava Through Genomics: A New Approach to an Old Problem. PLANT DISEASE 2024; 108:2993-3000. [PMID: 38422453 DOI: 10.1094/pdis-08-23-1507-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Bacterial blight caused by Xanthomonas phaseoli pv. manihotis (Xpm) is considered the main bacterial disease that affects cassava, causing significant losses when not properly managed. In the present study, a fast, sensitive, and easy-to-apply method to detect Xpm via colorimetric loop-mediated isothermal amplification (LAMP) was developed. To ensure the use of a unique-to-the-target pathovar core region for primer design, 74 complete genomic sequences of Xpm together with different bacterial species and pathovars were used for comparative genomics. A total of 42 unique genes were used to design 27 LAMP primer sets, from which nine primers were synthesized, and only one (Xpm_Lp1 primer set) showed sufficient efficiency in preliminary tests. The sensitivity, assessed by a serial dilution of the type strain (IBSBF 278) DNA, yielded high sensitivity, detecting up to 100 fg. The LAMP primers showed high specificity, did not cross-react with other bacterial species or other pathovars tested, and amplified only the Xpm isolates. Tests confirmed the high efficiency of the protocol using infected or inoculated macerated cassava leaves without the need for additional sample treatment. The LAMP test developed in this study was able to detect Xpm in a fast, simple, and sensitive way, and it can be used to monitor the disease under laboratory and field conditions.
Collapse
|
4
|
Omran BA, Rabbee MF, Baek KH. Biologically inspired nanoformulations for the control of bacterial canker pathogens Clavibacter michiganensis subsp. michiganensis and subsp. capsici. J Biotechnol 2024; 392:34-47. [PMID: 38925504 DOI: 10.1016/j.jbiotec.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Clavibacter michiganensis subsp. michiganensis (Cmm) and C. michiganensis subsp. capsici (Cmc) are phytopathogenic bacteria that cause bacterial canker disease in tomatoes and peppers, respectively. Bacterial canker disease poses serious challenges to solanaceous crops, causing significant yield losses and economic costs. Effective management necessitates the development of sustainable control strategies employing nanobiotechnology. In this study, the antibacterial effects of four Aspergillus sojae-mediated nanoformulations, including cobalt oxide nanoparticles (Co3O4 NPs), zinc oxide nanoparticles (ZnO NPs), cobalt ferrite nanoparticles (CoFe2O4 NPs), and CoFe2O4/functionalized multi-walled carbon nanotube (fMWCNT) bionanocomposite, were evaluated against Cmm and Cmc. The diameters of the zone of inhibition of A. sojae-mediated Co3O4 NPs, ZnO NPs, CoFe2O4 NPs, and CoFe2O4/fMWCNT bionanocomposite against Cmm and Cmc were 23.60 mm, 22.09 mm, 27.65 mm, 22.51 mm, and 19.33 mm, 17.66 mm, 21.64 mm, 18.77 mm, respectively. The broth microdilution assay was conducted to determine the minimal inhibitory and bactericidal concentrations. The MICs of Co3O4 NPs, ZnO NPs, CoFe2O4 NPs, and CoFe2O4/fMWCNT bionanocomposite against Cmm were 2.50 mg/mL, 1.25 mg/mL, 2.50 mg/mL, and 2.50 mg/mL, respectively. While, their respective MBCs against Cmm were 5.00 mg/mL, 2.50 mg/mL, 5.00 mg/mL, and 5.00 mg/mL. The respective MICs of Co3O4 NPs, ZnO NPs, CoFe2O4 NPs, and CoFe2O4/fMWCNT bionanocomposite against Cmc were 2.50 mg/mL, 1.25 mg/mL, 5.00 mg/mL, and 5.00 mg/mL. While, their respective MBCs against Cmc were 5.00 mg/mL, 2.50 mg/mL, 10.00 mg/mL, and 10.00 mg/mL. The morphological and ultrastructural changes of Cmm and Cmc cells were observed using field-emission scanning and transmission electron microscopy before and after treatment with sub-minimal inhibitory concentrations of the nanoformulations. Nanoformulation-treated bacterial cells became deformed and disrupted, displaying pits, deep cavities, and groove-like structures. The cell membrane detached from the bacterial cell wall, electron-dense particles accumulated in the cytoplasm, cellular components disintegrated, and the cells were lysed. Direct physical interactions between the prepared nanoformulations with Cmm and Cmc cells might be the major mechanism for their antibacterial potency. Further research is required for the in vivo application of the mycosynthesized nanoformulations as countermeasures to combat bacterial phytopathogens.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt.
| | - Muhammad Fazle Rabbee
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea.
| |
Collapse
|
5
|
Osdaghi E, Robertson AE, Jackson-Ziems TA, Abachi H, Li X, Harveson RM. Clavibacter nebraskensis causing Goss's wilt of maize: Five decades of detaining the enemy in the New World. MOLECULAR PLANT PATHOLOGY 2023; 24:675-692. [PMID: 36116105 DOI: 10.1111/mpp.13268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/11/2023]
Abstract
Goss's bacterial wilt and leaf blight of maize (Zea mays) caused by the gram-positive coryneform bacterium Clavibacter nebraskensis is an economically important disease in North America. C. nebraskensis is included within the high-risk list of quarantine pathogens by several plant protection organizations (EPPO code: CORBMI), hence it is under strict quarantine control around the world. The causal agent was reported for the first time on maize in Nebraska (USA) in 1969. After an outbreak during the 1970s, prevalence of the disease decreased in the 1980s to the early 2000s, before the disease resurged causing a serious threat to maize production in North America. The re-emergence of Goss's wilt in the corn belt of the United States led to several novel achievements in understanding the pathogen biology and disease control. In this review, we provide an updated overview of the pathogen taxonomy, biology, and epidemiology as well as management strategies of Goss's wilt disease. First, a taxonomic history of the pathogen is provided followed by symptomology and host range, genetic diversity, and pathogenicity mechanisms of the bacterium. Then, utility of high-throughput molecular approaches in the precise detection and identification of the pathogen and the management strategies of the disease are explained. Finally, we highlight the role of integrated pest management strategies to combat the risk of Goss's wilt in the 21st century maize industry. DISEASE SYMPTOMS Large (2-15 cm) tan to grey elongated oval lesions with wavy, irregular water-soaked margins on the leaves. The lesions often start at the leaf tip or are associated with wounding caused by hail or wind damage. Small (1 mm in diameter), dark, discontinuous water-soaked spots, known as "freckles", can be observed in the periphery of lesions. When backlit, the freckles appear translucent. Early infection (prior to growth stage V6) may become systemic and cause seedlings to wilt, wither, and die. Coalescence of lesions results in leaf blighting. HOST RANGE Maize (Zea mays) is the only economic host of the pathogen. A number of Poaceae species are reported to act as secondary hosts for C. nebraskensis. TAXONOMIC STATUS OF THE PATHOGEN Class: Actinobacteria; Order: Micrococcales; Family: Microbacteriaceae; Genus: Clavibacter; Species: Clavibacter nebraskensis. SYNONYMS Corynebacterium nebraskense (Schuster, 1970) Vidaver & Mandel 1974; Corynebacterium michiganense pv. nebraskense (Vidaver & Mandel 1974) Dye & Kemp 1977; Corynebacterium michiganense subsp. nebraskense (Vidaver & Mandel 1974) Carlson & Vidaver 1982; Clavibacter michiganense subsp. nebraskense (Vidaver & Mandel 1974) Davis et al. 1984; Clavibacter michiganensis subsp. nebraskensis (Vidaver & Mandel 1974) Davis et al. 1984. TYPE MATERIALS ATCC 27794T ; CFBP 2405T ; ICMP 3298T ; LMG 3700T ; NCPPB 2581T . MICROBIOLOGICAL PROPERTIES Cells are gram-positive, orange-pigmented, pleomorphic club- or rod-shaped, nonspore-forming, nonmotile, and without flagella, approximately 0.5 × 1-2.0 μm. DISTRIBUTION The pathogen is restricted to Canada and the United States. PHYTOSANITARY CATEGORIZATION EPPO code CORBNE.
Collapse
Affiliation(s)
- Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Alison E Robertson
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Tamra A Jackson-Ziems
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Hamid Abachi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Xiang Li
- Canadian Food Inspection Agency, Charlottetown Laboratory, Charlottetown, Prince Edward Island, Canada
| | - Robert M Harveson
- Panhandle Research & Extension Center, University of Nebraska, Scottsbluff, Nebraska, USA
| |
Collapse
|
6
|
Osdaghi E, van der Wolf JM, Abachi H, Li X, De Boer S, Ishimaru CA. Bacterial ring rot of potato caused by Clavibacter sepedonicus: A successful example of defeating the enemy under international regulations. MOLECULAR PLANT PATHOLOGY 2022; 23:911-932. [PMID: 35142424 PMCID: PMC9190974 DOI: 10.1111/mpp.13191] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bacterial ring rot of potato (Solanum tuberosum) caused by the gram-positive coryneform bacterium Clavibacter sepedonicus is an important quarantine disease threatening the potato industry around the globe. Since its original description in 1906 in Germany, management of ring rot has been a major problem due to the seedborne nature (via seed tubers not true seeds) of the pathogen allowing the bacterium to be transmitted long distances via infected tubers. DISEASE SYMPTOMS On growing potato plants: interveinal chlorosis on leaflets leading to necrotic areas and systemic wilt. On infected tubers: vascular tissues become yellowish brown with a cheesy texture due to bacterial colonization and decay. HOST RANGE Potato is the main host of the pathogen, but natural infection also occurs on eggplant, tomato, and sugar beet. TAXONOMIC STATUS OF THE PATHOGEN Class: Actinobacteria; Order: Actinomycetales; Family: Microbacteriaceae; Genus: Clavibacter; Species: Clavibacter sepedonicus (Spieckermann and Kotthoff 1914) Li et al. 2018. SYNONYMS (NONPREFERRED SCIENTIFIC NAMES) Aplanobacter sepedonicus; Bacterium sepedonicum; Corynebacterium sepedonicum; Corynebacterium michiganense pv. sepedonicum; Clavibacter michiganensis subsp. sepedonicus. MICROBIOLOGICAL PROPERTIES Gram-positive, club-shaped cells with creamy to yellowish-cream colonies for which the optimal growth temperature is 20-23°C. DISTRIBUTION Asia (China, Japan, Kazakhstan, Nepal, North Korea, Pakistan, South Korea, Uzbekistan, the Asian part of Russia), Europe (Belarus, Bulgaria, Czech Republic, Estonia, Finland, Georgia, Germany, Greece, Hungary, Latvia, Lithuania, Norway, Poland, Romania, European part of Russia, Slovakia, Spain, Sweden, Turkey, Ukraine), and North America (Canada, Mexico, USA). PHYTOSANITARY CATEGORIZATION CORBSE: EPPO A2 list no. 51. EU; Annex designation I/A2.
Collapse
Affiliation(s)
- Ebrahim Osdaghi
- Department of Plant ProtectionCollege of AgricultureUniversity of TehranKarajIran
| | - Jan M. van der Wolf
- Business Unit Biointeractions and Plant HealthWageningen University and ResearchWageningenNetherlands
| | - Hamid Abachi
- Department of Plant ProtectionCollege of AgricultureUniversity of TehranKarajIran
| | - Xiang Li
- Canadian Food Inspection Agency, Charlottetown LaboratoryCharlottetownPECanada
| | - Solke H. De Boer
- Canadian Food Inspection Agency, Charlottetown LaboratoryCharlottetownPECanada
| | | |
Collapse
|
7
|
Arizala D, Dobhal S, Babler B, Crockford AB, Rioux RA, Alvarez AM, Arif M. Development of a multiplex TaqMan qPCR targeting unique genomic regions for the specific and sensitive detection of Pectobacterium species and P. parmentieri. J Appl Microbiol 2022; 132:3089-3110. [PMID: 35026058 DOI: 10.1111/jam.15447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/13/2021] [Accepted: 01/06/2022] [Indexed: 11/26/2022]
Abstract
AIM The newly defined species P. parmentieri has emerged as an aggressive pathogen that causes soft rot and blackleg diseases on potato and has been widely disseminated across the globe, jeopardizing the productivity and potato food safety. The implementation of a fast and accurate detection tool is imperative to control, monitor and prevent further spread of these pathogens. The objective of this work was to develop a specific and sensitive multiplex TaqMan qPCR to detect P. parmentieri and distinguish it from all known Pectobacterium species. A universal internal control (UIC) was included to enhance the reliability of the assay. METHODS AND RESULTS A comparative genomics approach was used to identify O-acetyltransferase and the XRE family transcriptional regulator as specific targets for primers/probe design for the detection of the Pectobacterium genus and P. parmentieri, respectively. Specificity was assessed with 35 and 25 strains included inclusivity and exclusivity panels, respectively, isolated from different geographic locations and sources. The assay specifically detected all 35 strains of Pectobacterium sp. and all 15 P. parmentieri strains. No cross-reactivity was detected during assay validation. Our assay detected up to 10 fg genomic DNA and 1 CFU ml-1 bacterial culture. No change in the detection threshold (1 CFU ml-1 ) was observed in spiked assays after adding host tissue to the reactions. The assay was validated with naturally and artificially infected host tissues and soil rhizosphere samples. All infected plant samples containing the target pathogens were accurately amplified. CONCLUSION The presented multiplex TaqMan qPCR diagnostic assay is highly specific, sensitive, reliable for the detection of Pectobacterium species and P. parmentieri with no false positives or false negatives. SIGNIFICANCE AND IMPACT The developed assay can be adopted for multiple purposes such as seed certification programs, surveillance, biosecurity, microbial forensics, quarantine, border protection, inspections, and epidemiology.
Collapse
Affiliation(s)
- Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu
| | - Shefali Dobhal
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu
| | - Brooke Babler
- Department of Plant Pathology, University of Wisconsin-Madison
| | | | - Renee A Rioux
- Department of Plant Pathology, University of Wisconsin-Madison
| | - Anne M Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu
| |
Collapse
|
8
|
Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. The Potential Use of Isothermal Amplification Assays for In-Field Diagnostics of Plant Pathogens. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112424. [PMID: 34834787 PMCID: PMC8621059 DOI: 10.3390/plants10112424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 05/27/2023]
Abstract
Rapid, sensitive, and timely diagnostics are essential for protecting plants from pathogens. Commonly, PCR techniques are used in laboratories for highly sensitive detection of DNA/RNA from viral, viroid, bacterial, and fungal pathogens of plants. However, using PCR-based methods for in-field diagnostics is a challenge and sometimes nearly impossible. With the advent of isothermal amplification methods, which provide amplification of nucleic acids at a certain temperature and do not require thermocyclic equipment, going beyond the laboratory has become a reality for molecular diagnostics. The amplification stage ceases to be limited by time and instruments. Challenges to solve involve finding suitable approaches for rapid and user-friendly plant preparation and detection of amplicons after amplification. Here, we summarize approaches for in-field diagnostics of phytopathogens based on different types of isothermal amplification and discuss their advantages and disadvantages. In this review, we consider a combination of isothermal amplification methods with extraction and detection methods compatible with in-field phytodiagnostics. Molecular diagnostics in out-of-lab conditions are of particular importance for protecting against viral, bacterial, and fungal phytopathogens in order to quickly prevent and control the spread of disease. We believe that the development of rapid, sensitive, and equipment-free nucleic acid detection methods is the future of phytodiagnostics, and its benefits are already visible.
Collapse
|
9
|
Domingo R, Perez C, Klair D, Vu H, Candelario-Tochiki A, Wang X, Camson A, Uy JN, Salameh M, Arizala D, Dobhal S, Boluk G, Bingham JP, Ochoa-Corona F, Ali ME, Stack JP, Fletcher J, Odani J, Jenkins D, Alvarez AM, Arif M. Genome-informed loop-mediated isothermal amplification assay for specific detection of Pectobacterium parmentieri in infected potato tissues and soil. Sci Rep 2021; 11:21948. [PMID: 34753982 PMCID: PMC8578433 DOI: 10.1038/s41598-021-01196-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
Pectobacterium parmentieri (formerly Pectobacterium wasabiae), which causes soft rot disease in potatoes, is a newly established species of pectinolytic bacteria within the family Pectobacteriaceae. Despite serious damage caused to the potato industry worldwide, no field-deployable diagnostic tests are available to detect the pathogen in plant samples. In this study, we aimed to develop a reliable, rapid, field-deployable loop-mediated isothermal amplification (LAMP) assay for the specific detection of P. parmentieri. Specific LAMP primers targeting the petF1 gene region, found in P. parmentieri but no other Pectobacterium spp., were designed and validated in silico and in vitro using extensive inclusivity (15 strains of P. parmentieri) and exclusivity (94 strains including all other species in the genus Pectobacterium and host DNA) panels. No false positives or negatives were detected when the assay was tested directly with bacterial colonies, and with infected plant and soil samples. Sensitivity (analytical) assays using serially diluted bacterial cell lysate and purified genomic DNA established the detection limit at 10 CFU/mL and 100 fg (18-20 genome copies), respectively, even in the presence of host crude DNA. Consistent results obtained by multiple users/operators and field tests suggest the assay's applicability to routine diagnostics, seed certification programs, biosecurity, and epidemiological studies.
Collapse
Affiliation(s)
- Ryan Domingo
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Cristian Perez
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Diksha Klair
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Huong Vu
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Alika Candelario-Tochiki
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Xupeng Wang
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Amihan Camson
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jaclyn Nicole Uy
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Mouauia Salameh
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Shefali Dobhal
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Gamze Boluk
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jon-Paul Bingham
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Francisco Ochoa-Corona
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Md Emran Ali
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - James P Stack
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Jacqueline Fletcher
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Jenee Odani
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Daniel Jenkins
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Anne M Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA.
| |
Collapse
|
10
|
Field-Deployable Recombinase Polymerase Amplification Assay for Specific, Sensitive and Rapid Detection of the US Select Agent and Toxigenic Bacterium, Rathayibacter toxicus. BIOLOGY 2021; 10:biology10070620. [PMID: 34356474 PMCID: PMC8301136 DOI: 10.3390/biology10070620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Early, accurate, and rapid detection of R. toxicus is extremely important to improve inspections of imported annual ryegrass hay and seed at ports of entry and enhance in-field detection. RPA is a comparatively new, easy to use, and robust technology that can be performed in the palm of the hand without losing specificity. The RPA assay was more sensitive than endpoint PCR and did not require lab equipment in the field. The developed assay has tremendous applications for in-field plant diagnostics and biosecurity surveillance. Abstract Rathayibacter toxicus is a toxigenic bacterial pathogen of several grass species and is responsible for massive livestock deaths in Australia and South Africa. Due to concern for animal health and livestock industries, it was designated a U.S. Select Agent. A rapid, accurate, and sensitive in-field detection method was designed to assist biosecurity surveillance surveys and to support export certification of annual ryegrass hay and seed. Complete genomes from all known R. toxicus populations were explored, unique diagnostic sequences identified, and target-specific primers and a probe for recombinase polymerase amplification (RPA) and endpoint PCR were designed. The RPA reaction ran at 37 °C and a lateral flow device (LFD) was used to visualize the amplified products. To enhance reliability and accuracy, primers and probes were also designed to detect portions of host ITS regions. RPA assay specificity and sensitivity were compared to endpoint PCR using appropriate inclusivity and exclusivity panels. The RPA assay sensitivity (10 fg) was 10 times more sensitive than endpoint PCR with and without a host DNA background. In comparative tests, the RPA assay was unaffected by plant-derived amplification inhibitors, unlike the LAMP and end-point PCR assays. In-field validation of the RPA assay at multiple sites in South Australia confirmed the efficiency, specificity, and applicability of the RPA assay. The RPA assay will support disease management and evidence-based in-field biosecurity decisions.
Collapse
|
11
|
Multiplex recombinase polymerase amplification assay developed using unique genomic regions for rapid on-site detection of genus Clavibacter and C. nebraskensis. Sci Rep 2021; 11:12017. [PMID: 34103568 PMCID: PMC8187419 DOI: 10.1038/s41598-021-91336-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 05/19/2021] [Indexed: 11/08/2022] Open
Abstract
Clavibacter is an agriculturally important bacterial genus comprising nine host-specific species/subspecies including C. nebraskensis (Cn), which causes Goss's wilt and blight of maize. A robust, simple, and field-deployable method is required to specifically detect Cn in infected plants and distinguish it from other Clavibacter species for quarantine purposes and timely disease management. A multiplex Recombinase Polymerase Amplification (RPA) coupled with a Lateral Flow Device (LFD) was developed for sensitive and rapid detection of Clavibacter and Cn directly from infected host. Unique and conserved genomic regions, the ABC transporter ATP-binding protein CDS/ABC-transporter permease and the MFS transporter gene, were used to design primers/probes for specific detection of genus Clavibacter and Cn, respectively. The assay was evaluated using 52 strains, representing all nine species/subspecies of Clavibacter, other closely related bacterial species, and naturally- and artificially-infected plant samples; no false positives or negatives were detected. The RPA reactions were also incubated in a closed hand at body temperature; results were again specific. The assay does not require DNA isolation and can be directly performed using host sap. The detection limit of 10 pg (~ 3000 copies) and 100 fg (~ 30 copies) was determined for Clavibacter- and Cn-specific primers/probes, respectively. The detection limit for Cn-specific primer/probe set was decreased to 1 pg (~ 300 copies) when 1 µL of host sap was added into the RPA reaction containing tenfold serially diluted genomic DNA; though no effect was observed on Clavibacter-specific primer/probe set. The assay is accurate and has applications at point-of-need diagnostics. This is the first multiplex RPA assay for any plant pathogen.
Collapse
|
12
|
Ramachandran S, Dobhal S, Alvarez AM, Arif M. Improved multiplex TaqMan qPCR assay with universal internal control offers reliable and accurate detection of Clavibacter michiganensis. J Appl Microbiol 2021; 131:1405-1416. [PMID: 33484618 DOI: 10.1111/jam.15017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/16/2020] [Accepted: 01/21/2021] [Indexed: 11/27/2022]
Abstract
AIM Clavibacter michiganensis (Cm) is a seed-borne plant pathogen that significantly reduces tomato production worldwide. Due to repeated outbreaks and rapid spread of the disease, seeds/transplants need to be certified free of the pathogen before planting. To this end, we developed a multiplex TaqMan qPCR assay that can accurately detect Cm in infected samples. METHODS AND RESULTS A specific region of Cm (clvG gene) was selected for primer design using comparative genomics approach. A fully synthetic universal internal control (UIC) was also designed to detect PCR inhibitors and false-negative results in qPCRs. The Cm primers can be used alone or in a triplex TaqMan qPCR assay with UIC and previously described Clavibacter primers. The assay was specific for Cm and detected up to 10 fg of Cm DNA in sensitivity and spiked assays. Addition of the UIC did not change the specificity or sensitivity of the multiplex TaqMan qPCR assay. CONCLUSION The triplex TaqMan qPCR provides a specific and sensitive diagnostic assay for Cm. SIGNIFICANCE AND IMPACT OF THE STUDY This assay can be used for biosecurity surveillance, routine diagnostics, estimating bacterial titres in infected material and for epidemiological studies. The UIC is fully synthetic, efficiently amplified and multiplex compatible with any other qPCR assay.
Collapse
Affiliation(s)
- S Ramachandran
- Foreign Disease and Weed Science Research Unit, USDA-ARS, Fort Detrick, MD, USA.,ARS Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - S Dobhal
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - A M Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - M Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
13
|
Boluk G, Dobhal S, Crockford AB, Melzer M, Alvarez AM, Arif M. Genome-Informed Recombinase Polymerase Amplification Assay Coupled with a Lateral Flow Device for In-Field Detection of Dickeya Species. PLANT DISEASE 2020; 104:2217-2224. [PMID: 32530731 DOI: 10.1094/pdis-09-19-1988-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dickeya spp. cause blackleg and soft rot diseases of potato and several other plant species worldwide, resulting in high economic losses. Rapid detection and identification of the pathogen is essential for facilitating efficient disease management. Our aim in this research was to develop a rapid and field-deployable recombinase polymerase amplification (RPA) assay coupled with a lateral flow device (LFD) that will accurately detect Dickeya spp. in infected plant tissues without the need for DNA isolation. A unique genomic region (mglA/mglC genes) conserved among Dickeya spp. was used to design highly specific robust primers and probes for an RPA assay. Assay specificity was validated with 34 representative strains from all Dickeya spp. and 24 strains from other genera and species; no false positives or negatives were detected. An RPA assay targeting the internal transcribed spacer region of the host genome was included to enhance the reliability and accuracy of the Dickeya assay. The detection limit of 1 fg was determined by both sensitivity and spiked sensitivity assays; no inhibitory effects were observed when 1 µl of host sap, macerated in Tris-EDTA buffer, was added to each reaction in the sensitivity tests. The developed RPA assay is rapid, highly accurate, sensitive, and fully field deployable. It has numerous applications in routine diagnostics, surveillance, biosecurity, and disease management.
Collapse
Affiliation(s)
- Gamze Boluk
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, U.S.A
| | - Shefali Dobhal
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, U.S.A
| | - Alex B Crockford
- Wisconsin Seed Potato Certification Laboratory, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Michael Melzer
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, U.S.A
| | - Anne M Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, U.S.A
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, U.S.A
| |
Collapse
|
14
|
Dobhal S, Boluk G, Babler B, Stulberg MJ, Rascoe J, Nakhla MK, Chapman TA, Crockford AB, Melzer MJ, Alvarez AM, Arif M. Comparative genomics reveals signature regions used to develop a robust and sensitive multiplex TaqMan real-time qPCR assay to detect the genus Dickeya and Dickeya dianthicola. J Appl Microbiol 2020; 128:1703-1719. [PMID: 31950553 DOI: 10.1111/jam.14579] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 11/30/2022]
Abstract
AIMS Dickeya species are high consequence plant pathogenic bacteria; associated with potato disease outbreaks and subsequent economic losses worldwide. Early, accurate and reliable detection of Dickeya spp. is needed to prevent establishment and further dissemination of this pathogen. Therefore, a multiplex TaqMan qPCR was developed for sensitive detection of Dickeya spp. and specifically, Dickeya dianthicola. METHODS AND RESULTS A signature genomic region for the genus Dickeya (mglA/mglC) and unique genomic region for D. dianthicola (alcohol dehydrogenase) were identified using a whole genome-based comparative genomics approach. The developed multiplex TaqMan qPCR was validated using extensive inclusivity and exclusivity panels, and naturally/artificially infected samples to confirm broad range detection capability and specificity. Both sensitivity and spiked assays showed a detection limit of 10 fg DNA. CONCLUSION The developed multiplex assay is sensitive and reliable to detect Dickeya spp. and D. dianthicola with no false positives or false negatives. It was able to detect mixed infection from naturally and artificially infected plant materials. SIGNIFICANCE AND IMPACT OF THE STUDY The developed assay will serve as a practical tool for screening of propagative material, monitoring the presence and distribution, and quantification of target pathogens in a breeding programme. The assay also has applications in routine diagnostics, biosecurity and microbial forensics.
Collapse
Affiliation(s)
- S Dobhal
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - G Boluk
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - B Babler
- Department of Plant Pathology, Wisconsin Seed Potato Lab, University of Wisconsin, Madison, WI, USA
| | - M J Stulberg
- Science and Technology, Plant Protection and Quarantine, Animal and Health Inspection Service, United States Department of Agriculture, Beltsville, MD, USA
| | - J Rascoe
- Science and Technology, Plant Protection and Quarantine, Animal and Health Inspection Service, United States Department of Agriculture, Beltsville, MD, USA
| | - M K Nakhla
- Science and Technology, Plant Protection and Quarantine, Animal and Health Inspection Service, United States Department of Agriculture, Beltsville, MD, USA
| | - T A Chapman
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - A B Crockford
- Department of Plant Pathology, Wisconsin Seed Potato Lab, University of Wisconsin, Madison, WI, USA
| | - M J Melzer
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - A M Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - M Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
15
|
Sagcan H, Turgut Kara N. Detection of Potato ring rot Pathogen Clavibacter michiganensis subsp. sepedonicus by Loop-mediated isothermal amplification (LAMP) assay. Sci Rep 2019; 9:20393. [PMID: 31892706 PMCID: PMC6938510 DOI: 10.1038/s41598-019-56680-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/06/2019] [Indexed: 11/09/2022] Open
Abstract
Clavibacter michiganensis subsp. sepedonicus (CMS) is an important bacterial plant pathogen causing potato ring rot disease. Rapid diagnosis of CMS is crucial because of the economic losses caused by serious harvest losses. Although there are serological tests used in the rapid diagnosis of CMS, they are not widely used because of their low sensitivity. The DNA-based PCR methods, which are highly sensitive, do not have the possibility of on-site diagnosis, especially since they require serious laboratory infrastructure. In recent years, scientists have been working on alternative amplification methods to develop DNA-based point of care (POC) diagnostic methods. Accordingly, the loop-mediated isothermal amplification (LAMP) method, which was developed in the early 2000s, provides an important convenience for DNA-based tests to use in the field. Due to the unique design of primers, more amplification products could be create in a shorter time than conventional amplification methods without needing a temperature cycle, and it can be applied with the aid of a simple heater without requiring a laboratory environment. In this study, efficient LAMP method for the detection of CMS has optimized. For device-independent detection of LAMP products, colorimetric method and LFD has used.
Collapse
Affiliation(s)
- Hasan Sagcan
- Istanbul University, Institute of Science, Program of Molecular Biology and Genetics, Istanbul, Turkey
| | - Neslihan Turgut Kara
- Istanbul University, Faculty of Science, Department of Molecular Biology and Genetics, 34134, Istanbul, Turkey.
| |
Collapse
|
16
|
Larrea-Sarmiento A, Alvarez AM, Stack JP, Arif M. Synergetic effect of non-complementary 5' AT-rich sequences on the development of a multiplex TaqMan real-time PCR for specific and robust detection of Clavibacter michiganensis and C. michiganensis subsp. nebraskensis. PLoS One 2019; 14:e0218530. [PMID: 31295263 PMCID: PMC6622472 DOI: 10.1371/journal.pone.0218530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/22/2019] [Indexed: 11/25/2022] Open
Abstract
Clavibacter is an agriculturally important genus comprising a single species, Clavibacter michiganensis, and multiple subspecies, including, C. michiganensis subsp. nebraskensis which causes Goss's wilt/blight of corn, accounts for high yield losses and is listed among the five most significant diseases of corn in the United States of America. Our research objective was to develop a robust and rapid multiplex TaqMan real-time PCR (qPCR) to detect C. michiganensis in general and C. michiganensis subsp. nebraskensis with enhanced reliability and accuracy by adding non-complementary AT sequences to the 5’ end of the forward and reverse primers. Comparative genomic analyses were performed to identify unique and conserved gene regions for primer and probe design. The unique genomic regions, ABC transporter ATP-binding protein CDS/ABC-transporter permease and MFS transporter were determined for specific detection of C. michiganensis and C. m. subsp. nebraskensis, respectively. The AT-rich sequences at the 5’ position of the primers enhanced the reaction efficiency and sensitivity of rapid qPCR cycling; the reliability, accuracy and high efficiency of the developed assay was confirmed after testing with 59 strains from inclusivity and exclusivity panels–no false positives or false negatives were detected. The assays were also validated through naturally and artificially infected corn plant samples; all samples were detected for C. michiganensis and C. m. subsp. nebraskensis with 100% accuracy. The assay with 5’ AT-rich sequences detected up to 10- and 100-fg of C. michiganensis and C. michiganensis subsp. nebraskensis genome targets, respectively. No adverse effect was observed when sensitivity assays were spiked with host genomic DNA. Addition of 5’ AT-rich sequences enhanced the qPCR reaction efficiency from 0.82 (M = -3.83) and 0.91 (M = -3.54) to 1.04 (with optimum slope value; M = -3.23) for both C. michiganensis and C. michiganensis subsp. nebraskensis, respectively; an increase of 10-fold sensitivity was also obtained with C. michiganensis primer set. The methodology proposed here can be used to optimize reaction efficiency and to harmonize diagnostic protocols which have prodigious applications in routine diagnostics, biosecurity and microbial forensics.
Collapse
Affiliation(s)
- Adriana Larrea-Sarmiento
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Anne M. Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - James P. Stack
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
17
|
Ocenar J, Arizala D, Boluk G, Dhakal U, Gunarathne S, Paudel S, Dobhal S, Arif M. Development of a robust, field-deployable loop-mediated isothermal amplification (LAMP) assay for specific detection of potato pathogen Dickeya dianthicola targeting a unique genomic region. PLoS One 2019; 14:e0218868. [PMID: 31233546 PMCID: PMC6590888 DOI: 10.1371/journal.pone.0218868] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Destructive maceration, a wide host range, and longevity in non-plant substrates has established Dickeya dianthicola (blackleg of potato) as a significant threat to potato industries worldwide. To protect these businesses, a specific and sensitive point-of-care D. dianthicola detection tool is necessary. We have developed a loop-mediated isothermal amplification (LAMP) assay for specific, sensitive, and rapid detection of D. dianthicola, which can be streamlined for point-of-care use. The developed LAMP assay targets a unique gene, alcohol dehydrogenase, of D. dianthicola. Assay specificity was assessed using strains present in inclusivity (16 D. dianthicola strains) and exclusivity panels (56 closely related, potato pathogenic, and other bacterial strains). Amplification with strains of inclusivity panel occurred, and cross-reactivity with non-target DNA was not observed. The limit of detection (LOD) was 10 CFU/ml when dilutions were made before isolating the genomic DNA; however, LOD was determined as 1 pg using 10-fold serially diluted D. dianthicola genomic DNA. Similar LOD of 1 pg was observed when serially diluted target genomic DNA was mixed with host genomic DNA. LOD (1 pg) was also calculated with 10-fold serially diluted synthetic DNA fragments containing primer target sites. Naturally and artificially inoculated plant samples were used for field adaptability tests with the field-deployable Optigene Plant Material Lysis Kit and a heat block (65°C); the results were obtained within 20 minutes. Despite the lack of method precision, no false positives or false negatives were observed. Therefore, with prepared reactions and a steady heat source, this assay can be used for rapid point-of-care detection, which is imperative for quarantine, eradication, disease management, and border protection.
Collapse
Affiliation(s)
- Jordie Ocenar
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Department of Agriculture, State of Hawaii, Honolulu, Hawaii, United States of America
| | - Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Gamze Boluk
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Upasana Dhakal
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Samudra Gunarathne
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Sujan Paudel
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Shefali Dobhal
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
18
|
Bragard C, Dehnen-Schmutz K, Di Serio F, Gonthier P, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke HH, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Van der Wolf J, Kaluski T, Pautasso M, Jacques MA. Pest categorisation of Clavibacter sepedonicus. EFSA J 2019; 17:e05670. [PMID: 32626290 PMCID: PMC7009210 DOI: 10.2903/j.efsa.2019.5670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Plant Health performed a pest categorisation of Clavibacter sepedonicus, a well-defined and distinguishable bacterial plant pathogen of the family Microbacteriaceae. C. sepedonicus causes bacterial ring rot of potato and is reported from North America, Asia and Europe. The bacterium is mostly tuber transmitted, but it can also enter host plants through wounds or via contaminated equipment. C. sepedonicus is regulated in Council Directive 2000/29/EC (Annex IAII, as Clavibacter michiganensis subsp. sepedonicus) as a harmful organism whose introduction into the EU is banned. In addition, Council Directive 1993/85/EEC concerns the measures to be taken within EU Member States (MS) against C. sepedonicus to (a) detect it and determine its distribution, (b) prevent its occurrence and spread, and (c) control it with the aim of eradication. The pest is present in several EU MS, but in all cases with a restricted distribution and under official control. C. sepedonicus could enter the EU and spread primarily via host plants for planting (i.e. potato tubers). The pest could establish in the EU, as the main host (potato) is commonly grown and climatic conditions are favourable. Direct potato losses following infection by C. sepedonicus can be substantial and are due to the destruction of the vascular tissue, wilting of the plant and rotting of the tubers. Infected hosts can remain asymptomatic. The main knowledge gaps are the geographic distribution of the pest and the host range. The criteria assessed by the Panel for consideration of C. sepedonicus as a potential quarantine pest are met, while, for regulated non-quarantine pests, the criterion on the widespread presence in the EU is not met.
Collapse
|
19
|
Ahmed FA, Larrea-Sarmiento A, Alvarez AM, Arif M. Genome-informed diagnostics for specific and rapid detection of Pectobacterium species using recombinase polymerase amplification coupled with a lateral flow device. Sci Rep 2018; 8:15972. [PMID: 30374117 PMCID: PMC6206099 DOI: 10.1038/s41598-018-34275-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/15/2018] [Indexed: 11/23/2022] Open
Abstract
Pectobacterium species cause serious bacterial soft rot diseases worldwide on economically important fruit and vegetable crops including tomato and potato. Accurate and simple methods are essential for rapid pathogen identification and timely management of the diseases. Recombinase polymerase amplification (RPA) combined with a lateral flow device (LFD) was developed for specific detection of Pectobacterium sp. directly from infected plant materials with no need for DNA isolation. The specificity of RPA-LFD was tested with 26 Pectobacterium sp. strains and 12 non-Pectobacterium species and no false positive or false negative outcomes were observed. RPA primers and probe for host control were also developed to detect the host genome for enhanced reliability and accuracy of the developed assay. The detection limit of 10 fg was obtained with both sensitivity and spiked sensitivity assays. No inhibitory effects were observed on the RPA assay when targets (pathogen and host) were directly detected from infected potato and tomato sap. The developed RPA assay has numerous applications from routine diagnostics at point-of-care, biosecurity, surveillance and disease management to epidemiological studies. In addition, this tool can also be used to discover reservoir hosts for Pectobacterium species.
Collapse
Affiliation(s)
- Firas A Ahmed
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
- Agriculture College, University of Kufa, Al-Najaf, Iraq
| | - Adriana Larrea-Sarmiento
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Anne M Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States.
| |
Collapse
|