1
|
Nishisaka CS, Ventura JP, Bais HP, Mendes R. Role of Bacillus subtilis exopolymeric genes in modulating rhizosphere microbiome assembly. ENVIRONMENTAL MICROBIOME 2024; 19:33. [PMID: 38745256 DOI: 10.1186/s40793-024-00567-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/07/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Bacillus subtilis is well known for promoting plant growth and reducing abiotic and biotic stresses. Mutant gene-defective models can be created to understand important traits associated with rhizosphere fitness. This study aimed to analyze the role of exopolymeric genes in modulating tomato rhizosphere microbiome assembly under a gradient of soil microbiome diversities using the B. subtilis wild-type strain UD1022 and its corresponding mutant strain UD1022eps-TasA, which is defective in exopolysaccharide (EPS) and TasA protein production. RESULTS qPCR revealed that the B. subtilis UD1022eps-TasA- strain has a diminished capacity to colonize tomato roots in soils with diluted microbial diversity. The analysis of bacterial β-diversity revealed significant differences in bacterial and fungal community structures following inoculation with either the wild-type or mutant B. subtilis strains. The Verrucomicrobiota, Patescibacteria, and Nitrospirota phyla were more enriched with the wild-type strain inoculation than with the mutant inoculation. Co-occurrence analysis revealed that when the mutant was inoculated in tomato, the rhizosphere microbial community exhibited a lower level of modularity, fewer nodes, and fewer communities compared to communities inoculated with wild-type B. subtilis. CONCLUSION This study advances our understanding of the EPS and TasA genes, which are not only important for root colonization but also play a significant role in shaping rhizosphere microbiome assembly. Future research should concentrate on specific microbiome genetic traits and their implications for rhizosphere colonization, coupled with rhizosphere microbiome modulation. These efforts will be crucial for optimizing PGPR-based approaches in agriculture.
Collapse
Affiliation(s)
- Caroline Sayuri Nishisaka
- Embrapa Environment, Jaguariúna, SP, Brazil
- Graduate Program in Agricultural Microbiology, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - João Paulo Ventura
- Embrapa Environment, Jaguariúna, SP, Brazil
- Graduate Program in Agricultural Microbiology, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Harsh P Bais
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA
- Ammon Pinizzotto Biopharmaceutical Innovation Center (BPI), Newark, DE, USA
| | | |
Collapse
|
2
|
LeBlanc NR, Harrigian FC. Green Waste Compost Impacts Microbial Functions Related to Carbohydrate Use and Active Dispersal in Plant Pathogen-Infested Soil. MICROBIAL ECOLOGY 2024; 87:44. [PMID: 38367043 PMCID: PMC10874327 DOI: 10.1007/s00248-024-02361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
The effects of compost on physical and chemical characteristics of soil are well-studied but impacts on soil microbiomes are poorly understood. This research tested effects of green waste compost on bacterial communities in soil infested with the plant pathogen Fusarium oxysporum. Compost was added to pathogen-infested soil and maintained in mesocosms in a greenhouse experiment and replicated growth chamber experiments. Bacteria and F. oxysporum abundance were quantified using quantitative PCR. Taxonomic and functional characteristics of bacterial communities were measured using shotgun metagenome sequencing. Compost significantly increased bacterial abundance 8 weeks after amendment in one experiment. Compost increased concentrations of chemical characteristics of soil, including phosphorus, potassium, organic matter, and pH. In all experiments, compost significantly reduced abundance of F. oxysporum and altered the taxonomic composition of soil bacterial communities. Sixteen bacterial genera were significantly increased from compost in every experiment, potentially playing a role in pathogen suppression. In all experiments, there was a consistent negative effect of compost on functions related to carbohydrate use and a positive effect on bacteria with flagella. Results from this work demonstrate that compost can reduce the abundance of soilborne plant pathogens and raise questions about the role of microbes in plant pathogen suppression.
Collapse
Affiliation(s)
- Nicholas R LeBlanc
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, 1636 E. Alisal St, Salinas, CA, 93905, USA.
| | - Fiona C Harrigian
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, 1636 E. Alisal St, Salinas, CA, 93905, USA
| |
Collapse
|
3
|
Díaz-Rueda P, Morales de los Ríos L, Romero LC, García I. Old poisons, new signaling molecules: the case of hydrogen cyanide. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6040-6051. [PMID: 37586035 PMCID: PMC10575699 DOI: 10.1093/jxb/erad317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
The high phenotypic plasticity developed by plants includes rapid responses and adaptations to aggressive or changing environments. To achieve this, they evolved extremely efficient mechanisms of signaling mediated by a wide range of molecules, including small signal molecules. Among them, hydrogen cyanide (HCN) has been largely ignored due to its toxic characteristics. However, not only is it present in living organisms, but it has been shown that it serves several functions in all kingdoms of life. Research using model plants has changed the traditional point of view, and it has been demonstrated that HCN plays a positive role in the plant response to pathogens independently of its toxicity. Indeed, HCN induces a response aimed at protecting the plant from pathogen attack, and the HCN is provided either exogenously (in vitro or by some cyanogenic bacteria species present in the rhizosphere) or endogenously (in reactions involving ethylene, camalexin, or other cyanide-containing compounds). The contribution of different mechanisms to HCN function, including a new post-translational modification of cysteines in proteins, namely S-cyanylation, is discussed here. This work opens up an expanding 'HCN field' of research related to plants and other organisms.
Collapse
Affiliation(s)
- Pablo Díaz-Rueda
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), CSIC-Universidad de Sevilla, 41092-Sevilla, Spain
| | | | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), CSIC-Universidad de Sevilla, 41092-Sevilla, Spain
| | - Irene García
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), CSIC-Universidad de Sevilla, 41092-Sevilla, Spain
| |
Collapse
|
4
|
Microbial-Based Products to Control Soil-Borne Pathogens: Methods to Improve Efficacy and to Assess Impacts on Microbiome. Microorganisms 2023; 11:microorganisms11010224. [PMID: 36677516 PMCID: PMC9867489 DOI: 10.3390/microorganisms11010224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Microbial-based products (either as biopesticide or biofertilizers) have a long history of application, though their use is still limited, mainly due to a perceived low and inconsistent efficacy under field conditions. However, their efficacy has always been compared to chemical products, which have a completely different mechanism of action and production process, following the chemical paradigm of agricultural production. This paradigm has also been applied to regulatory processes, particularly for biopesticides, making the marketing of microbial-based formulations difficult. Increased knowledge about bioinocula behavior after application to the soil and their impact on soil microbiome should foster better exploitation of microbial-based products in a complex environment such as the soil. Moreover, the multifunctional capacity of microbial strains with regard to plant growth promotion and protection should also be considered in this respect. Therefore, the methods utilized for these studies are key to improving the knowledge and understanding of microbial-based product activity and improving their efficacy, which, from farmers' point of view, is the parameter to assess the usefulness of a treatment. In this review, we are thus addressing aspects related to the production and formulation process, highlighting the methods that can be used to evaluate the functioning and impact of microbial-based products on soil microbiome, as tools supporting their use and marketing.
Collapse
|
5
|
Sindhu SS, Sehrawat A, Glick BR. The involvement of organic acids in soil fertility, plant health and environment sustainability. Arch Microbiol 2022; 204:720. [DOI: 10.1007/s00203-022-03321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
|
6
|
Eisa ESE, Meligy MM, Ziedan ESH. Application of composts and potassium sulphate on root rot incidence, morphological growth, yield components, oil content and constitutes of marjoram plants (Majorana hortensis L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Huang Z, Liu B, Yin Y, Liang F, Xie D, Han T, Liu Y, Yan B, Li Q, Huang Y, Liu Q. Impact of biocontrol microbes on soil microbial diversity in ginger (Zingiber officinale Roscoe). PEST MANAGEMENT SCIENCE 2021; 77:5537-5546. [PMID: 34390303 DOI: 10.1002/ps.6595] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bacteria are the most diverse and abundant group of soil organisms that influence plant growth and health. Bacillus and Trichoderma are commonly used as biological control agents (BCA) that directly or indirectly act on soil bacteria. Therefore, it is essential to understand how the applied microbes impact the indigenous microbial community before exploring their activity in the control of soilborne diseases. RESULTS MiSeq sequencing of the 16S rRNA gene was used to decipher the shift of rhizosphere bacterial community in ginger (Zingiber officinale Roscoe) treated with Bacillus subtilus and Trichoderma harzianum at different concentrations. The dominant phyla in treated and nontreated samples were Proteobacteria, Actinobacteria, Acidobacteria and comprised up to 54.7% of the total sequences. There were significant differences between BCA treated and nontreated samples in the bacteria community. BCA treated plants presented higher bacterial diversity than nontreated and higher dosage of BCA had a larger impact on rhizosphere microbiota, but the 'dose-response relationship' varied in different bacterial groups. Potential biomarkers at genus level were found, such as RB41, Pseudomonas, Nitrospira, Candidatus_Udaeobacter. CONCLUSION The combined use of Bacillus subtilus and Trichoderma harzianum could alter bacterial community structure and diversity in rhizosphere soil. BCA-microbes interactions as well as soil microbial ecology should be noticed in plant disease management. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiqiang Huang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shang Hai, China
| | - Bowen Liu
- Natural Plant Application and Metabolic Regulation Centre, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Yin
- Department of Sichuan Agriculture, Station for Plant Protection, Chengdu, China
| | - Fang Liang
- Division of Research and Development, Chengdu Tepu Biotech Co Ltd, Chengdu, China
| | - Deshan Xie
- Division of Research and Development, Chengdu Tepu Biotech Co Ltd, Chengdu, China
| | - Tiantian Han
- Division of Research and Development, Chengdu Tepu Biotech Co Ltd, Chengdu, China
| | - Yongzeng Liu
- Division of Research and Development, Chengdu Tepu Biotech Co Ltd, Chengdu, China
| | - Bin Yan
- Division of Research and Development, Chengdu Tepu Biotech Co Ltd, Chengdu, China
| | - Qian Li
- Natural Plant Application and Metabolic Regulation Centre, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Huang
- Natural Plant Application and Metabolic Regulation Centre, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Division of Research and Development, Chengdu Tepu Biotech Co Ltd, Chengdu, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shang Hai, China
| |
Collapse
|
8
|
Liu S, Khan MH, Yuan Z, Hussain S, Cao H, Liu Y. Response of soil microbiome structure and its network profiles to four soil amendments in monocropping strawberry greenhouse. PLoS One 2021; 16:e0245180. [PMID: 34587178 PMCID: PMC8480769 DOI: 10.1371/journal.pone.0245180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/01/2021] [Indexed: 01/03/2023] Open
Abstract
With the constant surge of strawberry cultivation and human demand, widespread concern has been expressed about the severe soil and plant health problems caused by continuous strawberry cropping, particularly monocropping in greenhouses. Effective microorganisms (EM) and Bacillus subtilis (BS) have been extensively commercialized as biological control agents (BCAs) to promote plant growth and yield enhancement. However, their effects on soil microbes are obscure. To regulate the microbial community in continuous cropping strawberry soils, we developed four soil amendments based on these two BCAs by adding low and high contents of compost. The amplicon sequencing of bacterial and fungal ribosomal markers was applied to study the response of the soil microbiome structure. We noticed a sharp increase in bacterial diversity after adding EM-treated high compost and BS-treated low compost, while there was no significant change in fungal diversity among treatments. Through taxonomic classification and FUNGuild analysis, we found that the application of soil amendments resulted in a significant decline in the relative abundance of fungal plant pathogens (Rhizopus, Penicillium and Fusarium) in the soils; accordingly, the metabolic functions of a range of detrimental fungi were inhibited. Correlation analysis indicated that soil microbial community was indirectly driven by soil physicochemical properties. Co-occurrence networks revealed that soil amendments contributed to the connectivity of bacterial network, and EM-treated with high compost was the most complex and balanced. Collectively, EM-treated high compost and BS-treated low compost can well regulate the microbial community structure and thus maintain soil health.
Collapse
Affiliation(s)
- Senlin Liu
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, Nanjing Agricultural University, Nanjing, P. R. China
| | - Muzammil Hassan Khan
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, Nanjing Agricultural University, Nanjing, P. R. China
| | - Zhongyuan Yuan
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, Nanjing Agricultural University, Nanjing, P. R. China
| | - Sarfraz Hussain
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, Nanjing Agricultural University, Nanjing, P. R. China
| | - Hui Cao
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yabo Liu
- Zhenjiang Institute of Agricultural Sciences, Jurong, China
| |
Collapse
|
9
|
Guarnaccia V, Hand FP, Garibaldi A, Gullino ML. Bedding Plant Production and the Challenge of Fungal Diseases. PLANT DISEASE 2021; 105:1241-1258. [PMID: 33135987 DOI: 10.1094/pdis-09-20-1955-fe] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bedding plants are a major group of ornamentals produced in greenhouses or nurseries worldwide and planted outdoors. Their economic importance has increased continuously in the last four decades in both the United States and the European Union. These plants are subject to a broad number of diseases that can negatively impact their production and cultivation. The initial steps of production strongly influence the health status of these plants and, consequently, their aesthetic appeal, which is a strong requisite for consumers. Seeds, cuttings, and other forms of propagative material, along with production systems and growing media, can influence the phytosanitary status of the final product. In this article, case studies of soilborne and foliar diseases are presented together with preventive measures to achieve innovative disease management strategies. Quarantine restrictions and eradication measures are also discussed, in consideration of the high likelihood for ornamental plants to be long-distance vectors of new pathogens and pests.
Collapse
Affiliation(s)
- Vladimiro Guarnaccia
- Centre for Innovation in the Agro-Environmental Sector, AGROINNOVA, University of Torino, Largo Braccini 2, 10095 Grugliasco (TO), Italy
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco (TO), Italy
| | | | - Angelo Garibaldi
- Centre for Innovation in the Agro-Environmental Sector, AGROINNOVA, University of Torino, Largo Braccini 2, 10095 Grugliasco (TO), Italy
| | - M Lodovica Gullino
- Centre for Innovation in the Agro-Environmental Sector, AGROINNOVA, University of Torino, Largo Braccini 2, 10095 Grugliasco (TO), Italy
| |
Collapse
|
10
|
Bellini A, Ferrocino I, Cucu MA, Pugliese M, Garibaldi A, Gullino ML. A Compost Treatment Acts as a Suppressive Agent in Phytophthora capsici - Cucurbita pepo Pathosystem by Modifying the Rhizosphere Microbiota. FRONTIERS IN PLANT SCIENCE 2020; 11:885. [PMID: 32670324 PMCID: PMC7327441 DOI: 10.3389/fpls.2020.00885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/29/2020] [Indexed: 05/05/2023]
Abstract
Phytophthora capsici Leonian (PHC) is a filamentous pathogen oomycete that causes root, fruit, foliar and crown rot over a wide host range, including the economically and nutritionally important summer squash (Cucurbita pepo var. cylindrica L.) crop. PHC chemical control strategies are difficult to adopt, due to the limited number of registered chemicals that are permitted and the scalar harvest system. For these reasons, other strategies, such as the use of waste-based composts that can act as suppressive agents against several soilborne pathogens, have been studied intensively. It is well known that compost's microbiota plays an important role to confer its suppressive ability. In this study, four different composts were analyzed with both 16S rRNA gene and 18S rRNA gene real-time PCR amplification and with 26S gene amplicon-based sequencing; the total abundance of the bacterial and fungal communities was found to be higher compared to literature, thus confirming that the four composts were a good inoculum source for agricultural applications. The core mycobiota was mainly composed of 31 genera; nevertheless, it was possible to observe a clear predominance of the same few taxa in all the composts. The four composts were then tested, at different concentrations (1-10-20% v/v), to establish their ability to confer suppressiveness to the Phytophthora capsici (PHC) - Cucurbita pepo pathosystem in controlled greenhouse pot trials. A total of 12 compost mixtures were considered, and of these, one (Trichoderma-enriched compost at 10% v/v) was able to statistically reduce the disease incidence caused by PHC (by 50% compared to the untreated control). Hence, the microbiota composition of the most effective compost treatment was investigated and compared with untreated and chemical (metalaxyl) controls. Mycobiota sequencing showed genera differences between the three treatments, with relative abundances of several fungal genera that were significantly different among the samples. Moreover, PCA analyses clustered the compost treatment differently from the chemical and the untreated controls. These findings suggest that suppressive activity of a compost is strictly influenced by its microbiota and the applied dosage, but the ability to induce a shaping in the rhizosphere microbial composition is also required.
Collapse
Affiliation(s)
- Alessio Bellini
- AGROINNOVA – Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Turin, Turin, Italy
- Agricultural, Forestry and Food Sciences Department (DISAFA), University of Turin, Turin, Italy
| | - Ilario Ferrocino
- Agricultural, Forestry and Food Sciences Department (DISAFA), University of Turin, Turin, Italy
| | - Maria Alexandra Cucu
- AGROINNOVA – Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Turin, Turin, Italy
| | - Massimo Pugliese
- AGROINNOVA – Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Turin, Turin, Italy
- Agricultural, Forestry and Food Sciences Department (DISAFA), University of Turin, Turin, Italy
- AgriNewTech s.r.l., Turin, Italy
| | - Angelo Garibaldi
- AGROINNOVA – Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Turin, Turin, Italy
| | - Maria Lodovica Gullino
- AGROINNOVA – Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Turin, Turin, Italy
- Agricultural, Forestry and Food Sciences Department (DISAFA), University of Turin, Turin, Italy
| |
Collapse
|
11
|
Wu M, Han H, Zheng X, Bai M, Xu T, Ding GC, Li J. Dynamics of oxytetracycline and resistance genes in soil under long-term intensive compost fertilization in Northern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21381-21393. [PMID: 31119549 DOI: 10.1007/s11356-019-05173-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
In the present study, we explored the dynamics of antibiotics (ciprofloxacin, norfloxacin, enrofloxacin, and oxytetracycline), tetracycline resistance genes (TRGs), and bacterial communities over 2013-2015 in soils fertilized conventionally or with two levels (82.5 and 165 t/ha) of compost for 12 years. In the soil receiving 165 t/ha of compost, only oxytetracycline was 46% higher than that in the conventionally fertilized soil. Transient enrichment of both tetM (20% to 9-fold) and tetK (25% to 67-fold) was observed in multiple instances immediately after the application of compost. The majority of genera which positively correlated with tetM or tetK were affiliated to Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. The structural equation model analysis indicated that fertilization regimes directly affected the bacterial composition and antibiotics and had an indirect effect on the abundance of tetK and tetM via these antibiotics. In summary, this study shed light into the complex interactions between fertilization, antibiotics, and antibiotic resistance pollution in greenhouse soil.
Collapse
Affiliation(s)
- Ming Wu
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Hui Han
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Xiangnan Zheng
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Mohan Bai
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Ting Xu
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
- Organic Recycling Institute of China Agricultural University(Suzhou), Wuzhong, 215128, China
| | - Guo-Chun Ding
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
- Organic Recycling Institute of China Agricultural University(Suzhou), Wuzhong, 215128, China.
| | - Ji Li
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
- Organic Recycling Institute of China Agricultural University(Suzhou), Wuzhong, 215128, China.
| |
Collapse
|