1
|
Gregg KA, Wang Y, Warfel J, Schoenfeld E, Jankowska E, Cipollo JF, Mayho M, Boinett C, Prasad D, Brickman TJ, Armstrong SK, Parkhill J, Da Silva Antunes R, Sette A, Papin JF, Wolf R, Merkel TJ. Antigen Discovery for Next-Generation Pertussis Vaccines Using Immunoproteomics and Transposon-Directed Insertion Sequencing. J Infect Dis 2023; 227:583-591. [PMID: 36575950 PMCID: PMC10169431 DOI: 10.1093/infdis/jiac502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Despite high vaccination rates, the United States has experienced a resurgence in reported cases of pertussis after switching to the acellular pertussis vaccine, indicating a need for improved vaccines that enhance infection control. METHODS Bordetella pertussis antigens recognized by convalescent-baboon serum and nasopharyngeal wash were identified by immunoproteomics and their subcellular localization predicted. Genes essential or important for persistence in the baboon airway were identified by transposon-directed insertion-site sequencing (TraDIS) analysis. RESULTS In total, 314 B. pertussis antigens were identified by convalescent baboon serum and 748 by nasopharyngeal wash. Thirteen antigens were identified as immunogenic in baboons, essential for persistence in the airway by TraDIS, and membrane-localized: BP0840 (OmpP), Pal, OmpA2, BP1485, BamA, Pcp, MlaA, YfgL, BP2197, BP1569, MlaD, ComL, and BP0183. CONCLUSIONS The B. pertussis antigens identified as immunogenic, essential for persistence in the airway, and membrane-localized warrant further investigation for inclusion in vaccines designed to reduce or prevent carriage of bacteria in the airway of vaccinated individuals.
Collapse
Affiliation(s)
- Kelsey A Gregg
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yihui Wang
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jason Warfel
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Elizabeth Schoenfeld
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ewa Jankowska
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - John F Cipollo
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | | | - Deepika Prasad
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Timothy J Brickman
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sandra K Armstrong
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - James F Papin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Roman Wolf
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Tod J Merkel
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
2
|
de Jonge EF, Vogrinec L, van Boxtel R, Tommassen J. Inactivation of the Mla system and outer-membrane phospholipase A results in disrupted outer-membrane lipid asymmetry and hypervesiculation in Bordetella pertussis. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100172. [DOI: 10.1016/j.crmicr.2022.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
3
|
Safety and Efficacy of the Bordetella bronchiseptica Vaccine Combined with a Vegetable Oil Adjuvant and Multi-Omics Analysis of Its Potential Role in the Protective Response of Rabbits. Pharmaceutics 2022; 14:pharmaceutics14071434. [PMID: 35890330 PMCID: PMC9317422 DOI: 10.3390/pharmaceutics14071434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Infectious respiratory diseases caused by Bordetella bronchiseptica (Bb) are seriously endangering the development of the rabbit industry in China. Unfortunately, no licensed vaccines are available for this pathogen. The present study was designed to determine whether the inactivated Bb antigen formulated with vegetable oil adjuvant (named E515) which contains soybean oil, vitamin E, and ginseng saponins, functions as a safe and effective vaccine (E515-Bb) against Bb infection in rabbits. Based on local and systemic reactions, both the E515 adjuvant alone and the E515-Bb vaccine exhibited good safety in rabbits. Immune response analysis implies that rabbits immunized with the E515-Bb vaccine produced significantly higher, earlier, and longer-lasting specific antibody responses and activated Th1/Th2/Th17 cell responses than those immunized with the aluminum hydroxide (Alum)-adjuvanted Bb vaccine (Alum-Bb) or Bb antigen alone. Moreover, the E515-Bb vaccine effectively protected rabbits from Bb infection. Additionally, integrated multi-omics analysis revealed that the immunoprotective effect of the E515-Bb vaccine was achieved through upregulation of the complement and coagulation cascades and cell adhesion molecule (CAM) pathways, and the downregulation of the P53 pathway. Overall, these results indicate that the E515-Bb vaccine is safe, elicits an efficient immune response and provides good protection against Bb infection in rabbits. Thus, the E515-adjuvanted Bb vaccine can be considered a promising candidate vaccine for preventing Bb infection.
Collapse
|
4
|
Hu G, Chen X, Chu W, Ma Z, Miao Y, Luo X, Fu Y. Immunogenic characteristics of the outer membrane phosphoporin as a vaccine candidate against Klebsiella pneumoniae. Vet Res 2022; 53:5. [PMID: 35063026 PMCID: PMC8781355 DOI: 10.1186/s13567-022-01023-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
In recent years, Klebsiella pneumoniae (KP) has caused disease outbreaks in different animals, resulting in serious economic losses and biosafety concerns. Considering the broad antibiotic resistance of KP, vaccines are the most effective tools against infection. However, there is still no KP vaccine available in the veterinary field. Our results indicate that the highly conserved outer membrane phosphoporin (PhoE) of KP is immunogenic in mice and elicits high titers of antibodies that were shown to be specific for PhoE by immunoblotting. Immunization with PhoE also induced robust cell-mediated immunity and elicited the secretion of high levels of IFN-γ and IL-4, suggesting the induction of mixed Th1 and Th2 responses. Sera from PhoE-immunized mice induced significantly higher complement-mediated lysis of KP cells than did sera from the PBS control mice. Finally, mice immunized with PhoE were significantly protected against KP challenge, with better survival and a reduced visceral bacterial load. Our data underscore the great potential of PhoE as a novel candidate antigen for a vaccine against KP infection.
Collapse
Affiliation(s)
- Gaowei Hu
- College of Life Sciences, Institute of Biomass Resources, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Xue Chen
- College of Life Sciences, Institute of Biomass Resources, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Wenhui Chu
- College of Life Sciences, Institute of Biomass Resources, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Zhe Ma
- College of Life Sciences, Institute of Biomass Resources, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Yingjie Miao
- College of Life Sciences, Institute of Biomass Resources, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Xi Luo
- College of Life Sciences, Institute of Biomass Resources, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Yongqian Fu
- College of Life Sciences, Institute of Biomass Resources, Taizhou University, Taizhou, 318000, Zhejiang, China.
| |
Collapse
|
5
|
Pérez-Ortega J, Van Harten RM, Van Boxtel R, Plisnier M, Louckx M, Ingels D, Haagsman HP, Tommassen J. Reduction of endotoxicity in Bordetella bronchiseptica by lipid A engineering: Characterization of lpxL1 and pagP mutants. Virulence 2021; 12:1452-1468. [PMID: 34053396 PMCID: PMC8168481 DOI: 10.1080/21505594.2021.1929037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/28/2021] [Accepted: 05/07/2021] [Indexed: 11/22/2022] Open
Abstract
Whole-cell vaccines against Gram-negative bacteria commonly display high reactogenicity caused by the endotoxic activity of lipopolysaccharide (LPS), one of the major components of the bacterial outer membrane. Underacylation of the lipid A moiety of LPS has been related with reduced endotoxicity in several Gram-negative species. Here, we evaluated whether the inactivation of two genes encoding lipid A acylases of Bordetella bronchiseptica, i.e. pagP and lpxL1, could be used for the development of less reactogenic vaccines against this pathogen for livestock and companion animals. Inactivation of pagP resulted in the loss of the secondary palmitate chain at position 3' of lipid A, but hardly affected the potency of the LPS to activate the Toll-like receptor 4 (TLR4). Inactivation of lpxL1 resulted in the loss of the secondary 2-hydroxy laurate group present at position 2 of lipid A and, unexpectedly, in the additional loss of the glucosamines that decorate the phosphate groups at positions 1 and 4' and in an increase in LPS molecules carrying O-antigen. The resulting LPS showed greatly reduced potency to activate TLR4 in HEK-Blue reporter cells expressing human or mouse TLR4 as well as in porcine macrophages. Characterization of the lpxL1 mutant revealed many pleiotropic phenotypes, including increased resistance to SDS and rifampicin, increased susceptibility to cationic antimicrobial peptides, decreased auto-aggregation and biofilm formation, and a tendency to decreased infectivity of macrophages, which are all related to the altered LPS structure. We suggest that the lpxL1 mutant will be useful for the generation of safer vaccines.
Collapse
Affiliation(s)
- Jesús Pérez-Ortega
- Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Institute of Biomembranes, Utrecht University, Utrecht, Netherlands
| | - Roel M. Van Harten
- Section of Molecular Host Defense, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Ria Van Boxtel
- Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | | | | | | | - Henk P. Haagsman
- Section of Molecular Host Defense, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jan Tommassen
- Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Institute of Biomembranes, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
Huang Y, Nan L, Xiao C, Su F, Li K, Ji QA, Wei Q, Liu Y, Bao G. PEGylated nano-Rehmannia glutinosa polysaccharide induces potent adaptive immunity against Bordetella bronchiseptica. Int J Biol Macromol 2020; 168:507-517. [PMID: 33310103 DOI: 10.1016/j.ijbiomac.2020.12.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 12/18/2022]
Abstract
Vaccines, in many cases, stimulate only too weak immunogenicity to prevent infection. Therefore, adjuvants are required during their preparation to boost the immune response. We herein developed a PEGylated nano-adjuvant based on Rehmannia glutinosa polysaccharide (RGP). The addition of PEG layer exhibits enhanced immune performance of the nano-RGP. Stimulation of dendritic cells (DCs) with PEGylated nano-RGP (pRL) led to increased proliferation and cytokine production (IL-6, IL-12, IL-1β and TNF-α). The pRL was internalized into DCs via a rapid and efficient method. The mice immunized with pRL exhibited enhanced antigen-specific serum IgG and Th1-(IFN-γ), Th2-(IL-4), and Th17-(IL-17, IL-6) cytokine production, contributing to a good anti-infection performance. Furthermore, the pRL could effectively deliver the antigen to the lymph nodes (LNs), activate DC in the LN and produce enhanced CD4+and CD8+ T-cells-derived memory (CD44high CD62Lhigh), and effector (CD44high CD62Llow) as well as functional phenotypes. Our results revealed that pRL can act as a promising adjuvant with targeted delivery of antigen due to its effective activation and robust adaptive immunity induction of DCs.
Collapse
Affiliation(s)
- Yee Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, PR China
| | - Li Nan
- Zhejiang Normal University, Jinhua 321000, PR China
| | - Chenwen Xiao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, PR China
| | - Fei Su
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, PR China
| | - Ke Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, PR China
| | - Quan-An Ji
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, PR China
| | - Qiang Wei
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, PR China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, PR China
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, PR China.
| |
Collapse
|
7
|
Hotinger JA, May AE. Animal Models of Type III Secretion System-Mediated Pathogenesis. Pathogens 2019; 8:pathogens8040257. [PMID: 31766664 PMCID: PMC6963218 DOI: 10.3390/pathogens8040257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 01/22/2023] Open
Abstract
The type III secretion system (T3SS) is a conserved virulence factor used by many Gram-negative pathogenic bacteria and has become an important target for anti-virulence drugs. Most T3SS inhibitors to date have been discovered using in vitro screening assays. Pharmacokinetics and other important characteristics of pharmaceuticals cannot be determined with in vitro assays alone. In vivo assays are required to study pathogens in their natural environment and are an important step in the development of new drugs and vaccines. Animal models are also required to understand whether T3SS inhibition will enable the host to clear the infection. This review covers selected animal models (mouse, rat, guinea pig, rabbit, cat, dog, pig, cattle, primates, chicken, zebrafish, nematode, wax moth, flea, fly, and amoeba), where T3SS activity and infectivity have been studied in relation to specific pathogens (Escherichia coli, Salmonella spp., Pseudomonas spp., Shigella spp., Bordetella spp., Vibrio spp., Chlamydia spp., and Yersinia spp.). These assays may be appropriate for those researching T3SS inhibition.
Collapse
|
8
|
Ai W, Peng Z, Wang F, Zhang Y, Xie S, Liang W, Hua L, Wang X, Chen H, Wu B. A Marker-Free Bordetella bronchiseptica aroA/ bscN Double Deleted Mutant Confers Protection Against Lethal Challenge. Vaccines (Basel) 2019; 7:vaccines7040176. [PMID: 31690029 PMCID: PMC6963861 DOI: 10.3390/vaccines7040176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022] Open
Abstract
Bordetella bronchiseptica is a leading cause of swine respiratory disorders which depict a great threat to well-flourished porcine industry. Vaccination remains an effective way for the prevention of B. bronchiseptica infections, as live B. bronchiseptica vaccines possess many advantages compared to inactivated vaccines and/or sub-unit vaccines, however, their safety is not up to the mark. In present study, we constructed marker-free aroA/bscN double deleted B. bronchiseptica QH09 through two-step homologous recombination strategy. Our data showed that QH09 attenuated virulence to mice compared with the parent aroA deleted B. bronchiseptica QH0814. We also found that QH09 meets the vaccine safety standards, upon challenge in piglets, did not cause any visible clinical signs or lesions on organs. Finally, we demonstrated that vaccination of QH09 activated the systemic as well as the mucosal immunity in pigs and provided protection against lethal bacterial challenge. These findings suggest that the aroA/bscN double deleted B. bronchiseptica QH09 may be an effective vaccine candidate, with safety assurance of animals against B. bronchiseptica infections.
Collapse
Affiliation(s)
- Weicheng Ai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fei Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| | - Sisi Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wan Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Animal Husbandry and Veterinary Institute, Hubei Academy of Agricultural Science, Wuhan 430070, China.
| | - Lin Hua
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|