1
|
Reiter MA, Bradley T, Büchel LA, Keller P, Hegedis E, Gassler T, Vorholt JA. A synthetic methylotrophic Escherichia coli as a chassis for bioproduction from methanol. Nat Catal 2024; 7:560-573. [PMID: 38828428 PMCID: PMC11136667 DOI: 10.1038/s41929-024-01137-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/29/2024] [Indexed: 06/05/2024]
Abstract
Methanol synthesized from captured greenhouse gases is an emerging renewable feedstock with great potential for bioproduction. Recent research has raised the prospect of methanol bioconversion to value-added products using synthetic methylotrophic Escherichia coli, as its metabolism can be rewired to enable growth solely on the reduced one-carbon compound. Here we describe the generation of an E. coli strain that grows on methanol at a doubling time of 4.3 h-comparable to many natural methylotrophs. To establish bioproduction from methanol using this synthetic chassis, we demonstrate biosynthesis from four metabolic nodes from which numerous bioproducts can be derived: lactic acid from pyruvate, polyhydroxybutyrate from acetyl coenzyme A, itaconic acid from the tricarboxylic acid cycle and p-aminobenzoic acid from the chorismate pathway. In a step towards carbon-negative chemicals and valorizing greenhouse gases, our work brings synthetic methylotrophy in E. coli within reach of industrial applications.
Collapse
Affiliation(s)
- Michael A. Reiter
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Timothy Bradley
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Lars A. Büchel
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Philipp Keller
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Emese Hegedis
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Thomas Gassler
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Julia A. Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Characterization and Process Optimization for Enhanced Production of Polyhydroxybutyrate (PHB)-Based Biodegradable Polymer from Bacillus flexus Isolated from Municipal Solid Waste Landfill Site. Polymers (Basel) 2023; 15:polym15061407. [PMID: 36987188 PMCID: PMC10057257 DOI: 10.3390/polym15061407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, there has been a growing interest in bio-based degradable plastics as an alternative to synthetic plastic. Polyhyroxybutyrate (PHB) is a macromolecule produced by bacteria as a part of their metabolism. Bacteria accumulate them as reserve materials when growing under different stress conditions. PHBs can be selected as alternatives for the production of biodegradable plastics because of their fast degradation properties when exposed to natural environmental conditions. Hence, the present study was undertaken in order to isolate the potential PHB-producing bacteria isolated from the municipal solid waste landfill site soil samples collected from the Ha’il region of Saudi Arabia to assess the production of PHB using agro-residues as a carbon source and to evaluate the growth of PHB production. In order to screen the isolates for producing PHB, a dye-based procedure was initially employed. Based on the 16S rRNA analysis of the isolates, Bacillus flexus (B. flexus) accumulated the highest amount of PHB of all the isolates. By using a UV–Vis spectrophotometer and Fourier-transform infrared spectrophotometer (FT-IR), in which a sharp absorption band at 1721.93 cm−1 (C=O stretching of ester), 1273.23 cm−1 (–CH group), multiple bands between 1000 and 1300 cm−1 (stretching of the C–O bond), 2939.53 cm−1 (–CH3 stretching), 2880.39 cm−1 (–CH2 stretching) and 3510.02 cm−1 (terminal –OH group), the extracted polymer was characterized and confirmed its structure as PHB. The highest PHB production by B. flexus was obtained after 48 h of incubation (3.9 g/L) at pH 7.0 (3.7 g/L), 35 °C (3.5 g/L) with glucose (4.1 g/L) and peptone (3.4 g/L) as carbon and nitrogen sources, respectively. As a result of the use of various cheap agricultural wastes, such as rice bran, barley bran, wheat bran, orange peel and banana peel as carbon sources, the strain was found to be capable of accumulating PHB. Using response surface methodology (RSM) for optimization of PHB synthesis using a Box–Behnken design (BBD) proved to be highly effective in increasing the polymer yield of the synthesis. With the optimum conditions obtained from RSM, PHB content can be increased by approximately 1.3-fold when compared to an unoptimized medium, resulting in a significant reduction in production costs. Thus, isolate B. flexus is a highly promising candidate for the production of industrial-size quantities of PHB from agricultural wastes and is capable of removing the environmental concerns associated with synthetic plastics from the industrial production process. Moreover, the successful production of bioplastics using a microbial culture provides a promising avenue for the large-scale production of biodegradable and renewable plastics with potential applications in various industries, including packaging, agriculture and medicine.
Collapse
|
3
|
Adnan M, Siddiqui AJ, Ashraf SA, Snoussi M, Badraoui R, Alreshidi M, Elasbali AM, Al-Soud WA, Alharethi SH, Sachidanandan M, Patel M. Polyhydroxybutyrate (PHB)-Based Biodegradable Polymer from Agromyces indicus: Enhanced Production, Characterization, and Optimization. Polymers (Basel) 2022; 14:polym14193982. [PMID: 36235929 PMCID: PMC9571180 DOI: 10.3390/polym14193982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/23/2022] Open
Abstract
Recently, there has been significant interest in bio-based degradable plastics owing to their potential as a green and sustainable alternative to synthetic plastics due to their biodegradable properties. Polyhydroxybutyrate (PHB) is a biodegradable polymer that is produced by bacteria and archaea as carbon and energy reserves. Due to its rapid degradation in natural environments, it can be considered a biodegradable plastic alternative. In the present study, a dye-based procedure was used to screen PHB-producing bacteria isolated from mangrove soil samples. Among the seven isolates, Agromyces indicus (A. indicus), identified by means of 16S rRNA analysis, accumulated the highest amount of PHB. The extracted polymer was characterized by a UV–Vis spectrophotometer, Fourier-transform infrared (FTIR) spectroscopy, and for the presence of the phbB gene, which confirmed the structure of the polymer as PHB. The maximum PHB production by A. indicus was achieved after 96 h of incubation at a pH of 8.0 and 35 °C in the presence of 2% NaCl, with glucose and peptone as the carbon and nitrogen sources, respectively. The strain was found to be capable of accumulating PHB when various cheap agricultural wastes, such as rice, barley, corn, and wheat bran, were used as the carbon sources. The response surface methodology (RSM) through the central composite design (CCD) for optimizing the PHB synthesis was found to be highly efficient at augmenting the polymer yields. As a result of the optimum conditions obtained from the RSM, this strain can increase the PHB content by approximately 1.4-fold when compared with an unoptimized medium, which would substantially lower the production cost. Therefore, the isolate A. indicus strain B2 may be regarded as one of the best candidates for the industrial production of PHB from agricultural wastes, and it can remove the environmental concerns associated with synthetic plastic.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran P.O. Box 1998, Saudi Arabia
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
- Correspondence:
| |
Collapse
|
4
|
Liu S, Liu H, Zhou L, Cheng Z, Wan J, Pan Y, Xu G, Huang F, Wang M, Xiong Y, Hu G. Enhancement of antibacterial and growth‐promoting effects of
Paenibacillus Polymyxa
by optimising its fermentation process. J Appl Microbiol 2022; 133:2954-2965. [DOI: 10.1111/jam.15750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Shoude Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Bioengineering Wuhan Institute of Technology Wuhan China
- Department of Research and Development Wuhan Kernel Bio‐tech Co., Ltd. Wuhan China
| | - Huamei Liu
- Department of Research and Development Wuhan Kernel Bio‐tech Co., Ltd. Wuhan China
| | - Li Zhou
- Department of Research and Development Wuhan Kernel Bio‐tech Co., Ltd. Wuhan China
| | - Zhiguo Cheng
- Department of Research and Development Wuhan Kernel Bio‐tech Co., Ltd. Wuhan China
| | - Jun Wan
- Department of Research and Development Wuhan Kernel Bio‐tech Co., Ltd. Wuhan China
| | - Yu Pan
- Department of Research and Development Wuhan Kernel Bio‐tech Co., Ltd. Wuhan China
| | - Guang Xu
- Department of Research and Development Wuhan Kernel Bio‐tech Co., Ltd. Wuhan China
| | - Fang Huang
- Department of Research and Development Wuhan Kernel Bio‐tech Co., Ltd. Wuhan China
| | - Meng Wang
- Department of Research and Development Wuhan Kernel Bio‐tech Co., Ltd. Wuhan China
| | - Yuanyuan Xiong
- Department of Research and Development Wuhan Kernel Bio‐tech Co., Ltd. Wuhan China
| | - Guoyuan Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Bioengineering Wuhan Institute of Technology Wuhan China
| |
Collapse
|
5
|
Japir AAW, Salih N, Salimon J. Synthesis and characterization of biodegradable palm palmitic acid based bioplastic. Turk J Chem 2021; 45:585-599. [PMID: 34385854 PMCID: PMC8326477 DOI: 10.3906/kim-2011-31] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/30/2021] [Indexed: 11/22/2022] Open
Abstract
This study involves the quantitative analysis of high free fatty acid crude palm oil, the separation of palmitic acid and synthesis of palm palmitic acid-based bioplastic. Synthesis of dimethyl 2-tetradecylmalonate (DMTDM) using methyl palmitate (MP) with sodium hydride (NaH) in the presence of reactive solvent of dimethyl carbonate (DMC) was carried out. The reaction conditions comprise at a mole ratio of MP: DMC: NaH: dimethylformamide (DMF) (0.1:2:0.25:1) at 60 °C for 14 h with 88.3 ± 1.4% yield. FTIR spectra of DMTDM showed the ester carbonyl group at 1740 cm–1. The polymerization of DMTDM with 1,6-hexandiol or 1,12-dodecandiol was carried out using titanium (IV) isopropoxide Ti(OiPr)4 as the catalyst and reaction time of 24 h. The results showed that the poly(dodecyl 2-tetradecylmalonte) (PDTDM) exhibited good thermal properties compared to poly(hexyl 2-tetradecylmalonte) (PHTDM). The increase of the chain length of diol in PDTDM improved the thermal properties of polyester with glass transition, Tg of 13 ºC and melting point of 51 ºC with a molecular weight of 12508 Da and polydispersity index (PDI) of 1.4. In general, the synthetic polyesters can be used as internalplasticizer in bio-based industry.
Collapse
Affiliation(s)
- Abd Al-Wali Japir
- Department of Chemistry, Faculty of Education, Thamar University, Thamar Yemen
| | - Nadia Salih
- Department of Chemical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi, Selangor Malaysia
| | - Jumat Salimon
- Department of Chemical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi, Selangor Malaysia
| |
Collapse
|
6
|
Raturi G, Shree S, Sharma A, Panesar PS, Goswami S. Recent approaches for enhanced production of microbial polyhydroxybutyrate: Preparation of biocomposites and applications. Int J Biol Macromol 2021; 182:1650-1669. [PMID: 33992649 DOI: 10.1016/j.ijbiomac.2021.05.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
In modern decades, an increase in environmental awareness has attracted the keen interest of researchers to investigate eco-sustainable, recyclable materials to minimize reliance on petroleum-based polymeric compounds. Poly (3-hydroxybutyrate) is amorphous, linear, and biodegradable bacterial polyesters that belong to the polyhydroxyalkanoates family with enormous applications in many fields. The present review provides comprehensive information on polyhydroxybutyrate production from different biomass feedstock. Various studies on PHB production by genetically engineered bacterial cells and optimization of parameters have been discussed. Recent technological innovation in processing polyhydroxybutyrate-based biocomposite through the different process has also been examined. Besides this, the potential applications of the derived competent biocomposites in the other fields have been depicted.
Collapse
Affiliation(s)
- Gaurav Raturi
- Department of Agri-Biotechnology, National Agri-food Biotechnology Institute, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Shweta Shree
- Department of Biotechnology, Texas A&M University, USA
| | - Amita Sharma
- Department of Chemical Engineering, Centre of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Parmjit S Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India
| | - Saswata Goswami
- Department of Chemical Engineering, Centre of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| |
Collapse
|
7
|
Enhanced polyhydroxybutyrate (PHB) production by newly isolated rare actinomycetes Rhodococcus sp. strain BSRT1-1 using response surface methodology. Sci Rep 2021; 11:1896. [PMID: 33479335 PMCID: PMC7820505 DOI: 10.1038/s41598-021-81386-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Poly-β-hydroxybutyrate (PHB) is a biodegradable polymer, synthesized as carbon and energy reserve by bacteria and archaea. To the best of our knowledge, this is the first report on PHB production by a rare actinomycete species, Rhodococcus pyridinivorans BSRT1-1. Response surface methodology (RSM) employing central composite design, was applied to enhance PHB production in a flask scale. A maximum yield of 3.6 ± 0.5 g/L in biomass and 43.1 ± 0.5 wt% of dry cell weight (DCW) of PHB were obtained when using RSM optimized medium, which was improved the production of biomass and PHB content by 2.5 and 2.3-fold, respectively. The optimized medium was applied to upscale PHB production in a 10 L stirred-tank bioreactor, maximum biomass of 5.2 ± 0.5 g/L, and PHB content of 46.8 ± 2 wt% DCW were achieved. Furthermore, the FTIR and 1H NMR results confirmed the polymer as PHB. DSC and TGA analysis results revealed the melting, glass transition, and thermal decomposition temperature of 171.8, 4.03, and 288 °C, respectively. In conclusion, RSM can be a promising technique to improve PHB production by a newly isolated strain of R. pyridinivorans BSRT1-1 and the properties of produced PHB possessed similar properties compared to commercial PHB.
Collapse
|
8
|
McAdam B, Brennan Fournet M, McDonald P, Mojicevic M. Production of Polyhydroxybutyrate (PHB) and Factors Impacting Its Chemical and Mechanical Characteristics. Polymers (Basel) 2020; 12:polym12122908. [PMID: 33291620 PMCID: PMC7761907 DOI: 10.3390/polym12122908] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/02/2023] Open
Abstract
Plastic pollution is fueling the grave environmental threats currently facing humans, the animal kingdom, and the planet. The pursuit of renewable resourced biodegradable materials commenced in the 1970s with the need for carbon neutral fully sustainable products driving important progress in recent years. The development of bioplastic materials is highlighted as imperative to the solutions to our global environment challenges and to the restoration of the wellbeing of our planet. Bio-based plastics are becoming increasingly sustainable and are expected to substitute fossil-based plastics. Bioplastics currently include both, nondegradable and biodegradable compositions, depending on factors including the origins of production and post-use management and conditions. Among the most promising materials being developed and evaluated is polyhydroxybutyrate (PHB), a microbial bioprocessed polyester belonging to the polyhydroxyalkanoate (PHA) family. This biocompatible and non-toxic polymer is biosynthesized and accumulated by a number of specialized bacterial strains. The favorable mechanical properties and amenability to biodegradation when exposed to certain active biological environments, earmark PHB as a high potential replacement for petrochemical based polymers such as ubiquitous high density polyethylene (HDPE). To date, high production costs, minimal yields, production technology complexities, and difficulties relating to downstream processing are limiting factors for its progression and expansion in the marketplace. This review examines the chemical, mechanical, thermal, and crystalline characteristics of PHB, as well as various fermentation processing factors which influence the properties of PHB materials.
Collapse
|
9
|
Cardoso LOB, Karolski B, Gracioso LH, do Nascimento CAO, Perpetuo EA. Increased P3HB Accumulation Capacity of Methylorubrum sp. in Response to Discontinuous Methanol Addition. Appl Biochem Biotechnol 2020; 192:846-860. [PMID: 32607898 DOI: 10.1007/s12010-020-03369-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/22/2020] [Indexed: 11/28/2022]
Abstract
An alternative for non-biodegradable oil-based plastics has been the focus of many researchers throughout the years. Polyhydroxyalkanoates (PHAs) are potential substitutes due to their biodegradable characteristic and diversity of monomers that allow different biopolymer compositions and physical-chemical properties suitable for a variety of applications. The most well-known biopolymer from this class, poly(3-hydroxybutyrate) (P3HB), is already produced industrially, but its final price cannot compete with the oil-based plastics. As a low-volume high-value bioproduct, P3HB must be produced through a cheap and abundant feedstock, with high productivity and a feasible purity process in order to become an economically attractive bioproduct. In this scenario, we report a methylotrophic strain isolated from an estuarine contaminated site identified as Methylorubrum sp. highly tolerant to methanol and with great accumulation capacity of 60% (CDW) in 48 h through a simple strategy of batch fermentation with discontinuous methanol addition that could help lower P3HB's processing costs and final price.
Collapse
Affiliation(s)
- Letícia Oliveira Bispo Cardoso
- Chemical Engineering Department (POLI-USP), University of São Paulo, Sao Paulo, Brazil. .,Research Centre for Gas Innovation (RCGI-POLI-USP), University of São Paulo, Sao Paulo, Brazil. .,Environmental Research and Education Center (CEPEMA-POLI-USP), University of São Paulo, Sao Paulo, Brazil.
| | - Bruno Karolski
- Research Centre for Gas Innovation (RCGI-POLI-USP), University of São Paulo, Sao Paulo, Brazil.,Environmental Research and Education Center (CEPEMA-POLI-USP), University of São Paulo, Sao Paulo, Brazil
| | - Louise Hase Gracioso
- Chemical Engineering Department (POLI-USP), University of São Paulo, Sao Paulo, Brazil.,Research Centre for Gas Innovation (RCGI-POLI-USP), University of São Paulo, Sao Paulo, Brazil.,Environmental Research and Education Center (CEPEMA-POLI-USP), University of São Paulo, Sao Paulo, Brazil
| | - Claudio Augusto Oller do Nascimento
- Chemical Engineering Department (POLI-USP), University of São Paulo, Sao Paulo, Brazil.,Research Centre for Gas Innovation (RCGI-POLI-USP), University of São Paulo, Sao Paulo, Brazil.,Environmental Research and Education Center (CEPEMA-POLI-USP), University of São Paulo, Sao Paulo, Brazil
| | - Elen Aquino Perpetuo
- Research Centre for Gas Innovation (RCGI-POLI-USP), University of São Paulo, Sao Paulo, Brazil.,Environmental Research and Education Center (CEPEMA-POLI-USP), University of São Paulo, Sao Paulo, Brazil.,Institute of Marine Sciences (IMar-UNIFESP), Federal University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
10
|
Penkhrue W, Jendrossek D, Khanongnuch C, Pathom-aree W, Aizawa T, Behrens RL, Lumyong S. Response surface method for polyhydroxybutyrate (PHB) bioplastic accumulation in Bacillus drentensis BP17 using pineapple peel. PLoS One 2020; 15:e0230443. [PMID: 32191752 PMCID: PMC7082031 DOI: 10.1371/journal.pone.0230443] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/29/2020] [Indexed: 01/21/2023] Open
Abstract
Polyhydroxybutyrate (PHB) is a biodegradable biopolymer which is useful for various applications including packing, medical and coating materials. An endospore-forming bacterium (strain BP17) was isolated from composted soil and evaluated for PHB production. Strain BP17, taxonomically identified as Bacillus drentensis, showed enhanced PHB accumulation and was selected for further studies. To achieve maximum PHB production, the culture conditions for B. drentensis BP17 were optimized through response surface methodology (RSM) employing central composite rotatable design (CCRD). The final optimum fermentation conditions included: pineapple peel solution, 11.5% (v/v); tryptic soy broth (TSB), 60 g/L; pH, 6.0; inoculum size, 10% (v/v) and temperature, 28°C for 36 h. This optimization yielded 5.55 g/L of PHB compared to the non-optimized condition (0.17 g/L). PHB accumulated by B. drentensis BP17 had a polydispersity value of 1.59 and an average molecular weight of 1.15x105 Da. Thermal analyses revealed that PHB existed as a thermally stable semi-crystalline polymer, exhibiting a thermal degradation temperature of 228°C, a melting temperature of 172°C and an apparent melting enthalpy of fusion of 83.69 J/g. It is evident that B. drentensis strain BP17 is a promising bacterium candidate for PHB production using agricultural waste, such as pineapple peel as a low-cost alternative carbon source for PHB production.
Collapse
Affiliation(s)
- Watsana Penkhrue
- Research Center of Excellence in Microbial Diversity and Sustainable Utilization, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- School of Preclinic, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| | - Chartchai Khanongnuch
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Wasu Pathom-aree
- Research Center of Excellence in Microbial Diversity and Sustainable Utilization, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Tomoyasu Aizawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
- Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Rachel L. Behrens
- Polymer Facility Technical Director, UCSB, MRL, Santa Barbara, CA, United States of America
| | - S. Lumyong
- Research Center of Excellence in Microbial Diversity and Sustainable Utilization, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|