1
|
Makuei MS, Peleato N. Manipulation of particle microorganism association for improved UV disinfection of surface waters. Sci Rep 2025; 15:17798. [PMID: 40404667 PMCID: PMC12098846 DOI: 10.1038/s41598-025-01101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 05/02/2025] [Indexed: 05/24/2025] Open
Abstract
The performance of ultraviolet (UV) disinfection is subject to the quality of water supplied to the reactor, which could often be poor in facilities lacking adequate pre-treatment. Particulate matter in low-quality water can interfere UV disinfection by shielding microorganisms from light through particle-microorganism (p-m) associations. This study investigates Zeta Potential (ZP) manipulation as a pre-treatment to improve UV effectiveness by reducing p-m associations. ZP manipulation is hypothesized to free microorganisms from particulate attachments, increasing their UV vulnerability. Water samples from a drinking water treatment plant applying UV disinfection without pre-filtration were altered for ZP, achieving five different ZP levels. A protocol was developed to distinguish between viable microorganisms attached to particles and free-floating microorganisms. UV experiments were conducted to establish the relationship between UV efficiency and ZP. Results indicated that neutral ZP results in the highest p-m association and lowest disinfection achieved. Disinfection kinetic studies revealed that highly negative ZP enhanced UV efficiency as delivered UV dose increased due to dominant repulsive forces. This study demonstrated that optimizing ZP effectively controlled the degree of p-m association for both viruses and bacteria, which could be a viable approach for mitigating p-m association and leveraged for advancements in UV disinfection.
Collapse
Affiliation(s)
| | - Nicolas Peleato
- Department of Civil Engineering, University of British Columbia, Okanagan, Canada
| |
Collapse
|
2
|
Wang H, Wu Q, Zhang L, Luo H, Wang X, Tie J, Ren Z. A lattice model based on percolation theory for cold atmospheric DBD plasma decontamination kinetics. Food Res Int 2024; 177:113918. [PMID: 38225119 DOI: 10.1016/j.foodres.2023.113918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
The tailing phenomenon, where the survival curve of bacteria shows a slow tailing period after a rapid decline, is a ubiquitous inactivation kinetics process in the advanced plasma sterilization field. While classical models suggest that bacterial resistance dispersion causes the tailing phenomenon, experiments suggest that the non-uniform spatial distribution of spores (clustered structure) is the cause. However, no existing inactivation kinetics model can accurately describe spatial heterogeneity. In this paper, we propose a lattice model based on percolation theory to explain the inactivation kinetics by considering the non-uniform spatial distribution of spores and plasma. Our model divides spores into non-clustered and clustered types and distinguishes between short-tailing and long-tailing compositions and their formation mechanisms. By systematically studying the effects of different spore and plasma parameters on the tailing phenomenon, we provide a reasonable explanation for the kinetic law of the plasma sterilization survival curve and the mechanism of the tailing phenomenon in various cases. As an example, our model accurately explains the 80-second kinetics of atmospheric pressure plasma inactivation of spores, a process that previous models struggled to understand due to its multi-stage and long-tail phenomena. Our model predicts that increasing the spatial distribution probability of plasma can shorten the complete killing time under the same total energy, and we validate this prediction through experiments. Our model successfully explains the seemingly irregular plasma sterilization survival curve and deepens our understanding of the tailing phenomenon in plasma sterilization. This study offers valuable insights for the sterilization of food surfaces using plasma technology, and could serve as a guide for practical applications.
Collapse
Affiliation(s)
- Hao Wang
- School of Electrical Engineering, Chongqing University, Chongqing 400044, China; Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Qiong Wu
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China.
| | - Liyang Zhang
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Haiyun Luo
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Xinxin Wang
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Jinfeng Tie
- PLA Center for Disease Prevention and Control, Beijing 100071, China
| | - Zhe Ren
- PLA Center for Disease Prevention and Control, Beijing 100071, China
| |
Collapse
|
3
|
Oppezzo OJ, Abrevaya XC, Giacobone AFF. An alternative interpretation for tailing in survival curves for bacteria exposed to germicidal radiation. Photochem Photobiol 2024; 100:129-136. [PMID: 37026990 DOI: 10.1111/php.13808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/13/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
It has been proposed that transient and reversible phenotypic changes could modify the response of bacteria to germicidal radiation, eventually leading to tailing in the survival curves. If this were the case, changes in susceptibility to radiation would reflect variations in gene expression and should only occur in cells in which gene expression is active. To obtain experimental evidence supporting the involvement of phenotypic changes in the origin of tailing, we studied changes in the susceptibility to radiation of cells able to survive high fluences, using split irradiations. Stationary phase cells of Enterobacter cloacae and Deinococcus radiodurans, in which gene expression is active, and spores of Bacillus subtilis, which are dormant cells without active gene expression, were used as microbial models. While cells of E. cloacae and D. radiodurans became susceptible after surviving exposures to high fluences, tolerant spores exhibited unchanged response to radiation. The results can be interpreted assuming that noise in gene expression modifies bacterial susceptibility to radiation, and tailing is the result of intrinsic phenomena of bacterial physiology rather than a technical artifact. For either theoretical or practical purposes, deviations from simple exponential decay kinetics should be considered in estimations of the effects of germicidal radiation at high fluences.
Collapse
Affiliation(s)
- Oscar J Oppezzo
- Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Ximena C Abrevaya
- Instituto de Astronomía y Física del Espacio (UBA-CONICET), Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
| | - Ana F F Giacobone
- Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
- Universidad Nacional de Tres de Febrero, Buenos Aires, Argentina
| |
Collapse
|
4
|
Bernhard GH, Madronich S, Lucas RM, Byrne SN, Schikowski T, Neale RE. Linkages between COVID-19, solar UV radiation, and the Montreal Protocol. Photochem Photobiol Sci 2023; 22:991-1009. [PMID: 36995652 PMCID: PMC10062285 DOI: 10.1007/s43630-023-00373-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 03/31/2023]
Abstract
There are several connections between coronavirus disease 2019 (COVID-19), solar UV radiation, and the Montreal Protocol. Exposure to ambient solar UV radiation inactivates SARS-CoV-2, the virus responsible for COVID-19. An action spectrum describing the wavelength dependence of the inactivation of SARS-CoV-2 by UV and visible radiation has recently been published. In contrast to action spectra that have been assumed in the past for estimating the effect of UV radiation on SARS-CoV-2, the new action spectrum has a large sensitivity in the UV-A (315-400 nm) range. If this "UV-A tail" is correct, solar UV radiation could be much more efficient in inactivating the virus responsible for COVID-19 than previously thought. Furthermore, the sensitivity of inactivation rates to the total column ozone would be reduced because ozone absorbs only a small amount of UV-A radiation. Using solar simulators, the times for inactivating SARS-CoV-2 have been determined by several groups; however, many measurements are affected by poorly defined experimental setups. The most reliable data suggest that 90% of viral particles embedded in saliva are inactivated within ~ 7 min by solar radiation for a solar zenith angle (SZA) of 16.5° and within ~ 13 min for a SZA of 63.4°. Slightly longer inactivation times were found for aerosolised virus particles. These times can become considerably longer during cloudy conditions or if virus particles are shielded from solar radiation. Many publications have provided evidence of an inverse relationship between ambient solar UV radiation and the incidence or severity of COVID-19, but the reasons for these negative correlations have not been unambiguously identified and could also be explained by confounders, such as ambient temperature, humidity, visible radiation, daylength, temporal changes in risk and disease management, and the proximity of people to other people. Meta-analyses of observational studies indicate inverse associations between serum 25-hydroxy vitamin D (25(OH)D) concentration and the risk of SARS-CoV-2 positivity or severity of COVID-19, although the quality of these studies is largely low. Mendelian randomisation studies have not found statistically significant evidence of a causal effect of 25(OH)D concentration on COVID-19 susceptibility or severity, but a potential link between vitamin D status and disease severity cannot be excluded as some randomised trials suggest that vitamin D supplementation is beneficial for people admitted to a hospital. Several studies indicate significant positive associations between air pollution and COVID-19 incidence and fatality rates. Conversely, well-established cohort studies indicate no association between long-term exposure to air pollution and infection with SARS-CoV-2. By limiting increases in UV radiation, the Montreal Protocol has also suppressed the inactivation rates of pathogens exposed to UV radiation. However, there is insufficient evidence to conclude that the expected larger inactivation rates without the Montreal Protocol would have had tangible consequences on the progress of the COVID-19 pandemic.
Collapse
Affiliation(s)
- G H Bernhard
- Biospherical Instruments Inc., San Diego, CA, USA.
| | - S Madronich
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, USA
| | - R M Lucas
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia
| | - S N Byrne
- Faculty of Medicine and Health, The University of Sydney, School of Medical Sciences, Sydney, Australia
| | - T Schikowski
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - R E Neale
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
- School of Public Health, University of Queensland, Brisbane, Australia.
| |
Collapse
|
5
|
Bernhard GH, Bais AF, Aucamp PJ, Klekociuk AR, Liley JB, McKenzie RL. Stratospheric ozone, UV radiation, and climate interactions. Photochem Photobiol Sci 2023; 22:937-989. [PMID: 37083996 PMCID: PMC10120513 DOI: 10.1007/s43630-023-00371-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 04/14/2023]
Abstract
This assessment provides a comprehensive update of the effects of changes in stratospheric ozone and other factors (aerosols, surface reflectivity, solar activity, and climate) on the intensity of ultraviolet (UV) radiation at the Earth's surface. The assessment is performed in the context of the Montreal Protocol on Substances that Deplete the Ozone Layer and its Amendments and Adjustments. Changes in UV radiation at low- and mid-latitudes (0-60°) during the last 25 years have generally been small (e.g., typically less than 4% per decade, increasing at some sites and decreasing at others) and were mostly driven by changes in cloud cover and atmospheric aerosol content, caused partly by climate change and partly by measures to control tropospheric pollution. Without the Montreal Protocol, erythemal (sunburning) UV irradiance at northern and southern latitudes of less than 50° would have increased by 10-20% between 1996 and 2020. For southern latitudes exceeding 50°, the UV Index (UVI) would have surged by between 25% (year-round at the southern tip of South America) and more than 100% (South Pole in spring). Variability of erythemal irradiance in Antarctica was very large during the last four years. In spring 2019, erythemal UV radiation was at the minimum of the historical (1991-2018) range at the South Pole, while near record-high values were observed in spring 2020, which were up to 80% above the historical mean. In the Arctic, some of the highest erythemal irradiances on record were measured in March and April 2020. For example in March 2020, the monthly average UVI over a site in the Canadian Arctic was up to 70% higher than the historical (2005-2019) average, often exceeding this mean by three standard deviations. Under the presumption that all countries will adhere to the Montreal Protocol in the future and that atmospheric aerosol concentrations remain constant, erythemal irradiance at mid-latitudes (30-60°) is projected to decrease between 2015 and 2090 by 2-5% in the north and by 4-6% in the south due to recovering ozone. Changes projected for the tropics are ≤ 3%. However, in industrial regions that are currently affected by air pollution, UV radiation will increase as measures to reduce air pollutants will gradually restore UV radiation intensities to those of a cleaner atmosphere. Since most substances controlled by the Montreal Protocol are also greenhouse gases, the phase-out of these substances may have avoided warming by 0.5-1.0 °C over mid-latitude regions of the continents, and by more than 1.0 °C in the Arctic; however, the uncertainty of these calculations is large. We also assess the effects of changes in stratospheric ozone on climate, focusing on the poleward shift of climate zones, and discuss the role of the small Antarctic ozone hole in 2019 on the devastating "Black Summer" fires in Australia. Additional topics include the assessment of advances in measuring and modeling of UV radiation; methods for determining personal UV exposure; the effect of solar radiation management (stratospheric aerosol injections) on UV radiation relevant for plants; and possible revisions to the vitamin D action spectrum, which describes the wavelength dependence of the synthesis of previtamin D3 in human skin upon exposure to UV radiation.
Collapse
Affiliation(s)
- G H Bernhard
- Biospherical Instruments Inc, San Diego, CA, USA.
| | - A F Bais
- Laboratory of Atmospheric Physics, Department of Physics, Aristotle University, Thessaloniki, Greece.
| | - P J Aucamp
- Ptersa Environmental Consultants, Pretoria, South Africa
| | - A R Klekociuk
- Antarctic Climate Program, Australian Antarctic Division, Kingston, Australia
| | - J B Liley
- National Institute of Water & Atmospheric Research, Lauder, New Zealand
| | - R L McKenzie
- National Institute of Water & Atmospheric Research, Lauder, New Zealand
| |
Collapse
|
6
|
Ruetalo N, Berger S, Niessner J, Schindler M. Inactivation of aerosolized SARS-CoV-2 by 254 nm UV-C irradiation. INDOOR AIR 2022; 32:e13115. [PMID: 36168221 PMCID: PMC9538331 DOI: 10.1111/ina.13115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 06/12/2023]
Abstract
Surface residing SARS-CoV-2 is efficiently inactivated by UV-C irradiation. This raises the question whether UV-C-based technologies are also suitable to decontaminate SARS-CoV-2- containing aerosols and which doses are needed to achieve inactivation. Here, we designed a test bench to generate aerosolized SARS-CoV-2 and exposed the aerosols to a defined UV-C dose. Our results demonstrate that the exposure of aerosolized SARS-CoV-2 with a low average dose in the order of 0.42-0.51 mJ/cm2 UV-C at 254 nm resulted in more than 99.9% reduction in viral titers. Altogether, UV-C-based decontamination of aerosols seems highly effective to achieve a significant reduction in SARS-CoV-2 infectivity.
Collapse
Affiliation(s)
- Natalia Ruetalo
- Institute for Medical Virology and Epidemiology of Viral DiseasesUniversity Hospital TübingenTübingenGermany
| | - Simon Berger
- Institute for Flow in Additively Manufactured Porous MediaHochschule HeilbronnHeilbronnGermany
| | - Jennifer Niessner
- Institute for Flow in Additively Manufactured Porous MediaHochschule HeilbronnHeilbronnGermany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral DiseasesUniversity Hospital TübingenTübingenGermany
| |
Collapse
|
7
|
Schuit MA, Larason TC, Krause ML, Green BM, Holland BP, Wood SP, Grantham S, Zong Y, Zarobila CJ, Freeburger DL, Miller DM, Bohannon JK, Ratnesar-Shumate SA, Blatchley ER, Li X, Dabisch PA, Miller CC. SARS-CoV-2 inactivation by ultraviolet radiation and visible light is dependent on wavelength and sample matrix. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112503. [PMID: 35779426 PMCID: PMC9221687 DOI: 10.1016/j.jphotobiol.2022.112503] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/19/2022] [Accepted: 06/18/2022] [Indexed: 11/11/2022]
Abstract
Numerous studies have demonstrated that SARS-CoV-2 can be inactivated by ultraviolet (UV) radiation. However, there are few data available on the relative efficacy of different wavelengths of UV radiation and visible light, which complicates assessments of UV decontamination interventions. The present study evaluated the effects of monochromatic radiation at 16 wavelengths from 222 nm through 488 nm on SARS-CoV-2 in liquid aliquots and dried droplets of water and simulated saliva. The data were used to generate a set of action spectra which quantify the susceptibility of SARS-CoV-2 to genome damage and inactivation across the tested wavelengths. UVC wavelengths (≤280 nm) were most effective for inactivating SARS-CoV-2, although inactivation rates were dependent on sample type. Results from this study suggest that UV radiation can effectively inactivate SARS-CoV-2 in liquids and dried droplets, and provide a foundation for understanding the factors which affect the efficacy of different wavelengths in real-world settings.
Collapse
Affiliation(s)
- Michael A Schuit
- National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, 8300 Research Plaza, Frederick, MD 21702, USA.
| | - Thomas C Larason
- National Institute of Standards and Technology (NIST), U.S. Department of Commerce (DoC), 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Melissa L Krause
- National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, 8300 Research Plaza, Frederick, MD 21702, USA
| | - Brian M Green
- National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, 8300 Research Plaza, Frederick, MD 21702, USA
| | - Brian P Holland
- National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, 8300 Research Plaza, Frederick, MD 21702, USA
| | - Stewart P Wood
- National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, 8300 Research Plaza, Frederick, MD 21702, USA
| | - Steven Grantham
- National Institute of Standards and Technology (NIST), U.S. Department of Commerce (DoC), 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Yuqin Zong
- National Institute of Standards and Technology (NIST), U.S. Department of Commerce (DoC), 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Clarence J Zarobila
- National Institute of Standards and Technology (NIST), U.S. Department of Commerce (DoC), 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Denise L Freeburger
- National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, 8300 Research Plaza, Frederick, MD 21702, USA
| | - David M Miller
- National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, 8300 Research Plaza, Frederick, MD 21702, USA
| | - Jordan K Bohannon
- National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, 8300 Research Plaza, Frederick, MD 21702, USA
| | - Shanna A Ratnesar-Shumate
- National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, 8300 Research Plaza, Frederick, MD 21702, USA
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, Purdue University, 610 Purdue Mall, West Lafayette, IN, USA; Division of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Xing Li
- Lyles School of Civil Engineering, Purdue University, 610 Purdue Mall, West Lafayette, IN, USA
| | - Paul A Dabisch
- National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, 8300 Research Plaza, Frederick, MD 21702, USA
| | - C Cameron Miller
- National Institute of Standards and Technology (NIST), U.S. Department of Commerce (DoC), 100 Bureau Drive, Gaithersburg, MD 20899, USA
| |
Collapse
|
8
|
Kowalski W, Moeller R, Walsh TJ, Petraitis V, Passman FJ. Ultraviolet disinfection efficacy test method using bacteria monolayers. J Microbiol Methods 2022; 200:106541. [PMID: 35870538 DOI: 10.1016/j.mimet.2022.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022]
Abstract
Monolayers of bacterial cells of Staphylococcus aureus and Pseudomonas aeruginosa were inoculated on glass slide carriers using an automated inoculum spray deposition system. The use of bacterial monolayers allows for control of critical variables for testing and verification of light-based disinfection technologies. This approach avoids the variability associated with manual inoculation and high inoculum titers, which can engender clustering of cells and the associated photoprotection that clustering incurs. The use of glass slide carriers avoids problems caused by irregular microscopic surface features, which can impact the efficacy evaluation of light-based disinfection technologies. Scanning electron micrographic (SEM) imaging was used to verify the surface topography and the presence of monolayers. The spray deposition method produced a mean density of >106 colony forming units (CFU) per carrier. The inoculated carriers were exposed to ultraviolet light for 120 s from a focused multivector ultraviolet (FMUV) light system. A mean log CFU reduction of 4.8 was achieved for S. aureus (p < 0.0001). A mean log CFU reduction of 5.1 was achieved for P. aeruginosa (p < 0.0001). The test method presented herein will facilitate increased accuracy in the measurement of ultraviolet susceptibility rate constants.
Collapse
Affiliation(s)
| | - Ralf Moeller
- German Aerospace Center (DLR e.V.), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Cologne, Germany
| | - Thomas J Walsh
- Infectious Diseases Translational Research Laboratory, Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine of Cornell University, New York City, NY, USA
| | - Vidmantas Petraitis
- Infectious Diseases Translational Research Laboratory, Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine of Cornell University, New York City, NY, USA
| | | |
Collapse
|
9
|
Inactivation Rates for Airborne Human Coronavirus by Low Doses of 222 nm Far-UVC Radiation. Viruses 2022; 14:v14040684. [PMID: 35458414 PMCID: PMC9030991 DOI: 10.3390/v14040684] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022] Open
Abstract
Recent research using UV radiation with wavelengths in the 200–235 nm range, often referred to as far-UVC, suggests that the minimal health hazard associated with these wavelengths will allow direct use of far-UVC radiation within occupied indoor spaces to provide continuous disinfection. Earlier experimental studies estimated the susceptibility of airborne human coronavirus OC43 exposed to 222-nm radiation based on fitting an exponential dose–response curve to the data. The current study extends the results to a wider range of doses of 222 nm far-UVC radiation and uses a computational model coupling radiation transport and computational fluid dynamics to improve dosimetry estimates. The new results suggest that the inactivation of human coronavirus OC43 within our exposure system is better described using a bi-exponential dose–response relation, and the estimated susceptibility constant at low doses—the relevant parameter for realistic low dose rate exposures—was 12.4 ± 0.4 cm2/mJ, which described the behavior of 99.7% ± 0.05% of the virus population. This new estimate is more than double the earlier susceptibility constant estimates that were based on a single-exponential dose response. These new results offer further evidence as to the efficacy of far-UVC to inactivate airborne pathogens.
Collapse
|
10
|
Mathematical Modeling for Evaluating Inherent Parameters Affecting UVC Decontamination of Indicator Bacteria. Appl Environ Microbiol 2022; 88:e0214821. [PMID: 35289640 DOI: 10.1128/aem.02148-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UV light is a tool associated with the denaturation of cellular components, DNA damage, and cell disruption. UV treatment is widely used in the decontamination process; however, predicting a sufficient UV dose by using traditional methods is doubtful. In this study, an in-house UVC apparatus was designed to investigate the process of the inactivation of five indicator bacteria when the initial cell concentrations and irradiation intensities varied. Both linear and nonlinear mathematical models were applied to predict the inactivation kinetics. In comparison with the Weibull and modified Chick-Watson models, the Chick-Watson model provided a good fit of the experimental data for five bacteria, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus faecalis, and Bacillus subtilis. The specific death rate (kd) significantly increased when the irradiation intensity (I) increased from 1.41 W/m2 to 3.02 W/m2 and 4.83 W/m2 (P < 0.05). Statistical analysis revealed no significant difference in the kd values among the groups of tested Gram-positive bacteria, Gram-negative bacteria, and B. subtilis spores, but the kd values differed among groups (P < 0.05). The death rate coefficient (k) varied from species to species. The k values of the tested Gram-positive bacteria were higher than those of the Gram-negative bacteria. The thick peptidoglycan layer in the Gram-positive membrane was responsible for UVC resistance. The high guanine-cytosine (GC) content in bacteria also contributed to UV resistance due to the less photoreactive sites on the nucleotides. This investigation provides a good understanding of bacterial inactivation induced by UVC treatment. IMPORTANCE Prevention and control measures for microbial pathogens have attracted worldwide attention due to the recent coronavirus disease 2019 pandemic. UV treatments are used as a commercial control to prevent microbial contamination in diverse applications. Microorganisms exhibit different UV sensitivities, which are often measured by the UV doses required for decreasing the number of microbial contaminants in the logarithmic order. The maximum efficacy of UV is usually observed at 254 nm (residing in the UVC range of the light spectrum). UV technology is a nonthermal physical decontamination measure that does not require any chemicals and consumes low levels of energy while leaving insignificant amounts of chemical residues or toxic compounds. Therefore, obtaining the microbial death kinetics and their intrinsic parameters provided in this study together with the UV photoreaction rate enables advancement in the design of UV treatment systems.
Collapse
|
11
|
Dose fractionation as a promising strategy to improve UV disinfection. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Hill SC, Mackowski DW, Doughty DC. Shielding of viruses such as SARS-Cov-2 from ultraviolet radiation in particles generated by sneezing or coughing: Numerical simulations of survival fractions. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2021; 18:394-408. [PMID: 34161194 DOI: 10.1080/15459624.2021.1939877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
SARS-CoV-2 and other microbes within aerosol particles can be partially shielded from UV radiation. The particles refract and absorb light, and thereby reduce the UV intensity at various locations within the particle. Previously, we demonstrated shielding in calculations of UV intensities within spherical approximations of SARS-CoV-2 virions within spherical particles approximating dried-to-equilibrium respiratory fluids. The purpose of this paper is to extend that work to survival fractions of virions (i.e., fractions of virions that can infect cells) within spherical particles approximating dried respiratory fluids, and to investigate the implications of these calculations for using UV light for disinfection. The particles may be on a surface or in air. Here, the survival fraction (S) of a set of individual virions illuminated with a UV fluence (F, in J/m2) is assumed described by S(kF) = exp(-kF), where k is the UV inactivation rate constant (m2/J). The average survival fraction (Sp) of the simulated virions in a group of particles is calculated using the energy absorbed by each virion in the particles. The results show that virions within particles of dried respiratory fluids can have larger Sp than do individual virions. For individual virions, and virions within 1-, 5-, and 9-µm particles illuminated (normal incidence) on a surface with 260-nm UV light, the Sp = 0.00005, 0.0155, 0.22, and 0.28, respectively, when kF = 10. The Sp decrease to <10-7, <10-7, 0.077, and 0.15, respectively, for kF = 100. Results also show that illuminating particles with UV beams from widely separated directions can strongly reduce the Sp. These results suggest that the size distributions and optical properties of the dried particles of virion-containing respiratory fluids are likely important to effectively designing and using UV germicidal irradiation systems for microbes in particles. The results suggest the use of reflective surfaces to increase the angles of illumination and decrease the Sp. The results suggest the need for measurements of the Sp of SARS-CoV-2 in particles having compositions and sizes relevant to the modes of disease transmission.
Collapse
|
13
|
Martínez-Antón JC, Brun A, Vázquez D, Moreno S, Fernández-Balbuena AA, Alda J. Determination of the characteristic inactivation fluence for SARS-CoV-2 under UV-C radiation considering light absorption in culture media. Sci Rep 2021; 11:15293. [PMID: 34315976 PMCID: PMC8316444 DOI: 10.1038/s41598-021-94648-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/14/2021] [Indexed: 01/21/2023] Open
Abstract
The optical absorption coefficient of culture media is critical for the survival analysis of pathogens under optical irradiation. The quality of the results obtained from experiments relies on the optical analysis of the spatial distribution of fluence which also depends on the geometry of the sample. In this contribution, we consider both the geometrical shape and the culture medium's absorption coefficient to evaluate how the spatial distribution of optical radiation affects pathogens/viruses. In this work, we exposed SARS-CoV-2 to UV-C radiation ([Formula: see text] = 254 nm) and we calculated-considering the influence of the optical absorption of the culture medium-a characteristic inactivation fluence of [Formula: see text] = 4.7 J/m2, or an equivalent 10% survival (D90 dose) of 10.8 J/m2. Experimentally, we diluted the virus into sessile drops of Dulbecco's Modified Eagle Medium to evaluate pathogen activity after controlled doses of UV irradiation. To validate the optical absorption mode, we carried out an additional experiment where we varied droplet size. Our model-including optical absorption and geometrical considerations-provides robust results among a variety of experimental situations, and represents our experimental conditions more accurately. These results will help to evaluate the capability of UV disinfecting strategies applied to a variety of everyday situations, including the case of micro-droplets generated by respiratory functions.
Collapse
Affiliation(s)
- Juan Carlos Martínez-Antón
- Applied Optics Complutense Group, Faculty of Optics and Optometry, University Complutense of Madrid, Av. Arcos de Jalón, 118, 28037, Madrid, Spain
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Carretera Algete-El Casar de Talamanca, Km 8.1, 28130, Valdeolmos, Madrid, Spain
| | - Daniel Vázquez
- Applied Optics Complutense Group, Faculty of Optics and Optometry, University Complutense of Madrid, Av. Arcos de Jalón, 118, 28037, Madrid, Spain
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Carretera Algete-El Casar de Talamanca, Km 8.1, 28130, Valdeolmos, Madrid, Spain
| | - Antonio A Fernández-Balbuena
- Applied Optics Complutense Group, Faculty of Optics and Optometry, University Complutense of Madrid, Av. Arcos de Jalón, 118, 28037, Madrid, Spain
| | - Javier Alda
- Applied Optics Complutense Group, Faculty of Optics and Optometry, University Complutense of Madrid, Av. Arcos de Jalón, 118, 28037, Madrid, Spain.
| |
Collapse
|
14
|
Martínez de Alba AE, Rubio MB, Morán-Diez ME, Bernabéu C, Hermosa R, Monte E. Microbiological Evaluation of the Disinfecting Potential of UV-C and UV-C Plus Ozone Generating Robots. Microorganisms 2021; 9:microorganisms9010172. [PMID: 33467428 PMCID: PMC7830970 DOI: 10.3390/microorganisms9010172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022] Open
Abstract
This study examined the microbicidal activity of ultraviolet (UV)-C185–256-nm irradiance (robot 1) and ozone generated at UV-C185-nm by low-pressure mercury vapor lamps (robot 2) adapted to mobile robotic devices for surface decontamination, which was achieved in less than 1 h. Depending on their wall structure and outer envelopes, many microorganisms display different levels of resistance to decontaminating agents. Thus, the need for novel disinfection approaches is further exacerbated by the increased prevalence of multidrug-resistant bacteria, as well as the potential of novel microorganisms, with the ability to cause disease outbreaks. To set up a rapid and effective approach for microorganisms propagation prevention, we focused on the effects of UV-C and ozone on a distinct microorganism survival ratio. A set of microorganisms, including Escherichia coli, Micrococcus luteus, Saccharomyces cerevisiae, Trichoderma harzianum, and Bacillus subtilis, were used to evaluate the disinfection power of UV-C and UV-C plus ozone generating robots. UV-C disinfection can be suited to ad hoc tasks, is easy to operate, requires low maintenance, does not have the need for the storage of dangerous chemicals, and does not produce by-products that may affect human health and the environment. The robotic cumulative irradiation technology developed (fluence accumulated values of 2.28 and 3.62 mJ cm−2, for robot 1 and 2, respectively), together with the production of ozone (with a maximum peak of 0.43 ppm) capable of reaching UV-C shaded surfaces, and analyzed in the current study, despite being designed for the need to reduce the risk of epidemic outbreaks in real-life scenarios, represents a versatile tool that could be employed for air and surface disinfection within many circumstances that are faced daily.
Collapse
Affiliation(s)
- Angel Emilio Martínez de Alba
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Campus de Villamayor, 37185 Salamanca, Spain; (M.B.R.); (M.E.M.-D.); (R.H.); (E.M.)
- Correspondence:
| | - María Belén Rubio
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Campus de Villamayor, 37185 Salamanca, Spain; (M.B.R.); (M.E.M.-D.); (R.H.); (E.M.)
| | - María Eugenia Morán-Diez
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Campus de Villamayor, 37185 Salamanca, Spain; (M.B.R.); (M.E.M.-D.); (R.H.); (E.M.)
| | - Carlos Bernabéu
- Arborea Intellbird, Science Park University of Salamanca, Campus de Villamayor, 37185 Salamanca, Spain;
| | - Rosa Hermosa
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Campus de Villamayor, 37185 Salamanca, Spain; (M.B.R.); (M.E.M.-D.); (R.H.); (E.M.)
| | - Enrique Monte
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Campus de Villamayor, 37185 Salamanca, Spain; (M.B.R.); (M.E.M.-D.); (R.H.); (E.M.)
| |
Collapse
|
15
|
Neale RE, Barnes PW, Robson TM, Neale PJ, Williamson CE, Zepp RG, Wilson SR, Madronich S, Andrady AL, Heikkilä AM, Bernhard GH, Bais AF, Aucamp PJ, Banaszak AT, Bornman JF, Bruckman LS, Byrne SN, Foereid B, Häder DP, Hollestein LM, Hou WC, Hylander S, Jansen MAK, Klekociuk AR, Liley JB, Longstreth J, Lucas RM, Martinez-Abaigar J, McNeill K, Olsen CM, Pandey KK, Rhodes LE, Robinson SA, Rose KC, Schikowski T, Solomon KR, Sulzberger B, Ukpebor JE, Wang QW, Wängberg SÅ, White CC, Yazar S, Young AR, Young PJ, Zhu L, Zhu M. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. Photochem Photobiol Sci 2021; 20:1-67. [PMID: 33721243 PMCID: PMC7816068 DOI: 10.1007/s43630-020-00001-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 01/31/2023]
Abstract
This assessment by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) provides the latest scientific update since our most recent comprehensive assessment (Photochemical and Photobiological Sciences, 2019, 18, 595-828). The interactive effects between the stratospheric ozone layer, solar ultraviolet (UV) radiation, and climate change are presented within the framework of the Montreal Protocol and the United Nations Sustainable Development Goals. We address how these global environmental changes affect the atmosphere and air quality; human health; terrestrial and aquatic ecosystems; biogeochemical cycles; and materials used in outdoor construction, solar energy technologies, and fabrics. In many cases, there is a growing influence from changes in seasonality and extreme events due to climate change. Additionally, we assess the transmission and environmental effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the COVID-19 pandemic, in the context of linkages with solar UV radiation and the Montreal Protocol.
Collapse
Affiliation(s)
- R E Neale
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - P W Barnes
- Biological Sciences and Environmental Program, Loyola University New Orleans, New Orleans, LA, USA
| | - T M Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Sciences Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - P J Neale
- Smithsonian Environmental Research Center, Maryland, USA
| | - C E Williamson
- Department of Biology, Miami University, Oxford, OH, USA
| | - R G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - S R Wilson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - S Madronich
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - A L Andrady
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - A M Heikkilä
- Finnish Meteorological Institute, Helsinki, Finland
| | - G H Bernhard
- Biospherical Instruments Inc, San Diego, CA, USA
| | - A F Bais
- Department of Physics, Laboratory of Atmospheric Physics, Aristotle University, Thessaloniki, Greece
| | - P J Aucamp
- Ptersa Environmental Consultants, Pretoria, South Africa
| | - A T Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, México
| | - J F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia.
| | - L S Bruckman
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - S N Byrne
- The University of Sydney, School of Medical Sciences, Discipline of Applied Medical Science, Sydney, Australia
| | - B Foereid
- Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - D-P Häder
- Department of Biology, Friedrich-Alexander University, Möhrendorf, Germany
| | - L M Hollestein
- Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - W-C Hou
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - S Hylander
- Centre for Ecology and Evolution in Microbial model Systems-EEMiS, Linnaeus University, Kalmar, Sweden.
| | - M A K Jansen
- School of BEES, Environmental Research Institute, University College Cork, Cork, Ireland
| | - A R Klekociuk
- Antarctic Climate Program, Australian Antarctic Division, Kingston, Australia
| | - J B Liley
- National Institute of Water and Atmospheric Research, Lauder, New Zealand
| | - J Longstreth
- The Institute for Global Risk Research, LLC, Bethesda, MD, USA
| | - R M Lucas
- National Centre of Epidemiology and Population Health, Australian National University, Canberra, Australia
| | - J Martinez-Abaigar
- Faculty of Science and Technology, University of La Rioja, Logroño, Spain
| | | | - C M Olsen
- Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - K K Pandey
- Department of Wood Properties and Uses, Institute of Wood Science and Technology, Bangalore, India
| | - L E Rhodes
- Photobiology Unit, Dermatology Research Centre, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - S A Robinson
- Securing Antarctica's Environmental Future, Global Challenges Program and School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - K C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - T Schikowski
- IUF-Leibniz Institute of Environmental Medicine, Dusseldorf, Germany
| | - K R Solomon
- Centre for Toxicology, School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - B Sulzberger
- Academic Guest Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - J E Ukpebor
- Chemistry Department, Faculty of Physical Sciences, University of Benin, Benin City, Nigeria
| | - Q-W Wang
- Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang, China
| | - S-Å Wängberg
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - C C White
- Bee America, 5409 Mohican Rd, Bethesda, MD, USA
| | - S Yazar
- Garvan Institute of Medical Research, Sydney, Australia
| | - A R Young
- St John's Institute of Dermatology, King's College London, London, UK
| | - P J Young
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - L Zhu
- Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, China
| | - M Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, China
| |
Collapse
|
16
|
Pérez-López AJ, Rodríguez-López MI, Burló F, Carbonell-Barrachina ÁA, Gabaldón JA, Gómez-López VM. Evaluation of Pulsed Light to Inactivate Brettanomyces bruxellensis in White Wine and Assessment of Its Effects on Color and Aromatic Profile. Foods 2020; 9:foods9121903. [PMID: 33352670 PMCID: PMC7766888 DOI: 10.3390/foods9121903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022] Open
Abstract
Brettanomyces bruxellensis is a wine spoilage yeast that could be inactivated by pulsed light (PL); however, this technology may induce changes in the quality of this alcoholic drink. The present research aimed to determine the potential of PL to inactivate B. bruxellensis inoculated in white wine and to assess the effect of this technology on the color and aromatic profile of the wine. For this, a cocktail of B. bruxellensis strains was inoculated into the wine and its inactivation by PL was determined and fitted to a microbial inactivation model. Along with this, the effect of PL on instrument-measured color, and the volatile compounds of the wine were evaluated by GC/MS and descriptive sensory analysis, respectively. B. bruxellensis was inactivated according to the Geeraerd model including the tail effect, with a maximum inactivation of 2.10 log reduction at 10.7 J/cm2; this fluence was selected for further studies. PL affected wine color but the total color difference was below the just noticeable difference at 10.7 J/cm2. The concentration of 13 out of 15 volatile compounds decreased due to the PL, which was noticeable by the panel. It is not clear if these compounds were photolyzed or volatilized in the open reactor during treatment. In conclusion, PL is able to inactivate B. bruxellensis in white wine but the treatment impairs the volatile profile. The use of a closed reactor under turbulent flow is recommended for disaggregating yeast clumps that may cause the tailing of the inactivation curve, and to avoid the possible escape of volatile compounds during treatment.
Collapse
Affiliation(s)
- Antonio J. Pérez-López
- Departamento de Ciencia y Tecnología de Alimentos, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107 Guadalupe, Spain; (A.J.P.-L.); (M.I.R.-L.); (J.A.G.)
| | - María I. Rodríguez-López
- Departamento de Ciencia y Tecnología de Alimentos, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107 Guadalupe, Spain; (A.J.P.-L.); (M.I.R.-L.); (J.A.G.)
| | - Francisco Burló
- Departamento de Tecnología Agroalimentaria, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández de Elche (UMH), 03312 Orihuela, Spain; (F.B.); (Á.A.C.-B.)
| | - Ángel A. Carbonell-Barrachina
- Departamento de Tecnología Agroalimentaria, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández de Elche (UMH), 03312 Orihuela, Spain; (F.B.); (Á.A.C.-B.)
| | - José A. Gabaldón
- Departamento de Ciencia y Tecnología de Alimentos, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107 Guadalupe, Spain; (A.J.P.-L.); (M.I.R.-L.); (J.A.G.)
| | - Vicente M. Gómez-López
- Cátedra Alimentos para la Salud, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107 Guadalupe, Spain
- Correspondence: ; Tel.: +34-968-278-638
| |
Collapse
|