1
|
Lelis DL, Morenz MJF, Paciullo DSC, Roseira JPS, Gomide CADM, Pereira OG, Oliveira JSE, Lopes FCF, da Silva VP, da Silveira TC, Chizzotti FHM. Effects of Lactic Acid Bacteria on Fermentation and Nutritional Value of BRS Capiaçu Elephant Grass Silage at Two Regrowth Ages. Animals (Basel) 2025; 15:1150. [PMID: 40281985 PMCID: PMC12024101 DOI: 10.3390/ani15081150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
The objective of this study was to evaluate the effects of lactic acid bacteria inoculation on the fermentation profile and nutritional value of BRS Capiaçu elephant grass silages harvested at two regrowth ages. The treatments were arranged in a 5 × 2 factorial scheme, with five inoculants (I) and two regrowth ages (A, 90 and 105 days), in a completely randomized design, with three replicates. There were I × A interactions (p < 0.05) on pH, acetic acid, and water-soluble carbohydrates. The silage treated with Kera-Sil showed a lower pH compared with the control silage. The highest ammonia nitrogen content was recorded in the silage treated with Yakult®. There were I × A interactions (p < 0.05) on the dry matter (DM) content, neutral detergent fiber (NDF), and in vitro digestibility of DM (IVDMD) and NDF (IVNDFD). Silages treated with Kera-Sil and Silo-Max at 90 days of regrowth showed a higher DM and higher IVDMD (p < 0.05). A higher NDF content and lower IVDMD and IVNDFD were recorded in silages produced with grass harvested at 105 days of regrowth (p < 0.05). The use of commercial microbial inoculants improved the fermentative and nutritional parameters of the silages.
Collapse
Affiliation(s)
- Daiana Lopes Lelis
- Department of Animal Science, Federal University of Vicosa, Vicosa 36570-900, Brazil; (D.L.L.); (J.P.S.R.); (O.G.P.); (V.P.d.S.); (T.C.d.S.)
| | - Mirton José Frota Morenz
- Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora 36038-330, Brazil; (M.J.F.M.); (D.S.C.P.); (C.A.d.M.G.); (J.S.e.O.); (F.C.F.L.)
| | - Domingos Sávio Campos Paciullo
- Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora 36038-330, Brazil; (M.J.F.M.); (D.S.C.P.); (C.A.d.M.G.); (J.S.e.O.); (F.C.F.L.)
| | - João Paulo Santos Roseira
- Department of Animal Science, Federal University of Vicosa, Vicosa 36570-900, Brazil; (D.L.L.); (J.P.S.R.); (O.G.P.); (V.P.d.S.); (T.C.d.S.)
| | - Carlos Augusto de Miranda Gomide
- Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora 36038-330, Brazil; (M.J.F.M.); (D.S.C.P.); (C.A.d.M.G.); (J.S.e.O.); (F.C.F.L.)
| | - Odilon Gomes Pereira
- Department of Animal Science, Federal University of Vicosa, Vicosa 36570-900, Brazil; (D.L.L.); (J.P.S.R.); (O.G.P.); (V.P.d.S.); (T.C.d.S.)
| | - Jackson Silva e Oliveira
- Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora 36038-330, Brazil; (M.J.F.M.); (D.S.C.P.); (C.A.d.M.G.); (J.S.e.O.); (F.C.F.L.)
| | - Fernando Cesar Ferraz Lopes
- Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora 36038-330, Brazil; (M.J.F.M.); (D.S.C.P.); (C.A.d.M.G.); (J.S.e.O.); (F.C.F.L.)
| | - Vanessa Paula da Silva
- Department of Animal Science, Federal University of Vicosa, Vicosa 36570-900, Brazil; (D.L.L.); (J.P.S.R.); (O.G.P.); (V.P.d.S.); (T.C.d.S.)
| | - Tâmara Chagas da Silveira
- Department of Animal Science, Federal University of Vicosa, Vicosa 36570-900, Brazil; (D.L.L.); (J.P.S.R.); (O.G.P.); (V.P.d.S.); (T.C.d.S.)
| | - Fernanda Helena Martins Chizzotti
- Department of Animal Science, Federal University of Vicosa, Vicosa 36570-900, Brazil; (D.L.L.); (J.P.S.R.); (O.G.P.); (V.P.d.S.); (T.C.d.S.)
| |
Collapse
|
2
|
Pan X, Zhang Y, Yue N, Yu K, Zhou L, Ge L, Chen F, Yang J, Li Q, Deng T, Yang X. Isolation of Lactic Acid Bacteria from Naturally Ensiled Rosa roxburghii Tratt Pomace and Evaluation of Their Ensiling Potential and Antioxidant Properties. Foods 2025; 14:1329. [PMID: 40282731 PMCID: PMC12026143 DOI: 10.3390/foods14081329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
This study isolated five acid-producing strains (XQ1 and YZ1-YZ4) from naturally fermented pomace of Rosa roxburghii Tratt (RRT) in Guizhou's karst region. Genetic and phenotypic analyses identified XQ1, YZ2, and YZ4 as Lactobacillus plantarum (L. plantarum), YZ3 as Weissella cibaria, and YZ1 as Bacillus licheniformis. A comparative evaluation with commercial strain AC revealed that XQ1, YZ2, and YZ4 exhibited superior acidification (reaching the stationary phase at 40 h) and tolerance to acidic conditions (pH 3.0), ethanol (6% v/v), bile salts (0.3%), and osmotic stress (6.5% NaCl), along with broad-spectrum antimicrobial activity against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Shigella dysenteriae, and Pseudomonas aeruginosa. Their cell-free supernatants (CFSs) showed comparable superoxide dismutase activity and total antioxidant capacity (2.54-2.66 FeSO4·7H2O eq mmol/L) to AC (2.68), with DPPH radical scavenging exceeding 50%. YZ3 displayed weaker acid production, tolerance, and limited antimicrobial effects. Safety assessments confirmed non-hemolytic activity and antibiotic susceptibility. In conclusion, the L. plantarum strains XQ1, YZ2, and YZ4 demonstrated strong ensiling potential and remarkable probiotic properties, establishing them as promising indigenous microbial resources for the preservation of RRT pomace and other food products.
Collapse
Affiliation(s)
- Xiong Pan
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China (Y.Z.); (J.Y.); (T.D.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yafei Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China (Y.Z.); (J.Y.); (T.D.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Ningbo Yue
- Qiannan Academy of Agricultural Sciences, Duyun 558000, China
| | - Ke Yu
- Qiannan Academy of Agricultural Sciences, Duyun 558000, China
| | - Lang Zhou
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China (Y.Z.); (J.Y.); (T.D.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Lijuan Ge
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China (Y.Z.); (J.Y.); (T.D.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Faju Chen
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China (Y.Z.); (J.Y.); (T.D.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Juan Yang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China (Y.Z.); (J.Y.); (T.D.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Qiji Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China (Y.Z.); (J.Y.); (T.D.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Tingfei Deng
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China (Y.Z.); (J.Y.); (T.D.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Xiaosheng Yang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China (Y.Z.); (J.Y.); (T.D.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| |
Collapse
|
3
|
Liu Y, Ling W, Li Y, Zhou Y, Li J, Chen S, Zhou J, Yang F. Inoculation of Lactobacillus parafarraginis enhances silage quality, microbial community structure, and metabolic profiles in hybrid Pennisetum. BMC PLANT BIOLOGY 2025; 25:325. [PMID: 40082791 PMCID: PMC11905446 DOI: 10.1186/s12870-025-06340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND This study investigated the effects of inoculating Lactobacillus parafarraginis alone or in combination with citric acid on the silage quality, microbial community structure, and metabolic characteristics of hybrid Pennisetum. The experiment included three treatments: (1) addition of 10 ml distilled water (CON); (2) addition of 1 × 106 cfu/g L. parafarraginis (LP); (3) addition of 1 × 106 cfu/g L. parafarraginis and 1% citric acid (LCA). The fermentation was maintained at 25 ℃ for 60 days. RESULTS The addition of L. parafarraginis increased the dry matter, water-soluble carbohydrates, and crude protein content of the silage and decreased the fiber contents. Moreover, lactic acid content was notably higher, and pH values were lower in the L. parafarraginis group, with higher lactic acid bacteria (LAB) compared with the CON. The microbial community analysis indicated that adding L. parafarraginis promoted the proliferation of beneficial LAB and inhibited spoilage bacteria, such as Clostridium. In the LCA, amino acid metabolism was improved, particularly with an increase in L-tyrosine concentration, along with significant enrichment of pathways related to tryptophan metabolism. CONCLUSIONS The addition of L. parafarraginis improved the fermentation quality of the silage, reduced undesirable microorganisms, and increased the content of organic acids, indicating its potential to enhance the flavor of the silage. Compared with individual treatments, the combination of L. parafarraginis and citric acid improved amino acid metabolism and enriched pathways related to tryptophan metabolism, further enhancing the quality of the silage. These findings highlight the potential of L. parafarraginis, especially in combination with citric acid, as an effective additive for producing high-quality, nutritious hybrid Pennisetum silage.
Collapse
Affiliation(s)
- Yijia Liu
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenqing Ling
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan Li
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Zhou
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jue Li
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Siqi Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Zhou
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Fulin Yang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Manhokwe S, Musarurwa T, Jombo TZ, Mugadza DT, Mugari A, Bare J, Mguni S, Chigondo F, Muchekeza JT. Development of a Quinoa-Based Fermentation Medium for Propagation of Lactobacillus Plantarum and Weissella Confusa in Opaque Beer Production. Int J Microbiol 2025; 2025:5745539. [PMID: 39963294 PMCID: PMC11832262 DOI: 10.1155/ijm/5745539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/06/2024] [Indexed: 02/20/2025] Open
Abstract
Product inconsistency of opaque beer has for long been a tenacious problem in the brewing industry since the current process relies on spontaneous lactic acid fermentation. In order to impede this challenge, there is a need to add lactic acid bacteria (LAB) starter cultures in opaque beer brewing to improve its organoleptic qualities. This study sought to develop a quinoa-based fermentation medium for propagation of Lactobacillus plantarum and Weissella confusa as potential starter cultures in opaque beer production. An evaluation of the stability and tolerance of the LAB under various stress conditions was also done. Fermentation wort from opaque beer brewing and different quinoa-based synthetic media with varying nutritional components was prepared for propagation of LAB. Physiochemical analyses which included pH, Brix value and total titratable acidity (TTA) of monocultured and cocultured synthetic media were measured. The measurements were done at 24 h time intervals ranging from 0 to 96 h. Tolerance studies which included the effect of heat shock, cold shock, oxidative stress and osmotic pressure on the survival rate of LAB were conducted to determine the stability of LAB. MRS with L. plantarum monoculture (MRSp) had a notable change in pH from 4.5 to 3.6 after 24 h. The cocultured (M5p + w) synthetic media and cocultured MRS (MRSp + w) also exhibited change in pH from 4.3 to 3.2 and 4.3 to 3.3, respectively, after 72 h. Brix value in all media samples decreased after 24 h except for the uninoculated MRS sample (MRS C). The synthetic and coculture medium (M5p + w) exhibited an increase in TTA (0.79% (m/v) lactic acid) within the first 24 h. Exposure to heat shock had a significance effect (p < 0.05) on the survival rate of L. plantarum and W. confusa. The W. confusa in synthetic media recorded a higher survival rate (27 ± 0.03%) upon exposure to heat shock than L. plantarum (7 ± 0.01%). In contrast, L. plantarum in MRS recorded a higher survival rate (67 ± 0.02%) upon exposure to cold shock and oxidative stress (34 ± 0.01%). The starter cultures tested survived upon exposure to the stress conditions, indicating their potential use in opaque beer production.
Collapse
Affiliation(s)
- Shepherd Manhokwe
- Department of Food Science and Nutrition, Midlands State University, P Bag 9055, Gweru, Zimbabwe
| | - Tatenda Musarurwa
- Department of Food Science and Nutrition, Midlands State University, P Bag 9055, Gweru, Zimbabwe
| | - Talknice Z. Jombo
- Department of Food Science and Nutrition, Midlands State University, P Bag 9055, Gweru, Zimbabwe
| | - Desmond T. Mugadza
- Department of Food Science and Nutrition, Midlands State University, P Bag 9055, Gweru, Zimbabwe
| | - Amiel Mugari
- Department of Food Science and Nutrition, Midlands State University, P Bag 9055, Gweru, Zimbabwe
| | - Joseph Bare
- Department of Applied Biosciences and Biotechnology, Midlands State University, P Bag 9055, Gweru, Zimbabwe
| | - Scelo Mguni
- Department of Applied Biosciences and Biotechnology, Midlands State University, P Bag 9055, Gweru, Zimbabwe
| | - Fidelis Chigondo
- Department of Chemical Sciences, Midlands State University, P Bag 9055, Gweru, Zimbabwe
| | - Jane Tafadzwa Muchekeza
- Department of Animal and Wildlife Sciences, Midlands State University, P Bag 9055, Gweru, Zimbabwe
| |
Collapse
|
5
|
He C, Li Q, Xiao H, Sun X, Gao Z, Cai Y, Zhao S. Effects of Mixing Ratio and Lactic Acid Bacteria Preparation on the Quality of Whole-Plant Quinoa and Whole-Plant Corn or Stevia Powder Mixed Silage. Microorganisms 2025; 13:78. [PMID: 39858846 PMCID: PMC11767403 DOI: 10.3390/microorganisms13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Quinoa is the only single plant that can meet all the nutritional needs of human, and its potential for feed utilization has been continuously explored, becoming a prosperous industry for poverty alleviation. In order to further tap the feeding value of whole quinoa, develop quinoa as a feed substitute for conventional crops such as corn, and improve its comprehensive utilization rate, this experiment analyzed the silage quality and mycotoxin content of mixed silage of whole-plant quinoa (WPQ) with whole-plant corn (WPC) or stevia powder(SP) in different proportions, and further improved the silage quality of mixed silage by using two lactic acid bacteria preparations (Sila-Max and Sila-Mix). The quality, microbial population, and mycotoxin levels of quinoa and corn silage, as well as that of the mixed silage of quinoa and stevia, were evaluated using single-factor analysis of variance. The impact of various lactic acid bacteria preparations on the quality of whole-quinoa and whole-corn mixed silage was investigated through two-factor analysis of variance. WPQ and WPC were mixed at the ratio of 5:5 (QB5), 6:4 (QB6), 7:3 (QB7), 8:2 (QB8), 9:1 (QB9) and 10:0 (QB10). SP was mixed with WPQ at the supplemental levels of 0.2% (QB10S2), 0.4% (QB10S4), 0.6% (QB10S6), 0.8% (QB10S8) and 1.0% (QB10S10). After 60 days of silage, the silage indexes, the number of harmful microorganisms, and the mycotoxin levels were measured, to explore the appropriate ratio of mixed silage. The membership function analysis showed that the quality of mixed silage of WPQ with SP was better, and the optimal addition amount of SP was 0.6%. The results of Max and Mix on the quality improvement test of WPQ with WPC mixed silage showed that the two lactic acid bacteria formulations increased CP and AA content, and reduced NH3-N/TN; pH was significantly lower than the control group (p < 0.01), and LA was significantly higher than the control group (p < 0.01). The microbial count results showed that the addition of lactic acid bacteria preparation significantly reduced the number of molds and aerobic bacteria, and the effect of Mix was better than that of Max. When the mixing ratio was between QB7 and QB10, mold was not detected in the lactic-acid-bacteria preparation groups. Max and Mix significantly reduced the levels of mycotoxins, both of which were far below the range of feed safety testing, and 16S rRNA sequencing revealed that the silage microbiota varied with different mixing ratios and whether lactic acid bacteria preparations were used. Max and Mix increased the relative abundance of Firmicutes, with Mix having a more significant effect, especially in the QB6 (65.05%) and QB7 (63.61%) groups. The relative abundance of Lactobacillus was significantly higher than that of the control group (p < 0.05). The relative abundance of Enterobacteriaceae and Streptococcus were negatively and positively correlated with the addition level of quinoa, respectively. Comprehensive analysis showed that adding 0.6% SP to the WPQ and using Mix in mixed silage of WPQ and WPC with the proportion of WPQ no less than 70% had the best silage effect, and was more beneficial to animal health.
Collapse
Affiliation(s)
- Chao He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (Q.L.)
- Provincial R&D Institute of Ruminants in Gansu, Lanzhou 730070, China
| | - Qian Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (Q.L.)
- Provincial R&D Institute of Ruminants in Gansu, Lanzhou 730070, China
| | - Huaidong Xiao
- Linxia Hui Autonomous Prefecture Animal Husbandry Technology Promotion Station, Linxia 731800, China; (H.X.); (X.S.); (Z.G.)
| | - Xuchun Sun
- Linxia Hui Autonomous Prefecture Animal Husbandry Technology Promotion Station, Linxia 731800, China; (H.X.); (X.S.); (Z.G.)
| | - Zepeng Gao
- Linxia Hui Autonomous Prefecture Animal Husbandry Technology Promotion Station, Linxia 731800, China; (H.X.); (X.S.); (Z.G.)
| | - Yuan Cai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (Q.L.)
- Provincial R&D Institute of Ruminants in Gansu, Lanzhou 730070, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (Q.L.)
- Provincial R&D Institute of Ruminants in Gansu, Lanzhou 730070, China
| |
Collapse
|
6
|
Wang Y, Ying G, Zhang Z, Tang Y, Zhang Y, Chen L. Bacillus velezensis promotes the proliferation of lactic acid bacteria and influences the fermentation quality of whole-plant corn silage. FRONTIERS IN PLANT SCIENCE 2024; 15:1285582. [PMID: 38425795 PMCID: PMC10902168 DOI: 10.3389/fpls.2024.1285582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
Objective This study aimed to investigate the promoting effect of a Bacillus velezensis (BV) strain on lactic acid bacteria (LAB) and determine its influence on the fermentation quality and aerobic stability of silage. Methods Flat colony counting method was used to evaluate the effect of BV on the growth of LAB. Freshly harvested whole-plant corn was inoculated separately with BV and L. plantarum (LP), along with an uninoculated control group (CK), and assessed at 1, 3, 5, 7, 15, and 30 days of ensiling. Results The results indicated that BV exhibited a proliferative effect on Weissella confusa, Lactobacillus plantarum L-2, and Pediococcus pentosaceus. And exhibited a more rapid pH reduction in BV-inoculated silage compared with that in CK and LP-inoculated silage during the initial stage of ensiling. Throughout ensiling, the BV and LP experimental groups showed enhanced silage fermentation quality over CK. Additionally, relative to LP-inoculated silage, BV-inoculated silage displayed reduced pH and propionic acid. BV also prolonged aerobic stability under aerobic conditions. The microbial community in BV-inoculated silage showed greater stability than that in LP-inoculated silage. Additionally, Firmicutes and Lactobacillus exhibited more rapid elevation initially in BV versus LP-inoculated silage, but reached comparable levels between the two inoculation groups in the later stage. Conclusion In summary, BV enhanced the efficacy and aerobic stability of whole-plant corn silage fermentation by stimulating LAB proliferation.
Collapse
Affiliation(s)
- Yili Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Gangqing Ying
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zimo Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yu Tang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunhua Zhang
- College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Lijuan Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
7
|
Du Z, Yamasaki S, Oya T, Nguluve D, Euridse D, Tinga B, Macome F, Cai Y. Microbial network and fermentation modulation of Napier grass and sugarcane top silage in southern Africa. Microbiol Spectr 2024; 12:e0303223. [PMID: 38084975 PMCID: PMC10783067 DOI: 10.1128/spectrum.03032-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/05/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Feed shortage in the tropics is a major constraint to the production of livestock products such as milk and meat. In order to effectively utilize of local feed resources, the selected lactic acid bacteria (LAB) strain was used to prepare Napier grass and sugarcane top silage. The results showed that the two silages inoculated with LAB formed a co-occurrence microbial network dominated by Lactiplantibacillus during the fermentation process, regulated the microbial community structure and metabolic pathways, and improved the silage fermentation quality. This is of great significance for alleviating feed shortage and promoting sustainable production of livestock.
Collapse
Affiliation(s)
- Zhumei Du
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Seishi Yamasaki
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Tetsuji Oya
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Damiao Nguluve
- Agricultural Research Institute of Mozambique, Matola, Mozambique
| | - Denise Euridse
- Agricultural Research Institute of Mozambique, Matola, Mozambique
| | - Benedito Tinga
- Agricultural Research Institute of Mozambique, Matola, Mozambique
| | | | - Yimin Cai
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| |
Collapse
|
8
|
Sun Y, Sun Q, Tang Y, Li Q, Tian C, Sun H. Integrated microbiology and metabolomic analysis reveal the improvement of rice straw silage quality by inoculation of Lactobacillus brevis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:184. [PMID: 38017535 PMCID: PMC10685638 DOI: 10.1186/s13068-023-02431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Ensiling technology holds promise for preserving and providing high-quality forage. However, the preservation of rice straw poses challenges due to its high lignocellulosic content and low water-soluble carbohydrate levels. Developing highly effective lactic acid bacteria (LAB) for rice straw silage remains a priority. RESULTS This study evaluated the impact of three LAB strains, Lactobacillus brevis R33 (Lac33), L. buchneri R17 (Lac17), and Leuconostoc pseudomesenteroides (Leu), on the fermentation quality of rice straw silage. Rice straw silage inoculated with Lac33 alone or in combination with other strains exhibited significantly lower neutral detergent fiber (NDF) (66.5% vs. 72.3%) and acid detergent fiber (ADF) (42.1% vs. 47%) contents, along with higher lactic acid (19.4 g/kg vs. not detected) and propionic acid (2.09 g/kg vs. 1.54 g/kg) contents compared to control silage. Bacterial community analysis revealed Lactobacillus dominance (> 80%) and suppression of unwanted Enterobacter and Clostridium. Metabolomic analysis highlighted increased carbohydrates and essential amino acids, indicating improved nutrient values in Lac33-inoculated rice straw silage and a potential explanation for Lac33 dominance. CONCLUSIONS This research identified a highly efficient LAB candidate for rice straw silage, advancing our comprehension of fermentation from integrated microbiology and metabolomic perspectives.
Collapse
Affiliation(s)
- Yu Sun
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Qinglong Sun
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- Northeast Agricultural University, Harbin, 150030, China
| | - Yunmeng Tang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Qingyang Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Chunjie Tian
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Haixia Sun
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| |
Collapse
|
9
|
Chen L, Wang Y, Li X, MacAdam JW, Zhang Y. Interaction between plants and epiphytic lactic acid bacteria that affect plant silage fermentation. Front Microbiol 2023; 14:1164904. [PMID: 37362945 PMCID: PMC10290204 DOI: 10.3389/fmicb.2023.1164904] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Lactic acid bacteria (LAB) have the ability to ferment water-soluble carbohydrates, resulting in the production of significant amounts of lactic acid. When utilized as additives in silage fermentation and feed, they have been shown to enhance the quality of these products. Epiphytic LAB of plants play a major role in the fermentation of silage plants. Plant species in turn affect the community structure of epiphytic LAB. In recent years, an increasing number of studies have suggested that epiphytic LAB are more effective than exogenous LAB when applied to silage. Inoculating silage plants with epiphytic LAB has attracted extensive attention because of the potential to improve the fermentation quality of silages. This review discusses the interaction of epiphytic LAB with plants during silage fermentation and compares the effects of exogenous and epiphytic LAB on plant fermentation. Overall, this review provides insight into the potential benefits of using epiphytic LAB as an inoculant and proposes a theoretical basis for improving silage quality.
Collapse
Affiliation(s)
- Lijuan Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yili Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xi Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jennifer W. MacAdam
- College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Yunhua Zhang
- College of Resources and Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
10
|
Nikodinoska I, Spohr C, Dillon GP, Moran CA. Skin and eye irritancy assessment of six lactic acid bacteria strains. Regul Toxicol Pharmacol 2023; 141:105406. [PMID: 37160199 DOI: 10.1016/j.yrtph.2023.105406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/06/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Here we investigate the suitability of in vitro models to assess the skin and eye irritation potential of six microbial strains. Acute skin irritation was tested according to the unmodified and modified OECD test guideline (OECD TG) 439, while acute eye irritation was examined using the OECD TG 491 and 492. The OECD TG 439 guideline, modified to introduce 8-10 μg/mL of streptomycin during the recovery phase and use of test items containing 100% microbial product instead of finished formulae, was found to be suitable for skin irritation evaluation. On the other hand, the OECD TG 491 procedure was the most appropriate for evaluating eye irritation. None of the six microbial strains, namely, Lactiplantibacillus plantarum (IMI 507026, IMI 507027, IMI 507028), Lacticaseibacillus rhamnosus (IMI 507023), and Pediococcus pentosaceus (IMI 507024, IMI 507025), tested in this study caused skin or eye irritation under the study condition.
Collapse
Affiliation(s)
- Ivana Nikodinoska
- Alltech European Bioscience Centre, Sarney, Summerhill Road, Dunboyne, Co. Meath, Ireland
| | - Christina Spohr
- ICCR-Roßdorf GmbH, Alternative Toxicology Department, In den Leppsteinswiesen 19, Rossdorf, Germany
| | - Gerald P Dillon
- Alltech European Bioscience Centre, Sarney, Summerhill Road, Dunboyne, Co. Meath, Ireland
| | - Colm A Moran
- Regulatory Affairs Department, Alltech SARL, Rue Charles Amand, Vire, France.
| |
Collapse
|
11
|
Effects of Different Types of LAB on Dynamic Fermentation Quality and Microbial Community of Native Grass Silage during Anaerobic Fermentation and Aerobic Exposure. Microorganisms 2023; 11:microorganisms11020513. [PMID: 36838477 PMCID: PMC9965529 DOI: 10.3390/microorganisms11020513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Silage of native grasses can alleviate seasonal forage supply imbalance in pastures and provide additional sources to meet forage demand. The study aimed to investigate the effects of Lactobacillus plantarum (LP), Lactobacillus buchneri (LB), and Lactobacillus plantarum in combination with Lactobacillus buchneri (PB) on the nutritional quality, fermentation quality, and microbial community of native grass silage at 2, 7, 15, and 60 days after ensiling and at 4 and 8 days after aerobic exposure. The results showed that dry matter content, crude protein content, the number of lactic acid bacteria, and lactic acid and acetic acid content increased and pH and ammonia nitrogen content decreased after lactic acid bacteria (LAB) inoculation compared with the control group (CK). LP had the lowest pH and highest lactic acid content but did not have greater aerobic stability. LB maintained a lower pH level and acetic acid remained at a higher level after aerobic exposure; aerobic bacteria, coliform bacteria, yeast, and molds all decreased in number, which effectively improved aerobic stability. The effect of the compound addition of LAB was in between the two other treatments, having higher crude protein content, lactic acid and acetic acid content, lower pH, and ammonia nitrogen content. At the phylum level, the dominant phylum changed from Proteobacteria to Firmicutes after ensiling, and at the genus level, Lactiplantibacillus and Lentilactobacillus were the dominant genera in both LAB added groups, while Limosilactobacillus was the dominant genus in the CK treatment. In conclusion, the addition of LAB can improve native grass silage quality by changing bacterial community structure. LP is beneficial to improve the fermentation quality in the ensiling stage, LB is beneficial to inhibit silage deterioration in the aerobic exposure stage, and compound LAB addition is more beneficial to be applied in native grass silage.
Collapse
|
12
|
Zhong H, Zhou J, Wang F, Wu W, Xiong H, Yin H, Li X. Isolation and identification of ligninolytic bacterium ( Bacillus cereus) from buffalo ( Bubalus bubalis) rumen and its effects on the fermentation quality, nutrient composition, and bacterial community of rape silage. Front Microbiol 2023; 14:1103652. [PMID: 37143543 PMCID: PMC10153755 DOI: 10.3389/fmicb.2023.1103652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
This study aimed to isolate and identify a ligninolytic bacterium from the rumen of buffalo (Bubalus bubalis) and investigate its effects as a silage additive for whole-plant rape. Three lignin-degradation strains were isolated from the buffalo rumen, with AH7-7 being chosen for further experiments. Strain AH7-7, with acid tolerance and a 51.4% survival rate at pH 4, was identified as Bacillus cereus. It exhibited a lignin-degradation rate of 20.5% after being inoculated in a lignin-degrading medium for 8 days. We divided the rape into four groups according to the various additive compositions to examine the fermentation quality, nutritional value, and bacterial community after ensiling: Bc group (inoculated with B. cereus AH7-7 3.0 × 106 CFU g FW-1), Blac group (inoculated with B. cereus AH7-7 1.0 × 106 CFU g FW-1, L. plantarum 1.0 × 106 CFU g FW-1, and L. buchneri 1.0 × 106 CFU g FW-1), Lac group (inoculated with L. plantarum 1.5 × 106 CFU g FW-1 and L. buchneri 1.5 × 106 CFU g FW-1), and Ctrl group (no additives). After 60 days of fermentation, the application of B. cereus AH7-7 was potent in modulating the fermentation quality of silage, especially when combined with L. plantarum and L. buchneri, as indicated by lower dry matter loss and higher contents of crude protein, water-soluble carbohydrate, and lactic acid. Furthermore, treatments with the B. cereus AH7-7 additive decreased the contents of acid detergent lignin, cellulose, and hemicellulose. The B. cereus AH7-7 additive treatments reduced the bacterial diversity and optimized the bacterial community compositions of silage, with an increase in the relative abundance of beneficial Lactobacillus and a decrease in the relative abundance of undesirable Pantoea and Erwinia. Functional prediction revealed that inoculation with B. cereus AH7-7 could increase the cofactors and vitamins metabolism, amino acid metabolism, translation, replication and repair, and nucleotide metabolism, while decreasing the carbohydrate metabolism, membrane transport, and energy metabolism. In brief, B. cereus AH7-7 improved the microbial community, fermentation activity, and ultimately the quality of silage. The ensiling with B. cereus AH7-7, L. plantarum, and L. buchneri combination is an effective and practical strategy to improve the fermentation and nutrition preservation of rape silage.
Collapse
Affiliation(s)
- Huimin Zhong
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiayan Zhou
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, China
| | - Fan Wang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, China
| | - Wenqing Wu
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, China
| | - Haiqian Xiong
- Animal Husbandry, Huanggang Academy of Agricultural Sciences, Huanggang, Hubei, China
| | - Huaihui Yin
- Animal Husbandry, Huanggang Academy of Agricultural Sciences, Huanggang, Hubei, China
| | - Xiang Li
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shennongjia Science and Technology Innovation Center, Huazhong Agricultural University, Shennongjia, China
- *Correspondence: Xiang Li
| |
Collapse
|
13
|
Ensiled Mixed Vegetables Enriched Carbohydrate Metabolism in Heterofermentative Lactic Acid Bacteria. FERMENTATION 2022. [DOI: 10.3390/fermentation8120699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
This study evaluated the fermentation quality, nutritive profile, in vitro fermentation, and microbial communities colonising sorghum ensiled with an unsalable vegetable mixture (chopped beans, carrot, and onion (1:1:1) ) including: (1)−100% sorghum; (2)−80% sorghum + 20% vegetable mix or (3)−60% sorghum + 40% vegetable mix, on a dry matter (DM) basis, with or without a probiotic inoculant. Samples were obtained across 0, 1, 3, 5,7, and 101 days ensiling and after 14 d aerobic exposure. The V4 region of the 16S rRNA gene and the ITS1 region were sequenced to profile bacterial, archaeal, and fungal communities. Compared to the 0% DM, ethanol increased (p < 0.01) from 8.42 to 20.4 ± 1.32 mM with 40% DM vegetable mix inclusion, while lactate decreased from 5.93 to 2.24 ± 0.26 mM. Linear discriminant analysis revealed that relative abundances of 12 bacterial taxa were influenced by silage treatments (log LDA score ≥ 4.02; p ≤ 0.03), while predicted functional pathways of alternative carbohydrate metabolism (hexitol, sulfoquinovose and glycerol degradation; N-acetyl glucosamine biosynthesis; log LDA score ≥ 2.04; p ≤ 0.02) were similarly enriched. This study indicated that carbohydrate metabolism by heterofermentative lactic acid bacteria can increase the feed value of sorghum when ensiled with an unsalable vegetable mixture at 40%DM, without requiring a high quantity of lactate.
Collapse
|
14
|
Du S, You S, Jiang X, Li Y, Wang R, Ge G, Jia Y. Evaluating the fermentation characteristics, bacterial community, and predicted functional profiles of native grass ensiled with different additives. Front Microbiol 2022; 13:1025536. [PMID: 36329844 PMCID: PMC9623271 DOI: 10.3389/fmicb.2022.1025536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 11/20/2022] Open
Abstract
Bioaugmentation of native grass ensiling with Lactobacillus plantarum or Lactobacillus buchneri or Pediococcus pentosaceus on the ensiling performance and bacterial community was investigated after 30 days of the fermentation process. The native grass was inoculated with distilled water, Lactobacillus plantarum, Lactobacillus plantarum, and Lactobacillus buchneri, and Lactobacillus plantarum, Lactobacillus buchneri, and Pediococcus pentosaceus as the CON treatment, T1 treatment, T2 treatment, and T3 treatment, respectively. The addition of lactic acid bacteria was added at a total of 1 × 106 colony-forming unit/g of fresh weight. As expected, the markedly (p < 0.05) lower water-soluble carbohydrate content was tested in the T2 and T3 treatments compared to the CON and T1 treatments. Compared to the CON and T1 treatment, significantly (p < 0.05) higher crude protein content, and lower acid detergent fiber and neutral detergent fiber contents were found in the T2 and T3 treatments. Compared to the CON treatment, the pH significantly (p < 0.05) decreased in the lactic acid bacteria (LAB) inoculated silage, and the lowest pH was measured in the T3 treatment. Similarly, significantly higher lactic acid and acetic acid contents were also found in the T3 treatment compared to those in other treatments. After 30 days of ensiling, the Shannon and Chao1 indexes in silages decreased compared to that in the fresh materials (FMs). The principal coordinate analysis indicated that both FM and silage were distinctly separated in each treatment with no interactions on the confidence ellipse (R = 0.8933, p = 0.001). At the phylum level, the dominant phylum was shifted from Proteobacteria to Firmicutes after the fermentation process. Interestingly, Weissella dominated the fermentation in the CON treatment and Lactobacillus dominated the fermentation in all inoculated LAB silages at the genus level. Results of functional prediction analyses showed that the metabolism of amino acid, cofactors, and vitamins, and membrane transport was reduced, while the metabolism of nucleotide and majority carbohydrates was increased after ensiling. The complex LAB (Lactobacillus plantarum, Lactobacillus buchneri, and Pediococcus pentosaceus) exhibited the potential possibility to decrease pH and enhance the relative abundance of LAB in response to obtaining high-quality silage by the synergistic effects. These results suggested that the complex LAB could improve the ensiling performance of native grass silage, and lay a theoretical basis for inoculant application in native grass.
Collapse
Affiliation(s)
- Shuai Du
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
- *Correspondence: Shuai Du
| | - Sihan You
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaowei Jiang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yuyu Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Ruifeng Wang
- Inner Mongolia Yihelvjin Agricultural Development Co., Ltd., Chifeng, China
| | - Gentu Ge
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Yushan Jia
| |
Collapse
|
15
|
The performance of lactic acid bacteria in silage production: a review of modern biotechnology for silage improvement. Microbiol Res 2022; 266:127212. [DOI: 10.1016/j.micres.2022.127212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022]
|
16
|
Effects of Konjac Flour and Lactiplantibacillus plantarum on Fermentation Quality, Aerobic Stability, and Microbial Community of High-Moisture Forage Rape Silages. FERMENTATION 2022. [DOI: 10.3390/fermentation8080348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To obtain high-quality silage and better understand the mechanism underlying silage fermentation, a study was conducted to investigate the effects of konjac flour (KF), Lactiplantibacillus plantarum (LP) and their combination on fermentation quality, aerobic stability, and microbial community of high-moisture forage rape after 60 days of ensiling. Results showed that the KF and LP treatments increased the lactic acid content, decreased the pH value, and inhibited the production of butyric acid in ensiled forage rape (p < 0.05). The additives also altered the bacterial community of forage rape silages, showing reduced Shannon and Simpson indexes (p < 0.05), while the abundance of desirable Lactobacillus was increased, and the abundance of undesirable bacteria, such as enterobacteria and clostridia, was decreased (p < 0.05). In addition, their combination significantly improved the aerobic stability (96 h vs. 28 h, p < 0.05) and exhibited notable influence on the bacterial community, with the highest abundance of Lactobacillus. These results indicated that KF and LP improved the silage quality of high-moisture forage rape, and their combination displayed a beneficial synergistic effect.
Collapse
|
17
|
Ouamba AJK, Gagnon M, LaPointe G, Chouinard PY, Roy D. Graduate Student Literature Review: Farm management practices: Potential microbial sources that determine the microbiota of raw bovine milk. J Dairy Sci 2022; 105:7276-7287. [PMID: 35863929 DOI: 10.3168/jds.2021-21758] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/25/2022] [Indexed: 11/19/2022]
Abstract
Environmental and herd-associated factors such as geographical location, climatic conditions, forage types, bedding, soil, animal genetics, herd size, housing, lactation stage, and udder health are exploited by farmers to dictate specific management strategies that ensure dairy operation profitability and enhance the sustainability of milk production. Along with milking routines, milking systems, and storage conditions, these farming practices greatly influence the microbiota of raw milk, as evidenced by several recent studies. During the past few years, the increased interest in high-throughput sequencing technologies combined with culture-dependent methods to investigate dairy microbial ecology has improved our understanding of raw milk community dynamics throughout storage and processing. However, knowledge is still lacking on the niche-specific communities in the farm environment, and on the factors that determine bacteria transfer to the raw milk. This review summarizes findings from the past 2 decades regarding the effects of farm management practices on the diversity of bacterial species that determine the microbiological quality of raw cow milk.
Collapse
Affiliation(s)
- Alexandre J K Ouamba
- Département des Sciences des Aliments, Laboratoire de Génomique Microbienne, Université Laval, Québec, G1V 0A6, Canada; Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Saint-Hyacinthe, J2S 2M2, Canada.
| | - Mérilie Gagnon
- Département des Sciences des Aliments, Laboratoire de Génomique Microbienne, Université Laval, Québec, G1V 0A6, Canada; Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Saint-Hyacinthe, J2S 2M2, Canada
| | - Gisèle LaPointe
- Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Saint-Hyacinthe, J2S 2M2, Canada; Department of Food Science, University of Guelph, Guelph, N1G 2W1, Canada
| | - P Yvan Chouinard
- Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Saint-Hyacinthe, J2S 2M2, Canada; Département des Sciences Animales, Université Laval, Québec, G1V 0A6, Canada
| | - Denis Roy
- Département des Sciences des Aliments, Laboratoire de Génomique Microbienne, Université Laval, Québec, G1V 0A6, Canada; Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Saint-Hyacinthe, J2S 2M2, Canada
| |
Collapse
|
18
|
Puntillo M, Peralta G, Bürgi M, Huber P, Gaggiotti M, Binetti A, Vinderola G. Metaprofiling of the bacterial community in sorghum silages inoculated with lactic acid bacteria. J Appl Microbiol 2022; 133:2375-2389. [PMID: 35778976 DOI: 10.1111/jam.15698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/13/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
Abstract
AIMS to characterize the fermentation process and bacterial diversity of sorghum silage inoculated with Lactiplantibacillus plantarum LpAv, Pediococcus pentosaceus PpM and Lacticaseibacillus paracasei LcAv. METHODS AND RESULTS chopped sorghum was ensiled using the selected strains. Physicochemical parameters (Ammonia Nitrogen/Total Nitrogen, Dry Matter, Crude Protein, Acid Detergent Fiber, Neutral Detergent Fiber, Acid Detergent Lignin, Ether Extract and Ashes), bacterial counts, cell cytometry and 16sRNA sequencing were performed to characterize the ensiling process and an animal trial (BALB/c mice) was conducted in order to preliminary explore the potential of sorghum silage to promote animal gut health. After 30 days of ensiling, the genus Lactobacillus comprised 68.4 ± 2.3 % and 73.5 ± 1.8 % of relative abundance, in control and inoculated silages respectively. Richness (Chao1 index) in inoculated samples, but not in control silages, diminished along ensiling, suggesting the domination of fermentation by the inoculated LAB. A trend in conferring enhanced protection against Salmonella infection was observed in the mouse model used to explore the potential to promote gut health of sorghum silage. CONCLUSIONS the LAB strains used in this study were able to dominate sorghum fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY this is the first report using metaprofiling of 16sRNA to characterize sorghum silage, showing a microbiological insight where resident and inoculated LAB strains overwhelmed the epiphytic microbiota, inhibiting potential pathogens of the genus Klebsiella.
Collapse
Affiliation(s)
- Melisa Puntillo
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería. Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Guillermo Peralta
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería. Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Milagros Bürgi
- Centro Biotecnológico del Litoral, FBCB (CONICET-UNL), Santa Fe, Argentina
| | - Paula Huber
- Laboratorio de Plancton, Instituto Nacional de Limnología (INALI, UNL-CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina, and Departamento de Hydrobiologia, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos (SP), Brazil
| | - Mónica Gaggiotti
- Laboratorio de Calidad de Leche y Agroindustria, INTA EEA Rafaela, Santa Fe, Argentina
| | - Ana Binetti
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería. Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería. Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
19
|
Smaoui S, Agriopoulou S, D'Amore T, Tavares L, Mousavi Khaneghah A. The control of Fusarium growth and decontamination of produced mycotoxins by lactic acid bacteria. Crit Rev Food Sci Nutr 2022; 63:11125-11152. [PMID: 35708071 DOI: 10.1080/10408398.2022.2087594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Global crop and food contamination with mycotoxins are one of the primary worldwide concerns, while there are several restrictions regarding approaching conventional physical and chemical mycotoxins decontamination methods due to nutrition loss, sensory attribute reduction in foods, chemical residual, inconvenient operation, high cost of equipment, and high energy consumption of some methods. In this regard, the overarching challenges of mycotoxin contamination in food and food crops require the development of biological decontamination strategies. Using certain lactic acid bacteria (LAB) as generally recognized safe (GRAS) compounds is one of the most effective alternatives due to their potential to release antifungal metabolites against various fungal factors species. This review highlights the potential applications of LAB as biodetoxificant agents and summarizes their decontamination activities against Fusarium growth and Fusarium mycotoxins released into food/feed. Firstly, the occurrence of Fusarium and the instrumental and bioanalytical methods for the analysis of mycotoxins were in-depth discussed. Upgraded knowledge on the biosynthesis pathway of mycotoxins produced by Fusarium offers new insightful ideas clarifying the function of these secondary metabolites. Moreover, the characterization of LAB metabolites and their impact on the decontamination of the mycotoxin from Fusarium, besides the main mechanisms of mycotoxin decontamination, are covered. While the thematic growth inhibition of Fusarium and decontamination of their mycotoxin by LAB is very complex, approaching certain lactic acid bacteria (LAB) is worth deeper investigations.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax, Tunisia
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, Kalamata, Greece
| | - Teresa D'Amore
- Chemistry Department, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZSPB), Foggia, Italy
| | - Loleny Tavares
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, CEP, Brazil
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
20
|
Effect of Novel Aspergillus and Neurospora species-Based Additive on Ensiling Parameters and Biomethane Potential of Sugar Beet Leaves. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Research on additives that improve the quality of silages for an enhanced and sustainable biogas production are limited in the literature. Frequently used additives such as lactic acid bacteria enhance the quality of silages but have no significant effect on biogas yield. This study investigated the effect of a new enzymatic additive on the quality of ensiling and BMP of sugar beet leaves. Sugar beet leaves were ensiled with and without the additive (Aspergillus- and Neurospora-based additive) in ratios of 50:1 (A50:1), 150:1 (B150:1), and 500:1 (C500:1) (gsubstrate/gadditive) for 370 days at ambient temperature. Results showed that silages with additive had lower yeast activity and increased biodegradability compared to silages without additive (control). The additive increased the BMP by 45.35%, 24.23%, and 21.69% in silages A50:1, B150:1, and C500:1 respectively, compared to silages without additive (control). Although the novel enzyme is in its early stage, the results indicate that it has a potential for practical application at an additive to substrate ratio (g/g) of 1:50. The use of sugar beet leaves and the novel enzyme for biogas production forms part of the circular economy since it involves the use of wastes for clean energy production.
Collapse
|
21
|
Jaipolsaen N, Sangsritavong S, Uengwetwanit T, Angthong P, Plengvidhya V, Rungrassamee W, Yammuenart S. Comparison of the Effects of Microbial Inoculants on Fermentation Quality and Microbiota in Napier Grass (Pennisetum purpureum) and Corn (Zea mays L.) Silage. Front Microbiol 2022; 12:784535. [PMID: 35126328 PMCID: PMC8811201 DOI: 10.3389/fmicb.2021.784535] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/29/2021] [Indexed: 01/04/2023] Open
Abstract
Forage preservation for livestock feeding is usually done by drying the plant material and storing it as hay or ensiling it into silage. During the ensiling process, the pH in the system is lowered by the activities of lactic acid-producing bacteria (LAB), inhibiting the growth of spoilage microorganisms and maintaining the quality of the ensiled product. To improve this process, inoculation of LAB could be used as starter cultures to shorten the ensiling time and control the fermentation process. Here, we compared fermentation quality and bacterial dynamics in two plant materials, whole-plant corn (Zea mays L.) and Napier grass (Pennisetum purpureum), with and without starter inoculation. The efficacy of Lactobacillus plantarum, L. brevis, and Pediococcus pentosaceus as starter cultures were also compared in the ensiling system. In whole-plant corn, pH decreased significantly, while lactic acid content increased significantly on Day 3 in both the non-inoculated and LAB-inoculated groups. Prior to ensiling, the predominant LAB bacteria were Weissella, Enterococcus, and Lactococcus, which shifted to Lactobacillus during ensiling of whole-plant corn in both the non-inoculated and LAB inoculated groups. Interestingly, the epiphytic LAB associated with Napier grass were much lower than those of whole-plant corn before ensiling. Consequently, the fermentation quality of Napier grass was improved by the addition of LAB inoculants, especially L. plantarum and a combination of all three selected LAB strains showed better fermentation quality than the non-inoculated control. Therefore, the different abundance and diversity of epiphytic LAB in plant raw materials could be one of the most important factors determining whether LAB starter cultures would be necessary for silage fermentation.
Collapse
Affiliation(s)
- Narongrit Jaipolsaen
- Physiology and Nutrition Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Siwat Sangsritavong
- Physiology and Nutrition Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Tanaporn Uengwetwanit
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Pacharaporn Angthong
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Vethachai Plengvidhya
- Food Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Wanilada Rungrassamee
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
- *Correspondence: Wanilada Rungrassamee,
| | - Saowaluck Yammuenart
- Department of Animal and Aquatic Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
22
|
Agma Okur A, Gozluklu K, Okur E, Okuyucu B, Koc F, Ozduven ML. Effects of Apple Vinegar Addition on Aerobic Deterioration of Fermented High Moisture Maize Using Infrared Thermography as an Indicator. SENSORS 2022; 22:s22030771. [PMID: 35161518 PMCID: PMC8838708 DOI: 10.3390/s22030771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
This study was carried out to determine the effects of apple vinegar and sodium diacetate addition on the aerobic stability of fermented high moisture maize grain (HMM) silage after opening. In the study, the effect of three different levels (0%, 0.5% and 1%) of apple vinegar (AV) and sodium diacetate (SDA) supplementation to fermented HMM at two different storage conditions (27–29 °C, 48% Humidity; 35–37 °C, 26% Humidity) were investigated. The material of the study was fermented rolled maize grain with 62% moisture content stored for about 120 days. Silage samples were subjected to aerobic stability test with three replicates for each treatment group. Wendee and microbiological analyses were made at 0, 2, 4, 7, and 12 days. Meanwhile, samples were displayed in the T200 IR brand thermal camera. According to the thermogram results, 1% SDA addition positively affected HMM silages at the second and fourth days of aerobic stability at both storage conditions (p < 0.05). Aerobic stability and infrared thermography analysis indicated that 1% AV, 0.5%, and 1% SDA additions to HMM silages had promising effects. Due to our results, we concluded that thermal camera images might be used as an alternative quality indicator for silages in laboratory conditions.
Collapse
Affiliation(s)
- Aylin Agma Okur
- Department of Animal Science, Agricultural Faculty, Tekirdag Namik Kemal University, Tekirdag 59030, Turkey; (K.G.); (B.O.); (F.K.); (M.L.O.)
- Correspondence:
| | - Kerem Gozluklu
- Department of Animal Science, Agricultural Faculty, Tekirdag Namik Kemal University, Tekirdag 59030, Turkey; (K.G.); (B.O.); (F.K.); (M.L.O.)
| | - Ersen Okur
- Department of Biosystem Engineering, Agricultural Faculty, Tekirdag Namik Kemal University, Tekirdag 59030, Turkey;
| | - Berrin Okuyucu
- Department of Animal Science, Agricultural Faculty, Tekirdag Namik Kemal University, Tekirdag 59030, Turkey; (K.G.); (B.O.); (F.K.); (M.L.O.)
| | - Fisun Koc
- Department of Animal Science, Agricultural Faculty, Tekirdag Namik Kemal University, Tekirdag 59030, Turkey; (K.G.); (B.O.); (F.K.); (M.L.O.)
| | - Mehmet Levent Ozduven
- Department of Animal Science, Agricultural Faculty, Tekirdag Namik Kemal University, Tekirdag 59030, Turkey; (K.G.); (B.O.); (F.K.); (M.L.O.)
| |
Collapse
|
23
|
Huang K, Chen H, Liu Y, Hong Q, Yang B, Wang J. Lactic acid bacteria strains selected from fermented total mixed rations improve ensiling and in vitro rumen fermentation characteristics of corn stover silage. Anim Biosci 2022; 35:1379-1389. [PMID: 34991191 PMCID: PMC9449406 DOI: 10.5713/ab.21.0461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/30/2021] [Indexed: 11/27/2022] Open
Abstract
Objective This study identified the major lactic acid bacteria (LAB) strains from different fermented total mixed rations (FTMRs) via metataxonomic analysis and evaluated the ability of their standard strain as ensiling inoculants for corn stover silage. Methods The bacterial composition of eight FTMRs were analyzed by 16S rDNA sequencing. Corn stover was ensiled without LAB inoculation (control) or with 1×106 cfu/g LAB standard strain (Lactobacillus vaginalis, Lactobacillus reuteri, Lactobacillus helveticus, or Lactobacillus paralimentarius) selected from the FTMRs or 10 g/t commercial silage inoculant (CSI) around 25°C for 56 days. For each inoculation, a portion of the silage was sampled to analyze ensiling characteristics at time intervals of 0, 1, 3, 7, 14, 28, and 56 days, gas production (GP), microbial crude protein and volatile fatty acids as the measurements of rumen fermentation characteristics were evaluated in vitro with the silages of 56 days after 72 h incubation. Results Lactobacillus covered >85% relative abundance of all FTMRs, in which L. pontis, L. vaginalis, L. reuteri, L. helveticus, and L. paralimentarius showed >4% in specific FTMRs. CSI, L. helveticus, and L. paralimentarius accelerated the decline of silage pH. Silage inoculated with L. paralimentarius and CSI produced more lactic acid the early 14 days. Silage inoculated with L. paralimentarius produced less acetic acid and butyric acid. For the in vitro rumen fermentation, silage inoculated with CSI produced more potential GP, isobutyric acid, and isovaleric acid; silage inoculated with L. helveticus produced more potential GP and isovaleric acid, silage inoculated with L. paralimentarius or L. reuteri produced more potential GP only. Conclusion The standard strain L. paralimentarius (DSM 13238) is a promising ensiling inoculant for corn stover silage. The findings provide clues on strategies to select LAB to improve the quality of silage.
Collapse
Affiliation(s)
- Kailang Huang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongwei Chen
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yalu Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qihua Hong
- The Experimental Teaching Center, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bin Yang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiakun Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
24
|
Application and Future Prospective of Lactic Acid Bacteria as Natural Additives for Silage Production—A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ensiling is one of the essential processes to preserve fodder with high nutrients and microbiological quality. The forages before ensiling have a limited number of bacteria associated with the controlled fermentation process. Undesirable microbes can grow in silages when there is not efficient fermentation. Such kinds of microbes might cause pathogenic or toxic compounds that affect animal and human health. Therefore, it is necessary to inoculate potent starter cultures. Lactic acid bacteria’s (LABs) have been considered the most prominent microbial additives used to improve the quality of silage. Currently, LABs have been used in modern and sustainable agriculture systems due to their biological potential. Recently, many scientists have increased their focus on developing nutrient-rich animal feed from forages with LAB. This current review focuses on issues related to forage preservation in the form of silages, how undesirable microbes affect the fermentation process, the critical role of LAB in silage production, and the selection of potent LABs to effectively control unwanted microbial growth and promote those which favor animal growth.
Collapse
|
25
|
Bonaldi DS, Carvalho BF, Ávila CLDS, Silva CF. Effects of Bacillus subtilis and its metabolites on corn silage quality. Lett Appl Microbiol 2021; 73:46-53. [PMID: 33756025 DOI: 10.1111/lam.13474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/02/2023]
Abstract
Cellulolytic micro-organisms are potent silage inoculants that decrease the fibrous content in silage and increase the fibre digestibility and nutritional value of silage. This study aimed to evaluate the effects of Bacillus subtilis CCMA 0087 and its enzyme β-glucosidase on the nutritional value and aerobic stability of corn silage after 30 and 60 days of storage. We compared the results among silage without inoculant (SC) and silages inoculated with B. subtilis 8 log10 CFU per kg forage (SB8), 9 log10 CFU per kg forage (SB9) and 9·84 log10 CFU per kg forage + β-glucosidase enzyme (SBE). No differences were observed in the levels of dry matter, crude protein and neutral detergent fibre due to the different treatments or storage times of the silos. Notably, the population of spore-forming bacteria increased in the SB9-treated silage. At 60 days of ensiling, the largest populations of lactic acid bacteria were found in silages treated with SB8 and SBE. Yeast populations were low for all silages, irrespective of the different treatments, and the presence of filamentous fungi was observed only in the SBE-treated silage. Among all silage treatments, SB9 treatment resulted in the highest aerobic stability.
Collapse
Affiliation(s)
- D S Bonaldi
- Biology Department, Federal University of Lavras, Minas Gerais, Brazil
| | - B F Carvalho
- Biology Department, Federal University of Lavras, Minas Gerais, Brazil
| | - C L D S Ávila
- Animal Science Department, Federal University of Lavras, Minas Gerais, Brazil
| | - C F Silva
- Biology Department, Federal University of Lavras, Minas Gerais, Brazil
| |
Collapse
|
26
|
Drouin P, Tremblay J, Renaud J, Apper E. Microbiota succession during aerobic stability of maize silage inoculated with Lentilactobacillus buchneri NCIMB 40788 and Lentilactobacillus hilgardii CNCM-I-4785. Microbiologyopen 2020; 10:e1153. [PMID: 33369186 PMCID: PMC7885010 DOI: 10.1002/mbo3.1153] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Aerobic deterioration of silage following feeding out is responsible for the deterioration of its quality. Inoculation of silage with lactic acid bacteria is one strategy to limit these effects. A trial was performed using whole‐plant corn ensiled in bag silo, and forage was inoculated with Lentilactobacillus buchneri NCIMB 40788 (Lactobacillus buchneri) and Lentilactobacillus hilgardii CNCM‐I‐4785 (Lactobacillus hilgardii) or not (Control silage). After 159 days of fermentation, the silos were opened and the silage was sampled at 24‐h intervals during a 10‐day aerobic stability assay to measure pH, the fermentation profile, mycotoxins, and microbial and fungal populations. In inoculated silage, lactic acid concentrations and pH remained stable during the aerobic phase and higher microorganism alpha‐diversity was observed. Treated silage was characterized by a high abundance of Saccharomycetes and maintenance of Lactobacillus throughout the aerobic stability assay. The high aerobic stability of the inoculated silage contrasted with the decrease in lactic acid contents and the increase in pH observed in the Control silage, concomitantly with an increase in lactate‐assimilating yeast (Pichia and Issatchenkia), and in Acetobacter and Paenibacillus OTUs. Remarkably, Penicillium and roquefortine C were detected in this silage by day 8 following exposure to air. Our study highlighted the fact that the use of L. buchneri with L. hilgardii modified the consequences of exposure to air by maintaining higher microbial diversity, avoiding the dominance of a few bacteria, and preventing fungi from having a detrimental effect on silage quality.
Collapse
Affiliation(s)
| | - Julien Tremblay
- National Research Council of Canada, Energy, Mining, and Environment, Montréal, QC, Canada
| | - Justin Renaud
- London Research and Development Center, Agriculture and Agri-food Canada, London, ON, Canada
| | | |
Collapse
|