1
|
Tang Q, Zhang Y, Huang J, Zhou R. Unraveling the unique microbiota and metabolites in three different colors Jiangqu through multidimensional analysis. Food Chem 2025; 466:142256. [PMID: 39612831 DOI: 10.1016/j.foodchem.2024.142256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
Tri-colored Jiangqu, including white (WQ), yellow (YQ), and black (BQ)-color Daqu, significantly influence fresh Baijiu yield and quality. The differences in attributes of these Jiangqu types, sourced from two renowned Baijiu enterprises, were investigated using multi-omics approaches. Color intensity negatively correlated with ammonia nitrogen content, but positively with pyroglutamic acid content. 182 volatiles and 291 non-volatiles were identified, with each types exhibiting unique metabolites. Esters, pyrazines, ketones and phenols were predominant in WQ, YQ, and BQ, respectively. The content of peptides, amines, and amino acids with derivatives also showcased the differences of microbiota and metabolic pathways among tri-colored Jiangqu. BQ's characteristic components of L-Tyrosine and acetyl tributyl citrate were closely associated with melanin formation. In YQ, Scopulibacillus and Rhizopus correlated positively with tetramethylpyrazine. Moreover, the bacterial community significantly influenced the metabolic profiles, and synergistic interactions between fungal and bacterial communities were crucial in determining metabolite abundance.
Collapse
Affiliation(s)
- Qiuxiang Tang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Qin H, Zhang S, Wang C, Pan Q, Dong Y, Cai X, Wang X, Huang M, Huang J, Zhou R. Revealing the influence of exogenously inoculated Bacillus spp. on the microbiota and metabolic potential of medium-temperature Daqu: A meta-omics analysis. Food Res Int 2024; 182:114152. [PMID: 38519180 DOI: 10.1016/j.foodres.2024.114152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
To determine the unique contribution of the bioturbation to the properties of the medium-temperature Daqu, we investigated the differences in microbiota and metabolic composition using the meta-omics approach. Bioturbation increased the amounts of microbial specie and influenced the contribution of the core microbiota to the metabolome. Specifically, inoculated synthetic microbiota (MQB) enhanced the abundance of Bacillus amyloliquefaciens, while Bacillus licheniformis (MQH) increased the abundance of the two Aspergillus species and four species level of lactic acid bacteria. These changes of the microbial profiles significantly increased the potentials of carbohydrate metabolism, amino acid metabolism, and biosynthesis of ester compounds. Consequently, both patterns significantly increased the content of volatile compounds and free amino acids, which were 27.61% and 21.57% (MQB), as well as 15.14% and 17.83% (MQH), respectively. In addition, the contents of lactic acid in MQB and MQH decreased by 65.42% and 42.99%, respectively, closely related to the up- or down-regulation of the expression of their corresponding functional enzyme genes. These results suggested that bioturbation drove the assembly of the core microbiota, rather than becoming critical functional species. Overall, our study provides new insights into the functional role of exogenous isolates in the Daqu microecosystem.
Collapse
Affiliation(s)
- Hui Qin
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China; Luzhou Laojiao Co., Ltd., Luzhou 646699, China
| | - Suyi Zhang
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China; Luzhou Laojiao Co., Ltd., Luzhou 646699, China
| | - Chao Wang
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China; Luzhou Laojiao Co., Ltd., Luzhou 646699, China
| | - Qianglin Pan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Dong
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China; Luzhou Laojiao Co., Ltd., Luzhou 646699, China
| | - Xiaobo Cai
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China; Luzhou Laojiao Co., Ltd., Luzhou 646699, China
| | - Xiaojun Wang
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China; Luzhou Laojiao Co., Ltd., Luzhou 646699, China
| | - Mengyang Huang
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China; Luzhou Laojiao Co., Ltd., Luzhou 646699, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China; College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Tang Q, Huang J, Zhang S, Qin H, Dong Y, Wang C, Li D, Zhou R. Exploring the mechanism of regulating the microbial community and metabolizing trait in Chinese Baijiu fermentation via Huizao. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Zhu Y, Liu S, Ma D, Xu Y, Yang C, Mao J. Stabilization of jiuyao quality for huangjiu brewing by fortifying functional strains based on core microbial community analysis. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Pan Q, Huang J, Zhang S, Qin H, Wang X, Mu Y, Tang H, Zhou R. Response of microbiota to exogenous inoculation improved the enzymatic activities of medium-temperature Daqu. Front Microbiol 2022; 13:1047041. [PMID: 36458186 PMCID: PMC9706721 DOI: 10.3389/fmicb.2022.1047041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/26/2022] [Indexed: 01/30/2025] Open
Abstract
To explore the potential mechanism of improving enzymatic activities in medium-temperature Daqu (MTD) by inoculation functional isolates, we inoculated a single strain of Bacillus licheniformis, and the microbiota composed of Bacillus velezensis and Bacillus subtilis in MTD to investigate the association between the response of the functional microbiota and the enzymatic activity. The results showed that the bacterial community of MTD might be more sensitive to bioturbation than the fungal community, and the indigenous microbiota responded to the single strain more than to the microbiota. Moreover, the differential microorganisms mainly included Lactobacillales, Bacillales, and Saccharomycetales between the conventional and fortified samples. Notably, the composition of functional microbiota related to liquefying activity (LA) and saccharifying activity (SA) were significantly different, changing from Lactobacillus and Rhizomucor to Bacillus, Weissella, and Hyphopichia. That might be closely related to the effect of the bioturbation on LA (31.33%) and SA (43.54%) associated microorganisms was more tellingly. Furthermore, the relative abundance changes of bioturbation-sensitive modules in the co-occurrence network might also lead to the difference in enzymatic activities. Therefore, the LA and SA of MTD were improved by bioturbation significantly. These results provide diverse insights into the exogenous functional isolates to regulate the MTD microbiota and improve enzymatic activities.
Collapse
Affiliation(s)
- Qianglin Pan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Suyi Zhang
- Luzhou Lao Jiao Co., Ltd., Luzhou, China
- National Engineering Research Center of Solid-State Manufacturing, Luzhou, China
| | - Hui Qin
- Luzhou Lao Jiao Co., Ltd., Luzhou, China
- National Engineering Research Center of Solid-State Manufacturing, Luzhou, China
| | - Xiaojun Wang
- Luzhou Lao Jiao Co., Ltd., Luzhou, China
- National Engineering Research Center of Solid-State Manufacturing, Luzhou, China
| | - Yu Mu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Huifang Tang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- National Engineering Research Center of Solid-State Manufacturing, Luzhou, China
| |
Collapse
|
6
|
Tang Q, Huang J, Zhang S, Qin H, Dong Y, Wang C, Li D, Zhou R. Characterizing the correlation between species/strain-specific starter with community assembly and metabolic regulation in Xiaoqu Pei. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100170. [DOI: 10.1016/j.crmicr.2022.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|